
Tight Bounds for Selfish and Greedy Load

Balancing�

Ioannis Caragiannis1, Michele Flammini2, Christos Kaklamanis1,
Panagiotis Kanellopoulos1, and Luca Moscardelli2

1 Research Academic Computer Technology Institute and
Dept. of Computer Engineering and Informatics

University of Patras, 26500 Rio, Greece
2 Dipartimento di Informatica, Università di L’ Aquila
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Abstract. We study the load balancing problem in the context of a
set of clients each wishing to run a job on a server selected among a
subset of permissible servers for the particular client. We consider two
different scenarios. In selfish load balancing, each client is selfish in the
sense that it selects to run its job to the server among its permissible
servers having the smallest latency given the assignments of the jobs of
other clients to servers. In online load balancing, clients appear online
and, when a client appears, it has to make an irrevocable decision and
assign its job to one of its permissible servers. Here, we assume that the
clients aim to optimize some global criterion but in an online fashion.
A natural local optimization criterion that can be used by each client
when making its decision is to assign its job to that server that gives the
minimum increase of the global objective. This gives rise to greedy online
solutions. The aim of this paper is to determine how much the quality
of load balancing is affected by selfishness and greediness.

We characterize almost completely the impact of selfishness and greed-
iness in load balancing by presenting new and improved, tight or almost
tight bounds on the price of anarchy and price of stability of selfish load
balancing as well as on the competitiveness of the greedy algorithm for
online load balancing when the objective is to minimize the total latency
of all clients on servers with linear latency functions.

1 Introduction

We study the load balancing problem in the context of a set of clients each
wishing to run a job on a server selected among a subset of permissible servers
for the particular client. We consider two different scenarios. In the first, called
selfish load balancing (or load balancing games), each client is selfish in the sense
that it selects to run its job to the server among its permissible servers having
the smallest latency given the assignments of the jobs of other clients to servers.
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In the second scenario, called online load balancing, clients appear online and,
when a client appears, it has to make an irrevocable decision and assign its job to
one of its permissible servers. Here, we assume that the clients are not selfish and
aim to optimize some global objective but in an online fashion (i.e., without any
knowledge of clients that may arrive in the future). A natural local optimization
criterion that can be used by each client when making its decision is to assign
its job to that server that gives the minimum increase of the global objective.
This gives rise to greedy online solutions. The aim of this paper is to answer the
question of how much the quality of load balancing is affected by selfishness and
greediness.

Load balancing games are special cases of the well-known congestion games in-
troduced by Rosenthal [22] and studied in a sequence of papers [4,7,8,11,13,19,23,
24]. In congestion games there is a set E of resources, each having a non-negative
and non-decreasing latency function fe defined over non-negative numbers, and
a set of n players. Each player i has a set of strategies Si ⊆ 2E (each strategy
of player i is a set of resources). An assignment A = (A1, ..., An) is a vector of
strategies, one strategy for each player. The cost of a player for an assignment A
is defined as cost(i) =

∑
e∈Ai

fe(ne(A)), where ne(A) is the number of players
using resource e in A, while the cost of an assignment is the total cost of all
players. An assignment is a pure Nash equilibrium if no player has any incentive
to unilaterally deviate to another strategy, i.e., costi(A) ≤ costi(A−i, s) for any
player i and for any s ∈ Si, where (A−i, s) is the assignment produced if just
player i deviates from Ai to s. This inequality is also known as the Nash condi-
tion. We use the term social cost to refer to the cost of a pure Nash equilibrium.
In weighted congestion games, each player has a weight wi and the latency of a
resource e depends on the total weight of the players that use e. For this case, a
natural social cost function is the weighted sum of the costs of all players (or the
weighted average of their costs). In linear congestion games, the latency func-
tion of resource e is of the form fe(x) = αex+ be with non-negative constants αe

and be. Load balancing games are linear congestion games where the strategies
of players are singleton sets. In load balancing terminology, we use the terms
server and client instead of the terms resource and player. The set of strategies
of a client contains the servers that are permissible for the client.

