
On the Complexity of Wavelength Converters* 

Vincenzo Aulet ta  1, Ioannis Caragiannis 2, Christos Kaklamanis  2, and 
Pino Persiano 1 

1 Dipartimento di Informatica ed Appl. 
Universit~ di Salerno, 84081 Baronissi, Italy 

{auletta, giuper}@dia, unisa, it 
2 Computer Technology Institute 

Dept. of Computer Engineering and Informatics 
University of Patras, 26500 Rio, Greece 

caragian@ceid.upatras.gr, kakl@cti, gr. 

Abs t rac t .  In this paper we present a greedy wavelength routing algo- 
rithm that allocates a total bandwidth of w(l) wavelengths to any set 
of requests of load l (where load is defined as the maximum number of 
requests that go through any directed fiber link) and we give sufficient 
conditions for correct operation of the algorithm when applied to binary 
tree networks. We exploit properties of Ramanujan graphs to show that 
(for the case of binary tree networks) our algorithm increases the band- 
width utilized compared to the algorithm presented in [3]. Furthermore, 
we use another class of graphs called dispersers, to implement wave- 
length converters of asymptotically optimal complexity with respect to 
their size (the number of all possible conversions). We prove that their 
use leads to optimal and nearly~)ptimal bandwidth allocation even in a 
greedy manner. 

1 I n t r o d u c t i o n  

Optical fiber is rapidly becoming the s tandard transmission medium for net- 
works. Networks using optical transmission and maintaining optical data  paths 
through the nodes are called all-optical networks. Wavelength division multiplex- 
ing (WDM) technology establishes connectivity by finding t ransmit ter-receiver  
paths and assigning a wavelength to each pa th  such that  no two paths going 
through the same link use the same wavelength. Optical bandwidth is the num- 
ber of available wavelengths. 

Current  techniques for optical bandwidth allocation cannot guarantee high 
bandwidth utilization under the worst conditions. A promising solution for ef- 
ficient use of bandwidth is wavelength conversion. Devices called wavelength 
converters are located at the nodes of the network and they can change the 
wavelength assigned to a t ransmit ter-receiver  pa th  up to a node and allocate a 
different wavelength at the rest of the path. 
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Related Work. Several authors have already addressed the case of no wavelength 
conversion in tree networks. Raghavan and Upfal [10] showed that routing re- 
quests of maximt~n load I per link of undirected trees can be satisfied using 
31/2 optical wavelengths and their arguments extend to give a 2l bound for the 
directed case. Mihail et al. [8] address the directed case. Their main result is a 
15l/8 upper bound which was improved to 71/4 in [4] and independently in [6]. 
Kaklamanis et al. [5] present a greedy algorithm that routes a set of requests of 
maximum load l using at most 51/3 and prove that no greedy algorithm can go 
below 51/3 in general. 

Models for wavelength routing with converters in trees have been studied 
in [1,2,3]. The authors present in [1] how to obtain optimal routing in binary 
tree networks that support I wavelengths using converters of degree 2 v ~ -  1. The 
model used is actually the one addressed throughout the current paper. A model 
with many wavelength converters in each node of the network is studied in [2]. 
In that work it is shown how to obtain nearly optimal and optimal bandwidth 
allocation using converters of constant degree. This result refers to binary trees 
as well. A wavelength routing algorithm of any pattern of requests of load 1 in 
arbitrary tree networks with 3l/2 + o(1) wavelengths using converters of poly- 
logarithmic degree is also presented in [2]. Gargano in [3] presents an algorithm 
that guarantees efficient wavelength routing in arbitrary trees under a different 
network model of limited wavelength conversion. She also extends the optimal 
result of [2] in quasi-binary trees. 

Network Model. We model the underlying fiber network as a directed graph. 
Connectivity requests are ordered pairs of nodes, to be thought of as transmitter- 
receiver paths. For networks with unique transmitter-receiver paths (such as 
trees), the load l of a directed fiber link is the number of paths going through 
the link. Each directed fiber link can support w(1) wavelengths wl, w2, ..., w~(z), 
with distinct optical frequencies. 

Current approaches to the wavelength assignment problem in trees use greedy 
algorithms [4,5,6,8]. Intuitively we can think of wavelengths as colors and the 
procedure of wavelength assignment as coloring. A greedy algorithm visits the 
network in a top to bottom manner and at each vertex v colors all requests that 
touch vertex v and are still uncolored. Moreover, once a request has been colored 
it is never recolored again. Although greedy algorithms are important as they are 
very simple and amenable of being implemented in a distributed setting, they 
cannot guarantee a bandwidth utilization higher than 60~ [5]. Furthermore, no 
algorithm can guarantee bandwidth utilization better than 80% [6] if wavelength 
conversion is not supported. 

