New fairness concepts for allocating indivisible items

Ioannis Caragiannis
Aarhus University
iannis@cs.au.dk

This talk ...

- An overview of well-known results in fair division
- New technical results (C., Garg, Rathi, Sharma, \& Varriccio, 2022)

Fair division: some indicative problems

- An inheritance, consisting of a jewellery collection, pieces of antique furniture, and estate property, is to be divided among heirs
- Food donated to a food bank has to be given to charities
- Access to rainwater reservoirs has to be granted to farmers
- A territorial dispute has to be resolved between neighbouring countries
- A partnership is dissolved, and the ex-partners have to split assets and liabilities
- Responsibility for the protection of refugees has to be shared among EU countries

The research agenda: conceptual and computational challenges in fair division

- Computational questions: How should fair division procedures for these scenarios work?
- Before that: need to define fairness as a concept

Cake cutting

Cake cutting: the model

- A divisible item, to be thought of as the interval [0,1]

Cake cutting: agent valuations

Cake cutting: agent valuations

Cake cutting: an algorithm

- Lisa cuts, Bart chooses first

What does "fairly" mean?

What does "fairly" mean?

- Two interpretations of fairness:
- Comparative: to evaluate an allocation as fair, each agent compares the part of the cake allocated to her to the parts allocated to other agents
- In absolute terms: each agent defines a threshold value based on her view of the cake and evaluates as fair those allocations which give her value higher than the threshold

What does "fairly" mean?

- Two interpretations of fairness:
- Comparative: to evaluate an allocation as fair, each agent compares the part of the cake allocated to her to the parts allocated to other agents
- In absolute terms: each agent defines a threshold value based on her view of the cake and evaluates as fair those allocations which give her value higher than the threshold
- Fairness notions
- Envy freeness: every agent prefers the part she gets to that given to any other agent

$$
\forall i, j: v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)
$$

What does "fairly" mean?

- Two interpretations of fairness:
- Comparative: to evaluate an allontion \sim fair, each agent compares the part of the cake allocated to her to Value of agent i for the her agents
- In al part A_{i} of the cake

For every pair of agents i and j

- Fairness nutuoris
- Envy freeness: every agent prefers he part she \&-ts to that given to any other agent

$$
\forall i, j: v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)
$$

What does "fairly" mean?

- Two interpretations of fairness:
- Comparative: to evaluate an allocation as fair, each agent compares the part of the cake allocated to her to the part allocated to other agents
- In absolute terms: each agent defines a threshold value based on her view of the cake and evaluates as fair those allocations which give her value higher than the threshold
- Fairness notions
- Envy freeness: every agent prefers the part she gets to that given to any other agent

$$
\forall i, j: v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)
$$

- Proportionality: every agent feels that she gets at least $1 / n$-th of the cake

$$
\forall i: v_{i}\left(A_{i}\right) \geq \frac{1}{n} v_{i}(G)
$$

What does "fairly" mean?

- Two interpretations of fairness:
- Comparative: to evaluate an allocation as fair, each agent compares the part of the cake allocated to her to the part allocated to other agents
- In absolute terms: each agent dofimethreshold value based on her view of the cake and evaluates as fai Value of agent i for the $\quad h$ give her value higher than the threshold part A_{i} of the cake allocated to her
- Fair
- For every agent i

Threshold value: $1 / n$ th of the total value of agent i for the cake cher agent

- Proportionality: every onent feels hat she gets n reast $1 / n$-th of the cake

$$
\forall i: v_{i}\left(A_{i}\right) \geq \frac{1}{n} v_{i}(G)
$$

Computing fair cake divisions

- Envy-free and thus proportional cake division always exist, even assuming n agents
- Good news: proportionality can be achieved using polynomially many cut and evaluation queries
- Dubins \& Spanier (1961), Even \& Paz (1984), Edmonds \& Pruhs (2006)
- Bad news: known algorithms for envy-freeness are extremely demanding in computing resources (no finite-time protocol for contiguous cake division exists, running time $=n^{n^{n^{n^{n}}}}$ for non-contiguous allocations)
- Aziz \& Mackenzie (2016), Procaccia (2009), Stromquist (2008)

So, when is a fairness concept important?