We evaluate the quality of solutions of a load balancing game by comparing
the social cost of Nash equilibria to the cost of the optimal assignment (i.e., the
minimum cost). We use the notions of price of anarchy introduced in a seminal
work of Koutsoupias and Papadimitriou [16] (see also [20]) and price of stability
(or optimistic price of anarchy) defined as follows. The price of anarchy/stability
of a load balancing game is defined as the ratio of the maximum/minimum social
cost over all Nash equilibria over the optimal cost. The price of anarchy/stability
for a class of load balancing games is simply the highest price of anarchy/stability
among all games belonging to that class.

[10,12,13,14,15,18] study various games which can be thought of as special
cases of congestion games with respect to the complexity of computing equilibria
of best/worst social cost and the price of anarchy when the social cost is defined
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as the maximum latency experienced by any player. The social cost of the total
latency has been studied in [4,7,17,26]. The authors in [17] study symmetric
load balancing games where all servers are permissible for any client and show
tight bounds on the price of anarchy of 4/3 for arbitrary servers and 9/8 for
identical servers with weighted clients. In two recent papers, Awerbuch et al.
[4] and Christodoulou and Koutsoupias [7] prove tight bounds on the price of
anarchy of congestion games with linear latency functions. Among other results,
they show that the price of anarchy of pure Nash equilibria is 5/2 while for mixed
Nash equilibria or pure Nash equilibria of weighted clients it is 3+

√
5

2 ≈ 2.618.
Does the fact that load balancing games are significantly simpler than con-

gestion games in general have any implications for their price of anarchy? We
give a negative answer to this question by showing that the 5/2 upper bound (as
well as the 3+

√
5

2 upper bound for weighted clients) is tight. This is interesting
since the upper bounds for congestion games (as well as an earlier upper bound
of 5/2 proved specifically for load balancing [26]) are obtained using only the
Nash inequality (i.e., the inequality obtained by summing up the Nash condition
inequalities over all players’ strategies) and the definition of the social cost. So,
it is somewhat surprising that load balancing games are as general as congestion
games in terms of their price of anarchy and that the Nash inequality provides
sufficient information to characterize their price of anarchy.

An important special case of load balancing is when servers have identical
linear latency functions. Here, better upper bounds on the price of anarchy can
be obtained. Note that this is not the case for congestion games since, as it was
observed in [7], any congestion game can be transformed to a congestion game
on identical resources (and, hence, the lower bounds of [4,7] hold for congestion
games with identical resources as well). Suri et al. [26] prove that the price of
anarchy of selfish load balancing on identical servers is between 1+2/

√
3 ≈ 2.1547

and 2.012067. Again, the upper bound is obtained by using the Nash inequality
and the definition of the social cost. We improve this result by showing that
the lower bound is essentially tight. Besides the Nash inequality, our proof also
exploits structural properties of the game with the highest price of anarchy. We
argue that this game can be represented as a directed graph (called the game
graph) and, then, structural properties of the game follow as structural properties
of this graph. Furthermore, for weighted clients and identical servers, we prove
that the price of anarchy is at least 5/2.

The price of stability of congestion games has been recently studied in [8]
where it was shown that it is between 1 + 1/

√
3 ≈ 1.577 and 1.6. The technique

used to obtain the upper bound is to consider pure Nash equilibria with potential
not larger than the potential of the optimal assignment and bound their social
cost in terms of the optimal cost using the Nash inequality. Using the same
technique but also tightening the analysis, we show that the lower bound is
tight. Does the fact that load balancing games are significantly simpler than
congestion games have any implications in their price of stability? We give a
positive answer to this question by showing that the price of stability of selfish
load balancing is 4/3. The proof of the upper bound makes use of completely



314 I. Caragiannis et al.

different arguments since the techniques used for congestion games provably
cannot be used to obtain this bound.

