
Experimental Evaluation of Hot–Potato Routing

Algorithms on 2–Dimensional Processor Arrays�

Constantinos Bartzis1��, Ioannis Caragiannis2, Christos Kaklamanis2, and
Ioannis Vergados2

1 Department of Computer Science and Engineering
University of California, Santa Barbara, USA

2 Computer Technology Institute and
Dept. of Computer Engineering and Informatics,

University of Patras, 26500 Rio, Greece.

Abstract. In this paper we consider the problem of routing packets in
two–dimensional torus–connected processor arrays. We consider four al-
gorithms which are either greedy in the sense that packets try to move
towards their destination by adaptively using a shortest path, or have
the property that the path traversed by any packet approximates the
path traversed by the greedy routing algorithm in the store–and–forward
model. In our experiments, we consider the static case of the routing
problem where we study permutation and random destination input in-
stances as well as the dynamic case of the problem under the stochastic
model for the continuous generation of packets.

1 Introduction

We consider a form of packet routing known as hot–potato routing. The network
is modeled as a directed graph where the nodes are the processors and the
unidirectional edges are communication links between processors. Each processor
has an injection buffer and a delivery buffer. When a new packet is generated, it
is stored in the injection buffer of its source processor; when a packet reaches its
destination processor, it is stored in the delivery buffer. The routing is performed
in discrete, synchronous time steps. During each step, a processor receives zero
or one packet along each incoming edge and must send all the packets it received
out along outgoing edges with at most one packet leaving per outgoing edge. No
buffers are required to hold the packets between the time steps. Any packet that
arrives at a node other than its destination must immediately be forwarded to
another node. The topology we consider in this paper is that of the 2–dimensional
torus–connected processor array.

� This work was partially funded by the European Union under IST FET Project
ALCOM–FT and RTN Project ARACNE. An extended version of the paper can be
found at http://students.ceid.upatras.gr/˜caragian/bckv00.ps

�� Part of this work was performed while the author was at the Department of Computer
Engineering and Informatics, University of Patras, Greece.

A. Bode et al. (Eds.): Euro-Par 2000, LNCS 1900, pp. 877–881, 2000.
c© Springer-Verlag Berlin Heidelberg 2000



878 Constantinos Bartzis et al.

In static (or batch) routing problems, all processors generate a single packet
simoultaneously. The running time of a routing problem is the number of time
steps required to deliver all packets to their destinations.

In dynamic routing problems, each node continously generates packets with
an injection rate λ. New packets are stored in the injection buffer and wait to be
served. When a processor receives less than four packets along its incoming edges,
it considers a packet from its injection buffer. When a packet starts moving, it
is never buffered at any node until it reaches its destination, where it is stored
in the delivery buffer and absorbed.

The first hot-potato algorithm was proposed by Baran [1]. Borodin and
Hopcroft [4], Prager [13] and Hajek [8] presented algorithms for hypercubes.
Hot–potato routing algorithms for 2–dimensional meshes and tori were proposed
by Bar–Noy et al. [2], Ben–Aroya et al. [3], Newman and Schuster [12], Kaufman
et al. [10], Feige and Raghavan [7], and Kaklamanis et al. [9]. All of them deal
with batch routing problems. The only study of the dynamic case we are aware
of is that of Broder and Upfal [5].

An important class of hot–potato routing algorithms is that of greedy algo-
rithms. In these algorithms, each node forwards each packet closer to its des-
tination whenever possible. Although greedy algorithms have been observed to
work well in practice (for static routing problems), the known theoretical results
for their performance are far from being tight (see Busch et al. [6]).

Especially for meshes and tori, a class of hot–potato routing algorithms that
has received much attention is that of algorithms that make packets follow paths
that approximate their natural greedy path (i.e., the path utilized by the greedy
routing algorithm in the store–and–forward model [11]). Such algorithms were
proposed and analyzed in [9].

2 Short Description of the Algorithms

In this section, we briefly describe four algorithms on the 2–dimensional torus
network, namely the greedy algorithm, algorithm A1, algorithm KKR, and al-
gorithm A2. The greedy algorithm is a variation of the folklore algorithm men-
tioned in the bibliography. Algorithm KKR was proposed in [9]. Algorithm A1
is a simple algorithm that “approximates the greedy path” while algorithm A2
is a variation of algorithm KKR. To our knowledge, algorithms A1 and A2 have
not been studied in previous work.