- Must be fair :)
- Should always exist
- Must be efficiently computable

Allocating indivisible items

The basic setting

- Indivisible items

- Agents with valuations for the items (additivity)

- Goal: divide the items among the agents in a fair manner

An example

	$\$ 1000$	$\$ 200$	$\$ 600$	$\$ 100$	$\$ 100$
	$\$ 700$	$\$ 500$	$\$ 100$	$\$ 400$	$\$ 300$
	$\$ 500$	$\$ 700$	$\$ 400$	$\$ 200$	$\$ 200$

An example

What does "fairly" mean?

- Again, two interpretations of fairness:
- Comparative: to evaluate an allocation as fair, each agent compares the bundle of items allocated to her to the bundles allocated to other agents
- In absolute terms: each agent defines a threshold value based on her view of the items to be allocated and evaluates as fair those allocations which give her value higher than the threshold
- Fairness notions
- Envy freeness: every agent prefers her own bundle to the bundle of any other agent

$$
\forall i, j: v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)
$$

- Proportionality: every agent feels that she gets at least $1 / n$-th of the items

$$
\forall i: v_{i}\left(A_{i}\right) \geq \frac{1}{n} v_{i}(G)
$$

What does "fairly" mean?

- Again, two interpretations of fairness:
- Comparative: to evaluate an allocation as fair, each agent compares the bundle of items allocated to her to the bundles allocated to other agents
- In absolute terms: each agent defines a threshold value based on her view of the items to be allocated and evaluates as fair those allocations which give her value higher than the threshold
- Fairness notions
- Unfortunately, envy freeness and proportionality may not exist $:$:

Relaxing envy-freeness

- Envy freeness up to some item (EF1): every agent prefers her own bundle to the bundle of any other agent after eliminating some item from the latter

$$
\forall i, j: \exists g \in A_{j} \text { s.t. } v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash\{g\}\right)
$$

- Proposed by Budish (2011)

Relaxing envy-freeness

- Envy freeness up to some item (EF1): every agent prefers her own bundle to the bundle of any other agent after eliminating some item from the latter

$$
\forall i, j: \exists g \in A_{j} \text { s.t. } v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash\{g\}\right)
$$

- Proposed by Budish (2011)
- EF1 always exist and can be computed in polynomial time
- Via the draft mechanism (folklore), envy-cycle elimination (Lipton, Markakis, Mossel, \& Saberi, 2004), the maximum Nash welfare allocation (C., Kurokawa, Moulin, Procaccia, Shah, \& Wang, 2019)

The draft mechanism

- Drafting order:

$\$ 1200$	$\$ 200$	$\$ 300$	$\$ 200$	$\$ 100$
$\$ 800$	$\$ 500$	$\$ 200$	$\$ 300$	$\$ 200$
$\$ 800$	$\$ 400$	$\$ 400$	$\$ 300$	$\$ 100$

The draft mechanism

- Drafting order:

$\$ 1200 \quad \$ 200$

$\$ 800$
$\$ 400$
$\$ 400$
\$300
\$100

The draft mechanism

- Drafting order:

\$200

\$200
\$100

$\$ 500$
\$200
$\$ 300$
\$200
$\$ 800$
$\$ 400$
$\$ 400$
\$300
\$100

The draft mechanism

- Drafting order:

The draft mechanism

- Drafting order:

The draft mechanism

- Drafting order:

The draft mechanism

- Drafting order:

- Phases for agent
- In each phase, ${ }^{\circ}$ prefers the good he gets to the good every other agent gets
- So, ignoring the good picked by an agent at the very beginning of the sequence, 8 is EF

Envy-cycle elimination

- Allocate items one by one
- In each step j :
- Allocate item j to an agent that nobody envies
- If this creates a "cycle of envy", redistribute the bundles along the cycle
- Crucial property:
- Envy can be eliminated by removing just a single good
- Implies EF1
- Lipton, Markakis, Mossel, \& Saberi (2004)

So, what's wrong with EF1?