A wavelength converter is represented by a bipartite graph G(U, V, E). For 
each wavelength w~, there exist two vertices u~ E U and v~ C V in the bipartite 
graph (IUI = IYl = w(1)). The set of edges E is defined as follows: (u~, vj) C E 
the wavelength wi can be converted to the wavelength wj. 

Previous work on wavelength conversion consider that the cost of the con- 
verters depends on their wavelength degree, i.e. the maximum degree of any node 
u E U of the corresponding bipartite graph. Another factor that is expected to 
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influence the cost of a converter is its size, i.e. the number of edges in its bipartite 
graph (the number of all possible conversions). 

We can define the class of greedy algorithms for networks that  support wave- 
length conversion. Such algorithms visit the network in a DFS manner but the 
functionality in a node u that  supports wavelength conversion is different. In 
this case, the greedy algorithm colors the segments of a request that  touch u. 
Thus, a greedy algorithm may assign a different color for a request that  has been 
colored in a previous step, so that  the wavelength corresponding to the old color 
can be converted to the new one by the wavelength converter located at node u 
which is responsible for the conversion of that  request. 

Converters are placed at network nodes as follows. The tree network is rooted 
at a predefined node. At each non-leaf node u of degree d +  1, d > 1 with a parent 
f and children vl,..., Vd, there are 2d converters C1, C2,..., C2d-1, C2d. Converter 
C2i-1, 1 < i < d is responsible for the conversion of the wavelengths assigned 
to the set of requests R2~-1, which comes from the parent node f and goes to 
the child vi. Converter C2~, 1 < i < d is responsible for the conversion of the 
wavelengths assigned to the set of requests R2,, which comes from the child vi 
and goes to the parent node f .  

Summary of results. We start  with some preliminary definitions and lemmas 
in section 2. In section 3 we present a greedy wavelength routing algorithm for 
binary tree networks with converters. As a first application, we use Ramanujan 
graphs as converters and prove that  our algorithm utilizes the two thirds of 
the bandwidth wasted by the algorithm presented in [3] (when a Ramanujan 
graph of a given degree is used as converter in both cases). Next we exploit 
properties of dispersers to present upper bounds on the size of the converters in 
order to greedily achieve optimal and almost optimal (w(1) = l+ o(1)) bandwidth 
allocation. These results are presented in section 4. In section 5 we prove that  
our upper bounds are asymptotically tight for greedy algorithms. Also, we prove 
that  the 2v/l - 1 upper bound on the degree of the converters presented in [1] is 
asymptotically tight as well. 

2 P r e l i m i n a r i e s  

As in [2,3] we will exploit expansion properties of k-regular bipartite graphs 
to build wavelength converters. The following lemma states Tanner 's  inequality 
which relates the expansion of a graph with the value of its second eigenvalue. 

L e m m a  1. Let G(U, V, E) with [U] = IV] = n be a k-regular bipartite graph. 
For any X C_ U, 

l / ( X ) [  k 2 
IXl ~2 + (k2 - )~2)lXl/n 

where A is the second largest eigenvalue of the adjacency matrix of G in absolute 
value. 
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Ramanujan graphs have the property that their second eigenwlue is upper 
bounded by 2v/k - 1. Furthermore, these graphs have been explicitly constructed 
in [7]. In this work we also exploit properties of another class of bipartite graphs 
called dispersers. 

Definit ion 1. [11] A bipartite graph G = (U, V, E) is an (K, ~) disperser if for 
each subset A c U of size K there are at least (1 - e)IV[ vertices of V that are 
adjacent to A. 

Sipser showed in [11] that such graphs exist. An almost optimal explicit 
construction of dispersers is reported in [12]. 

L e m m a  2. [11] There exist a (K, c)-disperser G(U, V, E) with IUI = N and 
IV I = M, such that each node v ~ U has degree m a x { ~ ( 1  + Inl/e),  2(1 + 
In N/K} .  

The properties of dispersers have been used for the construction of asymp- 
totically optimal depth-two superconcentrators. 