From the algorithmic point of view, load balancing has been studied exten-
sively, including papers studying online versions of the problem (e.g., [1,2,3,5,6,9,
21,25,26]). In online load balancing, clients appear in online fashion; when a client
appears, it has to make an irrevocable decision and assign its job to a server. In
our model, servers have linear latency functions and the objective is to minimize
the total latency, i.e., the sum of the latencies experienced by all clients. Clients
may also own jobs with non-negative weights; in this case, the objective is to
minimize the weighted sum of the latencies experienced by all clients. A natural
greedy algorithm proposed in [3] for this problem is to assign each client to that
server that yields the minimum increase to the total latency (ties are broken
arbitrarily). This results to greedy assignments. Given an instance of online load
balancing, an assignment of clients to servers is called a greedy assignment if
the assignment of a client to a server minimizes the increase in the cost of the
instance revealed up to the time of its appearance. Following the standard per-
formance measure in competitive analysis, we evaluate the performance of this
algorithm in terms of its competitiveness (or competitive ratio). The competi-
tiveness of the greedy algorithm on an instance is the maximum ratio of the
cost of any greedy assignment over the optimal cost and its competitiveness on
a class of load balancing instances is simply the maximum competitiveness over
all instances in the particular class.

The performance of greedy load balancing with respect to the total latency
has been studied in [3,26]. Awerbuch et al. [3] consider a more general model
where each client owns a job with a load vector denoting the impact of the job to
each server (i.e., how much the assignment of the job to a server will increase its
load) and the objective is to minimize the Lp norm of the load of the servers. In
the context similar to the one studied in the current paper, their results imply a
3 + 2

√
2 ≈ 5.8284 upper bound. This result applies also in the case of weighted

clients where the objective is to minimize the weighted average latency. Suri et
al. [26] consider the same model as ours and show upper bounds of 17/3 and
2+

√
5 ≈ 4.2361 for arbitrary servers and identical servers, respectively. In a way

similar to the study of the price of anarchy of congestion games, [26] develops a
greedy inequality which is used to obtain the upper bounds on competitiveness.
They also present a lower bound of 3.0833 for the competitiveness of greedy
assignments in the case of identical servers.

The main question left open by the work of [26] is whether arbitrary servers
do hurt the competitiveness of greedy load balancing. We give a positive answer
to this question as well. By a rather counterintuitive construction, we show that
the 17/3 upper bound of [26] is tight. This is interesting since it indicates that
the greedy inequality is powerful enough to characterize the competitiveness of
greedy load balancing. We also consider the case of identical servers where we
almost close the gap between the upper and lower bounds of [26] by showing
that the competitiveness of greedy load balancing is between 4 and 2

3

√
21 +

1 ≈ 4.05505. In the proof of the upper bound, we use the greedy inequality
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but, more importantly, we also use arguments for the structure of greedy and
optimal assignments of instances that yield the worst competitiveness. In a sim-
ilar way to the case of selfish load balancing, we argue that such instances can
be represented as directed graphs (called greedy graphs) that enjoy particular
structural properties. In the case of weighted clients, we present a tight lower
bound of 3 + 2

√
2 on identical servers matching the upper bound of [3].

The rest of the paper is structured as follows. We present the bounds on
the price of stability of linear congestion games and selfish load balancing in
Section 2. The bounds on the price of anarchy are presented in Section 3 while
the bounds on the competitiveness of greedy load balancing are presented in
Section 4. We discuss extensions of the results to selfish and greedy load balanc-
ing when clients are weighted and conclude with open problems in Section 5. Due
to lack of space, many proofs have been omitted from this extended abstract.

2 Bounds on the Price of Stability

We present a tight upper bound on the price of stability of congestion games.
Our proof (omitted) uses the main idea in the proof of [8] and bounds the social
cost of any Nash equilibrium having a potential smaller than the potential of the
optimal assignment. In the proof we also make use of the Nash inequality which
together with the inequality on the potentials yields the upper bound. However,
the two inequalities may not be equally important in order to achieve the best
possible bound and this is taken into account in our analysis. We obtain the
following result. A matching lower bound is presented in [8].

Theorem 1. The price of stability of congestion games with linear latency func-
tions is at most 1 + 1/

√
3.