The greedy algorithm. The greedy algorithm which was implemented tries
to move packets towards their destination by adaptively using shortest paths,
also trying to minimize the difference between the horizontal and the vertical
distance of each packet from its destination.

The decisions the algorithm makes are local, since they depend on the desti-
nation of the incoming packets and the order in which these packets are exam-
ined. The implementation of the algorithm obeys the one–pass property [8].

A simple algorithm that approximates the greedy path. From the point
of view of the motion of the packets, packets routed by algorithm A1, start



Experimental Evaluation of Hot–Potato Routing Algorithms 879

moving into their rows and continuously turn right so that they move around
their destination row, until they reach it (see Figure 1).

(a) (b) (c) (d)

Fig. 1. Typical movement of packets performed by (a) the greedy algorithm, (b)
algorithm A1, (c) algorithm KKR, and (d) algorithm A2.

The algorithm KKR [9]. Each packet p starts moving along its row, following
the shortest path towards its destination column. When it reaches its destination
column, p attempts to enter the column and moves towards its destination. If it
fails, it moves “back and forth” until it succesfully turns into the right column.

A variation of the algorithm KKR. Algorithm A2 is based on the following
idea: during the time steps that a packet p is moving “back and forth” along its
row trying to turn into the correct column, it could also try to turn at some other
node trying to decrease the vertical distance of the packet from its destination.

This can be seen as a movement of a packet in its row until it reaches its
destination column, and then, greedy movement to the destination processor.
Thus, algorithm A2 maintains both properties: it is greedy and also approximates
the greedy path.

The typical shape of the paths traversed by the packets during the execution
of the algorithms is depicted in Figure 1.

3 Experimentation

The four algorithms where implemented in C, and the results were conducted
by simulation experiments on a Pentium III/500Mhz running Solaris 7.

In the static model, packets are initially stored at the injection buffer and
start moving according to the routing algorithm. Initially, each processor has one
packet stored in its injection buffer. We consider routing problems with random
destinations (i.e., each packet is assigned as destination a processor, selected
among all the processors of the network, uniformly at random) and random
permutations (i.e., the routing problem is selected uniformly at random among
all possible permutations).

In our experiments, the parameter of interest was the running time of the
algorithms. Statistics on the running time of the algorithms on routing prob-
lems with random destinations are depicted in Table 1. The results for random
permutations are close to those for random destinations.



880 Constantinos Bartzis et al.

200× 200 500× 500

Average Max. Std dev. Average Max. Std dev.

Greedy 202.69 207 1.509 505.85 512 2.032

A1 201.39 205 1.214 501.16 506 1.412

KKR 205.19 214 2.881 505.13 511 2.553

A2 204.98 217 3.387 505.2 515 2.785

Table 1. Statistics from the execution of the four algorithms on 100 routing
problems with random destinations in tori 200×200 and 500×500. The average
and maximum observed running time, as well as the standard deviation of the
running time is shown.

The performance of all algorithms is very close to the optimal. We believe
that all the four algorithms route (almost all) batch routing problems in time
n + O(log n) on the n × n torus. Such a strong theoretical result has only been
proved for algorithm KKR in [9]. Algorithm A1 has slightly better performance
than the other three algorithms. Surprisingly, algorithm A2 does not improve
the running time of algorithm KKR.

In the dynamic model, packets with random destinations are continuously
generated at each processor with a rate λ (i.e., at each time step, a processor
generates a packet with probability λ, independently from the other proces-
sors) and stored in the injection buffer. Injection buffers have been implemented
as FIFO (first–in–first–out) queues; so the network together with the injection
buffers is considered as a queueing system. Once a packet leaves the injection
buffer of its origin processor, it starts moving according to the routing algo-
rithm until it reaches its destination, where it is stored in the delivery buffer and
absorbed (leaves the system).

In our experiments under the dynamic model, parameters of interest were the
delay of packets, the number of packets in the system (i.e., the number of packets
in injection buffers and packets being routed) and the network throughput, i.e.,
the maximum injection rate for which the system is stable.