Definit ion 2. A N-supereoncentrator is a directed graph with N distinguished 
vertices called inputs, and N other distinguished vertices called outputs, such 
that for any 1 < k < N, any set X of k inputs and any set Y of k outputs, 
there exist k vertex-disjoint paths from X to Y. The size of a superconcentrator 
G is the number of edges in it, and the depth of G is the number of edges in the 
longest path from an input to an output. 

L e m m a  3. [9] Depth-two N-superconcentrators have size O \ log;ogg/" 

The construction of [9] produces a depth-two superconcentratorH(U, V, W, E) 
with IUI = IWI = N and IVI = 2N. We slightly extend their arguments to obtain 
the following lemma. 

L e m m a  4. There exist a depth two superconcentrator G(U, V, W, E) of size 

0 \ loglogN] with U = {uill < i < N}, V = {vill < i < N}, W = {w~ll < 

i < N},  such that for any 1 < i , j  < N, (ui, vj) E E r (v~, wy) C E. 

3 The Wavelength Routing Algorithm 

In this section we describe a greedy wavelength routing algorithm that allo- 
cates optical bandwidth of w(1) available wavelengths to any set of communi- 
cation requests of load l on a binary tree network. Four wavelength converters 
C1,C~,C3,C4 are placed at each node as described. We denote by S the set of 
available wavelengths (colors). 

Starting from a node, the algorithm computes a DFS numbering of the nodes 
of the tree. The algorithm proceeds in phases, one per each node u of the tree. 
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The nodes are considered following their depth-first numbering. The phase as- 
sociated with node u assumes that  we already have a partial proper coloring 
where the segments of requests (paths) that  touch nodes with numbers strictly 
smaller than u's have been colored and no other segments have been colored. 

Consider a phase of the algorithm associated with a node u. Let f be the 
parent node of u and v,w its children. Let AI be the set of colors assigned to the 
set R1 of the requests from f to v, A2 the set of colors assigned to the set R2 of 
the requests from v to f ,  A3 the set of colors assigned to the set R3 of requests 
from f to w, and A4 the set of colors assigned to the set R4 of requests from 
w to f .  These colors are used only in segment (f, u). Also let R5 be the set of 
requests from v to w and R6 the set of requests from w to v. We ignore requests 
than start  or end at u since they can be colored easily. The algorithm performs 
two independent steps: 

Step 1: Converters C1 and C4 are set in such way that: 

- C1 converts the color assigned to the segment (f, u) of each request r ~ R1 
to a color that  is assigned to the segment (u, v) of r. 

- C4 converts a color that  is assigned to the segment (w, u) of each request 
r �9 R4 to the color assigned to the segment (u, f )  of r. 

Let A t and A~ the set of colors assigned to the segments (u, v) and (w, u) of 
the requests R1 and R4, respectively. The algorithm maintains the following 
invariants: 

1. Segments (u, v) of the requests R1 are assigned different colors (IA I = IA1 I) 
and segments (w, u) of the requests R4 are assigned different colors (IA~I = 
[A4]). 

2. ]A t n A~] > min{[Rl[, JR4]} - w(1) § I. 

Requests Ra are assigned colors from S\(A~ U X4). 

Step 2: This step is symmetric to step 1. Converters C2 and C3 are set and 
the uncolored segments of requests R2,R3, and R5 are colored in a similar way. 

The following lemma gives sufficient conditions for the correctness of our 
algorithm. 

L e m m a  5. Let H(A, B, E(H)) be the bipartite graph that corresponds to the 
wavelength converter (A = {Rill < i < w(l)} and B = {bi]l < i < w(1)}). 
Consider the three-level graph G(U,V,W,E(G)) such that U = {u~]l < i 
w(l)} ,Y = {v~]l < i < w(l)}, W = {will < i < w(l)}, and 

E(G) = {(u~, v3)[(a~, b3) e E(H)}  U {(vj, w~)l(a~, b3) �9 E(H)}.  

The wavelength routing algorithm correctly assigns w(1) colors to any set of com- 
munication requests of load I on a binary tree network with wavelength converters 
H if for any sets F1 C_ U and 1"2 c_ W of cardinalities [Fll, 11"2] <- l, the following 
conditions hold: 
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1. There exist sets X c 1"1 and Z C F2 of cardinality k = IxI = IzI > 
min{IFll, 11"21} - w(1) + l such that there exist k vertex disjoint paths from 
X t o Z .  

2. Let Y C V the set of vertices of V that belongs to the k disjoint paths. The 
set F I \ X  has a matching of cardinality IFI\X[ with vertices of V \ Y ,  and 
the set F2\Z has a matching of cardinality IF2\ZI with vertices of V \ Y .  