In the following we show a tight upper bound of 4/3 on the price of stability of
load balancing games. We note that the use of the inequality on the potentials
does not suffice since load balancing games may have pure Nash equilibria with
potential smaller than the potential of an optimal assignment and with cost
strictly larger than 4/3 times the optimal cost. So, in order to prove the 4/3
upper bound on the price of stability of load balancing games, we will use entirely
different arguments. Starting from any assignment, we let the clients move (one
client moves at each step) until they converge to a pure Nash equilibrium. At
each step, the moving client is selected arbitrarily among the clients with current
strategy at a server of maximum latency which have an incentive to change their
strategy. In our proof, we actually show that the social cost of the pure Nash
equilibrium at convergence is no more than 4/3 times the cost of the initial
assignment. As a corollary, by starting from an optimal solution, we will obtain
that the price of stability is at most 4/3.

Theorem 2. The price of stability of load balancing games is at most 4/3.

Proof. Consider a load balancing game, an initial assignment with oj clients at
server j for any j, and the moves as defined above. We denote by nj the number
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of clients at server j at the Nash equilibrium. Also, we denote by fj(x) = αjx+bj

the latency function of server j.
We define segments as follows. For each server j, consider the set of moves

μ1, μ2, ..., μk into server j at steps t1, t2, ..., tk so that t1 < t2 < ... < tk, and
the set of moves μ′

1, μ
′
2, ..., μ

′
k′ out of server j at steps t′1, t

′
2, ..., t

′
k′ so that t′1 <

t′2 < ... < t′k′ . For i = 1, ..., k, we match move μi with the first move (if any)
μ′

i′ that happens after move μi and has not been matched to any of the moves
μ1, ..., μi−1. In this way we obtain passing segments which are pairs of a move
into server j and a move out of server j, starting segments which consist of single
moves out of server j which were not matched to any incoming move, and ending
segments which consist of single moves into server j which were not matched to
any outgoing move.

We construct chains (i.e., sequence of moves) using the segments defined. A
chain begins with the move in a starting segment, terminates with a move in
an ending segment, while any two consecutive moves in the chain (if any), one
into and one out of the same server j, belong to the same passing segment of
server j. A chain may consist of a single move if this belongs to both a starting
and an ending segment. For each server j, denote by sj and ej the number of
starting and ending segments defined at server j, respectively. Equivalently, sj is
the number of chains beginning with a move out of server j and ej is the number
of chains terminating with a move into server j.

To obtain the desired bound, we will use the following lemma. The proof is
lengthy and hence omitted; it relies on an inductive argument.

Lemma 1.
∑

j fj(oj)sj ≥ ∑
j fj(nj)ej.

Using Lemma 1, we have
∑

j

fj(oj)oj =
∑

j

(fj(oj)(oj − sj) + fj(oj)sj)

≥
∑

j

(fj(oj)(oj − sj) + fj(nj)ej)

=
∑

j

(fj(oj)(oj − sj) + fj(nj)(nj − oj + sj))

=
∑

j

(
αj

(
o2

j − sj(oj − nj) + n2
j − njoj

)
+ bjnj

)
(1)

We distinguish between two cases to show that o2
j −sj(oj−nj)+n2

j −njoj ≥ 3
4n2

j ,
for any j. If nj ≤ oj , then since sj ≤ oj , it is o2

j − sj(oj − nj) + n2
j − njoj ≥

o2
j − oj(oj −nj)+n2

j −njoj = n2
j . If nj ≥ oj , it is o2

j − sj(oj −nj)+ n2
j −njoj ≥

o2
j + n2

j − njoj = (oj − nj/2)2 + 3
4n2

j ≥ 3
4n2

j . Hence, (1) yields that

∑

j

fj(oj)oj ≥ 3
4

∑

j

(
αjn

2
j + bjnj

)
=

3
4

∑

j

fj(nj)nj . �	
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To show that the above result is tight, it suffices to consider, for arbitrarily
small ε > 0, a game with two servers with latency functions f1(x) = (2 + ε)x
and f2(x) = x and two clients having both servers as strategies.

3 Bounds on the Price of Anarchy

For the study of the price of anarchy, we can consider load balancing games
in which each client has at most two strategies. This is clearly sufficient when
proving lower bounds. In order to prove upper bounds, we can assume that the
highest price of anarchy is obtained by such a game. Consider any load balancing
game and let O and N be the optimal assignment and the Nash equilibrium that
yields the worst social cost, respectively. The game with the same clients and
servers in which each client has its strategies in O and N as strategies also has the
same optimal assignment and the same Nash equilibrium (and, consequently the
same price of anarchy). We represent such games as directed graphs (called game
graphs) having a node for each server and a directed edge for each client; the
direction of each edge is from the strategy of the client in the optimal assignment
to the strategy of the client in the Nash equilibrium. A self-loop indicates that
the client has just one strategy.