Relaxing envy-freeness

- Envy freeness up to some item (EFX): every agent prefers her own bundle to the bundle of any other agent after eliminating any item from the latter

$$
\forall i, j, \forall g \in A_{j}: v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash\{g\}\right)
$$

- Proposed by C., Kurokawa, Moulin, Procaccia, Shah, \& Wang (2019)

Relaxing envy-freeness

- Envy freeness up to some item (EFX): every agent prefers her own bundle to the bundle of any other agent after eliminating any item from the latter

$$
\forall i, j, \forall g \in A_{j}: v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash\{g\}\right)
$$

- Proposed by C., Kurokawa, Moulin, Procaccia, Shah, \& Wang (2019)
- Not known whether it always exists for general instances
- Known results for agents with identical valuations, ordered valuations, three agents, and a few more
- Plaut \& Roughgarden (2020), Chaudhuri, Garg, \& Mehlhorn (2020)
- Known results for relaxations of EFX (approximations, EFX with charity, etc.)
- Amanatidis, Markakis, \& Ntokos (2020), C., Gravin, \& Huang (2019), Chaudhuri, Kavitha, Mehlhorn, \& Sgouritsa (2021), Chaudhuri, Garg, Mehlhorn, Ruta, \& Misra (2021)

Relaxing proportionality

- Maximin share fairness (MMS): each agent's threshold is equal to the best guarantee when dividing the items into n bundles and getting the least valuable bundle

$$
\forall i, v_{i}\left(A_{i}\right) \geq \theta_{i}=\max _{B} \min _{j} v_{i}\left(B_{j}\right)
$$

- Proposed by Budish (2011)
- Maximin stio fairness (MMS): h agent's threst is equal to the best guarantee wher lividing the item into n bundle and getting the least valuable bundle

$$
\forall i, v_{i}\left(A_{i}\right) \geq \theta_{i}=\max _{B} \min _{j} v_{i}\left(B_{j}\right)
$$

- Proposed by Budish (2011)

MMS: an example

ans	8			
\$500	\$600	\$200	\$400	\$300
\$700	\$700	\$300	\$200	\$100
\$900	\$600	\$200	\$200	\$100

MMS: an example

MMS: an example

 MMS threhsolds first

MMS: an example

Now let's compute the allocation

MMS: an example

Now let's compute the allocation

Relaxing proportionality

- Maximin share fairness (MMS): each agent's threshold is equal to the best guarantee when dividing the items into n bundles and getting the least valuable bundle

$$
\forall i, v_{i}\left(A_{i}\right) \geq \theta_{i}=\max _{B} \min _{j} v_{i}\left(B_{j}\right)
$$

- Proposed by Budish (2011)
- Unfortunately, MMS allocations may not exist
- Procaccia \& Wang (2014), Kurokawa, Procaccia, \& Wang (2018)
- Research has focused on achieving MMS-approximations in poly time
- Amanatidis, Markakis, Nikzad, \& Saberi (2017), Ghodsi, Hajiaghayi, Seddighin, Seddighin, \& Yami (2018), Barman \& Krishnamurthy (2020), Garg \& Taki (2020)

Summarizing so far

- EF1: always exists, easy to achieve, not fair
- EFX: not known whether it can be always satisfied, fair
- MMS: may not exist, fair (if exists)

- See Bouveret \& Lemaitre (2016), Aziz, Bouveret, C., Giagkousi, \& Lang (2018) for taxonomies including more fairness concepts

Summarizing so far

- EF1: always exists, easy to achieve, ng

Still, EFX seems to be the most promising fairness property we
have for indivisible items