Proof. We concentrate on step 1 of the algorithm at a node u. The proof is 
identical for step 2. Assume that at the current step the algorithm has colored 
the segments (f, u) of the requests R1 and R4. Consider the color assigned to 
the segment (f, u) of a request rl ~ R1 as a vertex of U and a color assigned to 
the segment (u, f )  of a request r4 @ R4 as a vertex of W. The mate vertex of V 
that is connected with an edge (implied by the two conditions) to a vertex of U 
is the color assigned to the segment (u, v) of rl, while the mate vertex of V that 
is connected with an edge to a vertex of W is the color that will be assigned to 
the segment (w, u) of r4. 

Both conditions maintain that requests of R1 are assigned different colors in 
segment (u, v) (similarly for the requests of Ra in segment (w, u)). Furthermore, 
condition 1 guarantees that the invariant 2 of the algorithm is satisfied. Thus 
the algorithm can assign the remaining colors (corresponding to vertices of V 
that have no mates to U or V) to requests of P~. [:] 

The algorithm is correct even if sets/"1 and/"2 have the same cardinality. The 
second condition can be eliminated if the bipartite graph H of the wavelength 
converter has a perfect matching (which always holds). Formally 

Lamina  6. Let H and G be the graphs defined in lamina 5. H has a perfect 
matching and for any sets/"1 c U, /"2 c W of the same cardinality g, there 
exist sets X C I"1 and Z C /"2 of eardinality k = IXI = [Z I > g - w(1) + l 
such that there exist k vertex disjoint paths from X to Z. Let Y C V the set 
of vertices of V that belongs to the k disjoint paths. Then the s e t / " I \X  has a 
matching of maximum cardinality g - k with vertices of V \ Y ,  and the set/"2\Z 
has a matching of maximum cardinality g - k with vertices of V \ Y .  

As a corollary, when the cardinality of R1 and Ra is small, no vertex disjoint 
paths need to be found. In particular, 

Corol la ry  1. Consider a node u of a binary tree network of w(1) > l available 
wavelengths and wavelength converters H, and a pattern of requests of maximum 
load I. I f  IR11 = IR41 < w(1) - l, then the uncolored segments of R1,R4, and R6 
have a proper wavelength assignment with w(1) wavelengths. 

The following lemma gives a condition for the existence of vertex disjoint 
paths when the cardinality of R1 and R4 is large. 

L e m m a  Y. Let G(U, V, W, E) be a three level graph with IUI = IWI = w(1). I f  
for any sets/"1 c U and/"2 C_ W of cardinality k with w(l) - 1 < k < I there 
exist k - w(l) + l common neighbors in V, then for any sets A C U, B C W of 
cardinality k < l, there exist subsets X G A and Z C B such that there exist 
k - w(l) + l vertex disjoint paths from X to Z. 
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Proof. By Menger's theorem proving that  the minimum cut has size at least 
k - w ( l )  + l. 

4 U p p e r  B o u n d s  

T h e o r e m  1. Let T be a binary tree network and w(1) be the available number 
of wavelengths on each link. Using (explicitly constructible) converters of degree 
k, it is possible to greedily assign wavelengths to any set of requests of load 
l < (1 - 4(k-1) "~ - ) w(1) .  

Proof. We use a k-regular Ramanujan graph H as converter with w(1) wave- 
lengths. We construct the three level graph G. Let X C_ U, such that  IXI > 
w(1) - 1. It can be verified that  

k lXl l + LxI 
I N ( X ) I  >_ 4 ( k  - 1) + (k - 2)2lXl/w(l) >- 

where N ( X )  is the neighborhood of X in V. Thus, for any sets F1 c U and 
/"2 C W of cardinality k with w(1) - l < k < l, there exist k - w(1) + l common 
neighbors in V. H has a perfect matching, thus, by lemmas 7 and 6 the conditions 
of lemma 5 hold. The theorem follows. [] 

The result of [3] and theorem 1 imply the following. 

T h e o r e m  2. Let 1 < f(1) = o(1). There exist converters of size O(lf(1)) that 
t wavelengths. allow routing of requests of load 1 using at most l + Y(6 

Next we show better tradeoffs between the unutilized bandwidth and the size 
of the converters under our network model. 

L e m m a  8. Let f(1) = o(1). There exists a three level graph G(U, V, W, E) with 

IUI = IVI = IWI = l + 7 ~  with size 0 (l lo-~-i~ I~ f(t)_i_q) ]~ such that for any sets X C_ U 
t and Y C_ W with cardinality k with ~ < k < 1 there exist l - Y(-6 common 

neighbors. 