A theoretical maximum value for the maximum injection rate on the n × n
torus is given by λmax = 8/n [11]. We alternatively express the injection rate
(and the network throughput) as a percentage of its theoretical maximum value.
Although we never observe stable behavior of the system for injection rates very
close to the theoretical maximum, we observed network throughput up to 72, 5%.

We performed experiments on the 200× 200 torus for injection rates smaller
than 50% (see Table 2). In this case, for the four algorithms we study, the net-
work is stable. We observe that, even for small injection rate, packets experience
significant delays when routed with the greedy algorithm, while the average
number of the packets in the network is large. Especially the average (total) size
of injection buffers when the greedy algorithm is used is more than twice the
average size of injection buffers when any of the other three algorithms is used.

In our experiments on the 200×200 torus, the network throughput observed
was about 0, 0276 (69%) for the greedy algorithm, 0.0254 (63.5%) for algorithm
A1 0.0265 (66.25%) for algorithm KKR, and 0.029 (72.5%) for algorithm A2.



Experimental Evaluation of Hot–Potato Routing Algorithms 881

Average delay Average size of injection buffers

λ = 0.005 λ = 0.01 λ = 0.02 λ = 0.005 λ = 0.01 λ = 0.02

Greedy 0.76 2.547 10.932 189 1,026 9,088

A1 0.336 0.943 4.664 156 386 3,835

KKR 0.475 1.304 6.456 78 543 5,383

A2 0.444 0.88 4.444 46 486 3,720

Table 2. Average delay of packets and average total size of injection buffers.
The average on the delay was taken among all packets that reached their des-
tinations within 2, 500 steps of execution. The average size of injection buffers
was computed for the steps of execution 1000–2500.

References

1. P. Baran. On Distributed Communication Networks. IEEE Transactions on Com-
munications, pp. 1–9, 1964.

2. A. Bar–Noy, P. Raghavan, B. Shieber, and H. Tamaki. Fast Deflection Routing for
Packets and Worms. In Proc. of the 12th Annual ACM Symposium on Principles
of Distributed Computing, pp. 75–86, 1993.

3. I. Ben–Aroya, T. Eilam, and Schuster. Greedy Hot–Potato Routing on the Two–
Dimensional Mesh. Distributed Computing, 9(1):3–19, 1995.

4. A. Borodin and J. Hopcroft. Routing, Merging, and Sorting on Parallel Models of
Computation. Journal of Computer and System Sciences, 30:130–145, 1985.

5. A. Broder and E. Upfal. Dynamic Deflection Routing on Arrays. In Proc. of the
28th Annual ACM Symposium on the Theory of Computing, pp. 348–358, 1996.

6. C. Busch, M. Herlihy, and R. Wattenhofer. Randomized Greedy Hot–Potato Rout-
ing. In Proc. of the 11th Annual ACM/SIAM Symposium on Discrete Algorithms
(SODA ’00), pp. 458–466, 2000.

7. U. Feige and P. Raghavan. Exact Analysis of Hot–Potato Routing. In Proc. of the
33rd Annual IEEE Symposium on Foundations of Computer Science, pp. 553–562,
1992.

8. B. Hajek. Bounds on Evacuation Time for Deflection Routing. Distributed Com-
puting, 5:1–6, 1991.

9. C. Kaklamanis, D. Krizanc, and S. Rao. Hot–Potato Routing on Processor Arrays.
In Proc. of the 5th Annual ACM Symposium on Parallel Algorithms and Architec-
tures, pp. 273–282, 1993.

10. M. Kaufmann, H. Lauer, and H. Schroder. Fast Deterministic Hot–Potato Rout-
ing on Meshes. In Proc. of the 5th International Symposium on Algorithms and
Computation, LNCS 834, Springer–Verlag, pp. 333-341, 1994.

11. F.T. Leighton. Average Case Analysis of Greedy Routing Algorithm on Arrays. In
Proc. of the 2nd Annual ACM Symposium on Parallel Algorithms and Architec-
tures, pp. 2–10, 1990.

12. I. Newman and A. Schuster. Hot–Potato Algorithms for Permutation Routing.
IEEE Transactions on Parallel and Distributed Systems, 6(11): 1168–1176, 1995.

13. R. Prager. An Algorithm for Routing in Hypercube Networks. Master’s thesis,
University of Toronto, 1986.


	Introduction
	Short Description of the Algorithms
	Experimentation