- EFX: not known whether it can be alu
- MMS: may not exist, fair (if exista)

- See Bouveret \& Lemaitre (2016), Aziz, Bouveret, C., Giagkousi, \& Lang (2018) for taxonomies including more fairness concepts

New fairness concepts

Fairness and knowledge

- What kind of knowledge do the agents need to have?
- Knowledge about the items and the number of agents only:
- Proportionality, MMS
- Knowledge about the whole allocation:
- EF, EFX, EF1

Epistemic envy-freeness (EEF)

- Informally: a relaxation of EF with a definition that uses only knowledge about items and number of agents
- Formal definition: the allocation $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is EEF if, for every agent i, there is a reallocation $\left(B_{1}, \ldots, B_{i-1}, A_{i}, B_{i+1}, \ldots, B_{n}\right)$ of the items in which agent i is not envious, i.e., $v_{i}\left(A_{i}\right) \geq v_{i}\left(B_{j}\right)$ for every other agent j
- Aziz, C., Bouveret, Giagkousi, \& Lang (2018)
- Unfortunately, EEF allocations may not exist

Epistemic envy-freeness up to any item (EEFX)

- Informally: a relaxation of EFX with a definition that uses only knowledge about items and number of agents
- Formal definition: the allocation $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is EEFX if, for every agent i, there is a reallocation $\left(B_{1}, \ldots, B_{i-1}, A_{i}, B_{i+1}, \ldots, B_{n}\right)$ of the items in which the EFX conditions for agent i are satisfied

$$
\forall i, j \neq i, \forall g \in B_{j}: v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j} \backslash\{g\}\right)
$$

- C., Garg, Rathi, Sharma, \& Varricchio (2022)

Minimum EFX value fairness (MXS)

- Informally: Each agent i gets a value that is at least as high as the minimum value agent i gets among all allocations where the EFX conditions for her are satisfied
- Formal definition: the allocation $\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ is MXS if

$$
\forall i: v_{i}\left(A_{i}\right) \geq \theta_{i}=\min _{B \in E F X_{i}} v_{i}\left(B_{i}\right)
$$

where the set $E F X_{i}$ consists of those allocations $B=\left(B_{1}, B_{2}, \ldots, B_{n}\right)$ such that

$$
\forall j \neq i, g \in B_{j}: v_{i}\left(B_{i}\right) \geq v_{i}\left(B_{j} \backslash\{g\}\right)
$$

- C., Garg, Rathi, Sharma, \& Varricchio (2022)

MXS: an example

\$500	\$600	\$200	\$400	\$300
\$700	\$700	\$300	\$200	\$100
\$900	\$600	\$200	\$200	\$100

MXS: an example

Let's compute the MXS threhsolds first

MXS: an example

 MXS threhsolds first

MXS: an example

MXS: an example
Now let's compute the allocation

A geometry of fairness properties

$E E F X \longrightarrow M X S$

- Proof: Let $A=\left(A_{1}, \ldots, A_{n}\right)$ be EEFX. Then, for every agent i, there exists a reallocation $B=\left(B_{1}, \ldots, B_{i-1}, A_{i}, B_{i+1}, \ldots, B_{n}\right)$ so that the EFX conditions are satisfied for agent $i, B \in E F X_{i}$
- Hence,

$$
v_{i}\left(A_{i}\right) \geq \min _{B^{\prime} \in E F X_{i}} v_{i}\left(B_{i}^{\prime}\right)=M X S_{i}
$$

- I.e., A is also MXS

$M M S \longrightarrow E E F X$

- Proof: Consider an MMS allocation $A=\left(A_{1}, A_{2}, \ldots, A_{n}\right)$ and partition the agents different than i to the groups:
- H : consists of agents j against whom agent i is not EFX-happy, i.e., $v_{i}\left(A_{i}\right)<\max _{g \in A_{j}} v_{i}\left(A_{j} \backslash\{g\}\right)$
- L : consists of agents j whom agent i does not envy, i.e., $v_{i}\left(A_{i}\right) \geq v_{i}\left(A_{j}\right)$
- M : the remaining agents
- Process: As long as there exists agents $j_{1} \in H$ and $j_{2} \in L$, move the item g in $A_{j_{1}}$ of minimum value $v_{i}(g)$ to the bundle $A_{j_{2}}$