Proof. The proof is based on [9]. Let w(1) = 1 + f-~6" We build a three level 
graph (A = [w(l)], C = [w(l)], B -- [w(l)], E). Let C = C~ where Ci. is defined 

log l-log f(t) as follows. Let is log ~ - 1, i0 = = l o g l o g f ( l )  loglogf(1) ' and Ci = [3log ~+1 f(l)] 
i = i0,-.-is, such that  Ci C_ Ci+l, for io <_ i < i s -  1. For every i put a 
(K = log i f( l) ,  e = �89 D~ = (A, Ci, E~) and another (g ,  e)-disperser 
between B and C,. Also, put a copy of the edges between A, C between C, A 
and C, B and (symmetric) 15-regular ramanujan graphs H1 = (g, C, E(H1)) 
and H2 = (B, C, E(H2)) (in order graphs (A, C) and (C, B) can correspond to 
identical wavelength converters). 

For log ~ f(1) < K < log ~+1 f(l) ,  for every set X C_ A of cardinality K,  its 
2levi Similarly for each set Y C B of neighborhood N ( X )  has size at least ---5--" 
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cardinality K ,  IN(Y)[ > 2c~3~. Thus the number  of the common neighbors of 

. This holds for any K with /(zi = X and Y is at  least >_ K > K f(0 

log i~ f(1) < K < log i~+1 f 3 �9 

Applying the Tanner 's  inequality to the ramanujan graph HI ,  we have that  
w(0+g 

there are neighbors in C. for any set X C A of cardinality K > 3 ' 2 
The  same argument  holds f o r / / 2  and thus any two sets X C A and Y C_ B of 
cardinality K > ~ have at least K > K - ~ common neighbors�9 

I t  can be verified tha t  the total  size of the converters used in the above 
( 1~ ) 

construction is O l ~  . [] 

T h e o r e m  3. Let f(1) = o(l) There exist converters of size 0 (1 1~ "~ that �9 \ o ~ /  

allow greedy routing of requests of load l using at most 1 + ~ wavelengths�9 

Proof. We use the converter implied by lemma 8. The theorem follows by lemmas 
7, 6, and 5. [] 

Using as a converter the half part  of the depth- two superconcentrator  of 
lemma 4, we obtain the following. 

T h e o r e m  4. There exist converters of size O \ loglogzJ that allow greedy rout- 

ing of requests of load l using at most I wavelengths. 

5 L o w e r  B o u n d s  

In [1] it is shown that  if the binary tree network has wavelength converters with 
degree 2~ / l - 1 ,  under this model it is possible to route all possible sets of requests 
of load 1 with I wavelengths. Next we show tha t  this result is asymptotically tight. 

T h e o r e m  5. Let T be a binary tree network supporting 1 wavelengths. Then, 
wavelength converters of degree ~2(v/1) are necessary to guarantee that all sets of 
requests of load 1 can be routed on T by a greedy deterministic algorithm. 

Proof. Consider a node v of the tree. Assume tha t  there is one request from 
the parent  p of v to the left child u colored with a color cl, one request from 
the right child w to the parent  colored with c2 and l - 1 requests from w to u. 
Since no conversion is supported for requests from w to u, the color cl must  be 
converted to a color tha t  can be converted to ca. We can create a pa t te rn  on a 
sufficiently large tree T such that  a color cl must be converted to colors that  
can be converted to all colors Cl, ...cl. Assume tha t  the converter translates Cl 
to k colors. Then there must  be a color c~ tha t  can be converted to at least 1/k 
colors. Thus the degree of the converter must be at least min{k, I/k} = x/1. [] 

The following theorems state tha t  the upper bounds of theorems 3 and 4 are 
asymptotical ly tight as well. The proofs are omitted�9 
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T h e o r e m  6. Let T be a tree network supporting l wavelengths. Then, wave- 

length converters of size ~ \ logtogz] are necessary to guarantee that all sets of 

requests of load l can be routed on T by a greedy deterministic algorithm. 

T h e o r e m  7. Let f(1) = o(1) and T be a tree network supporting w(l) = l + 

wavelengths. Then, wavelength converters of size ~2 (1 l~ log log/(0 ) are necessary 

to guarantee that all sets of requests of load l can be routed on T by a greedy 
deterministic algorithm. 
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