MMS \rightarrow EEFX

agent i
group L
group M
group H

MMS \longrightarrow EEFX

\square	agent i
\square	$\operatorname{group} L$
\square	group M
\square	group H

MMS \rightarrow EEFX

agent i
group L
group M
group H

MMS \longrightarrow EEFX

agent i
group L
group M
group H

MMS \longrightarrow EEFX

agent i
group L
group M
group H

MMS \longrightarrow EEFX

agent i
group L
group M
group H
$M M S \longrightarrow E E F X$

\square
agent i
group L
group M
group H

MMS \rightarrow EEFX

agent i
group L
group M
group H

$\mathrm{MMS} \longrightarrow \mathrm{EEFX}$ (contd.)

- An agent from group H can either stay in group H or move to group M
- An agent from group L can either stay in group L or move to group M
- Eventually either group H or group L or group will become empty
- If H becomes empty, the redistribution is EFX
- If H does not become empty, agent i has strictly higher value for any other bundle and there is an agent $j \in H$ against whom agent i is not EFX-happy
- Then, moving the item $g \in A_{j}$ of minimum value $v_{i}(g)$ from agent j to agent i, we get an allocation B in which $\min _{j} v_{i}\left(B_{j}\right)>v_{i}\left(A_{i}\right)$, violating the assumption that allocation A is MMS

$\mathrm{MMS} \longrightarrow \mathrm{EEFX}$ (contd.)

agent i
group L
group M
group H

$\mathrm{MMS} \longrightarrow \mathrm{EEFX}$ (contd.)

\square agent i
group L
group M
group H

$\mathrm{MMS} \longrightarrow \mathrm{EEFX}$ (contd.)

i.e., the MMS threshold is higher than $v_{i}\left(A_{i}\right)$, contradicting that A is MMS
\square agent i
\square group L
group Mgroup H

A geometry of fairness properties

Main result: EEFX and MXS are awesome!

- Theorem: EEFX and MXS allocations always exist and can be computed in polynomial time

An algorithm for EEFX (and MXS)

- Step 1: Enumerate the items as $g_{1}, g_{2}, \ldots, g_{m}$ and redistribute the values so that each agent has her j-th highest value for item g_{j}
- Step 2: Run envy-cycle elimination on this ordered instance
- Step 3: Redistribute the items to the bundles. For $j=1, \ldots, m$, agent who currently has item g_{j} is asked to pick her best available item

Envy-cycle elimination (implementation of step 2)

- Lipton, Markakis, Mossel, \& Saberi (2004)
- Allocate items one by one (ordered from the most to the least valued one)
- In each step j :
- Allocate item j to an agent that nobody envies
- If this creates a "cycle of envy", redistribute the bundles along the cycle
- Crucial property:
- Envy can be eliminated by removing a single item (the last one inserted in a bundle)
- Implies EF1 (actually, EFX)
- Barman \& Krishnamourthy (2020)

An example

	$\$ 500$	$\$ 600$	$\$ 200$	$\$ 400$	$\$ 300$
	$\$ 700$	$\$ 700$	$\$ 300$	$\$ 200$	$\$ 100$
	$\$ 900$	$\$ 600$	$\$ 200$	$\$ 200$	$\$ 100$

Step 1: redistributing the values

$\$ 600$	$\$ 500$	$\$ 400$	$\$ 300$	$\$ 200$
$\$ 700$	$\$ 700$	$\$ 300$	$\$ 200$	$\$ 100$
$\$ 900$	$\$ 600$	$\$ 200$	$\$ 200$	$\$ 100$

Step 2: envy-cycle elimination

$\$ 600$	$\$ 500$	$\$ 400$	$\$ 300$	$\$ 200$
$\$ 700$	$\$ 700$	$\$ 300$	$\$ 200$	$\$ 100$
$\$ 900$	$\$ 600$	$\$ 200$	$\$ 200$	$\$ 100$

Step 2: envy-cycle elimination

Step 3: redistribute items to the bundles

Step 3: redistribute items to the bundles

Step 3: redistribute items to the bundles

$\$ 600$
\$200
$\$ 400$
\$300
$\$ 700$
$\$ 300$
$\$ 200$
\$100
$\$ 900 \quad \$ 600 \quad \$ 200 \quad \$ 200 \quad \$ 100$
picking sequence

Step 3: redistribute items to the bundles

picking sequence

Step 3: redistribute items to the bundles

picking sequence

Step 3: redistribute items to the bundles

picking sequence

Step 3: redistribute items to the bundles

picking sequence

An algorithm for EEFX (and MXS)

- Step 1: Enumerate the items as $g_{1}, g_{2}, \ldots, g_{m}$ and redistribute the values so that each agent has her j-th highest value for item g_{j}
- Bouveret \& Lemaitre (2016)

An algorithm for EEFX (and MXS)

- Step 1: Enumerate the items as $g_{1}, g_{2}, \ldots, g_{m}$ and redistribute the values so that each agent has her j-th highest value for item g_{j}
- Bouveret \& Lemaitre (2016)
- Step 2: Run envy-cycle elimination to this ordered instance
- Yields an EFX allocation for the ordered instance (Barman \& Krishnamourthy, 2020)

An algorithm for EEFX (and MXS)

- Step 1: Enumerate the items as $g_{1}, g_{2}, \ldots, g_{m}$ and redistribute the values so that each agent has her j-th highest value for item g_{j}
- Bouveret \& Lemaitre (2016)
- Step 2: Run envy-cycle elimination to this ordered instance
- Yields an EFX allocation for the ordered instance (Barman \& Krishnamourthy, 2020)
- Step 3: Redistribute the items to the bundles. For $j=1, \ldots, m$, agent who currently has item g_{j} is asked to pick her best available item

What happens at step 3?

agent i
at the end of step 2, agent i is EFX-happy wrt the modified item values

What happens at step 3?

What happens at step 3?

... and there is a redistribution of the items (i.e., their assignment at the end of step 2) which makes agent i EFX-happy

Back to cake cutting

EEF in cake cutting

- Epistemic EF in cake cutting is equivalent to proportionality
- Not true for contiguous cake cutting
- EEF is achievable by a modification of Dubins-Spanier protocol
- Even \& Paz's protocol computes an EEF cake division with $O(n \ln n)$ queries
- Optimal due to a lower bound for proportionality by Edmonds \& Pruhs (2006)
- So, EEF is considerably easier than EF

Takeaway message

- EFX is still an important property and we should further explore it
- But why not focusing on alternative fairness concepts in parallel?
- In particular, on concepts that are related to it, like EEFX and MXS
- Reconsider existing algorithms (they may do more than we think)

Takeaway message

- EFX is still an important property and we should further explore it
- But why not focusing on alternative fairness concepts in parallel?
- In particular, on concepts that are related to it, like EEFX and MXS
- Reconsider existing algorithms (they may do more than we think)
- Many open problems: variations of MXS, compatibility with paretooptimality, price of EEFX/MXS, complexity of computing MXS threshold, non-additive valuations, chores, etc.

Takeaway message

- EFX is still an important property and we should further explore it
- But why not focusing on alternative fairness concepts in parallel?
- In particular, on concepts that are related to it, like EEFX and MXS
- Reconsider existing algorithms (they may do more than we think)
- Many open problems: variations of MXS, compatibility with paretooptimality, price of EEFX/MXS, complexity of computing MXS threshold, non-additive valuations, chores, etc.