The next theorem states that the upper bound of 5/2 presented in [26] (and
also implied by the results in [4,7] for congestion games) is tight. This bound
was known to be tight for congestion games in general but the constructions in
the lower bounds in [4,7] are not load balancing games.

Theorem 3. For any ε > 0, there is a load balancing game with price of anarchy
at least 5/2 − ε.

Proof. We construct a game graph G consisting of a complete binary tree with
k + 1 levels and 2k+1 − 1 nodes with a line of k + 1 edges and k + 1 addi-
tional nodes hung at each leaf. So, graph G has 2k + 2 levels 0, ..., 2k + 1,
with 2i nodes at level i for i = 0, ..., k and 2k nodes at levels k + 1, ..., 2k + 1.
The servers corresponding to nodes of level i = 0, ..., k − 1 have latency func-
tions fi(x) = (2/3)ix, the servers corresponding to nodes of level i = k, ..., 2k
have latency functions fi(x) = (2/3)k−1(1/2)i−kx, and the servers correspond-
ing to nodes of level 2k + 1 have latency functions f2k+1(x) = (2/3)k−1(1/2)kx.
The assignment where all clients select servers corresponding to the endpoint
of their corresponding edge which is closer to the root of the game graph can
be easily verified that it is a Nash equilibrium. Its cost is

∑k−1
i=0 4 · 2i(2/3)i +

∑2k
i=k 2k(2/3)k−1(1/2)i−k = 15(4/3)k − (2/3)k−1 − 12. To compute an upper

bound for the cost of the optimal assignment, it suffices to consider the assign-
ment where all clients select the servers corresponding to nodes which are fur-
ther from the root. We obtain that the cost of the optimal assignment is at most∑k−1

i=1 2i(2/3)i +
∑2k

i=k 2k(2/3)k−1(1/2)i−k + 2k(2/3)k−1(1/2)k = 6(4/3)k − 4.
Hence, for any ε > 0 and for sufficiently large k, the price of anarchy of the game
is larger than 5/2 − ε. �	
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In the case of identical servers we can show a tight bound on the price of anarchy
of approximately 2.012067; a matching lower bound has been presented in [26].
Here, we present the main idea in our analysis to obtain a slightly weaker result;
the improved analysis will appear in the final version of the paper.

We will consider the game with the highest price of anarchy and upper-bound
the ratio of the social cost of the worst Nash equilibrium to the optimal cost of
the particular game. We represent the game by a game graph. We say that server
j is of type nj/oj meaning that it has nj clients in the Nash equilibrium and
oj clients in the optimal assignment (equivalently, server j has in-degree nj and
out-degree oj in the game graph). After observing that each server of type 1/1
can be associated with a neighboring server of type 0/1, the idea behind the proof
is to account for their contribution in the social cost together. By extending the
neighborhood considered together with each server of type 1/1, we can obtain
better and better upper bounds which converge to the lower bound of 2.012067.

In the proof, we make use of the following technical lemma.

Lemma 2. For any integers x, y, define the functions g(x, y) = xy+ 18+7
√

21
30 y−

7
√

21−12
30 x and h(x, y) = 6−√

21
10 x2 + 6+

√
21

6 y2. For any non-negative integers x, y
such that either x 
= 1 or y 
= 1, it holds that g(x, y) ≤ h(x, y). Furthermore,
g(0, 1) + g(1, 1) = h(0, 1) + h(1, 1).

Theorem 4. The price of anarchy of selfish load balancing on identical servers
is at most 2

3

√
21 − 1.

Proof. Consider a load balancing game on servers with latency function f(x) =
x + b and clients having at most two strategies which has the highest price of
anarchy. Consider a server j of type 1/1. If a client c had server j as its only
strategy (this corresponds to a self-loop in the corresponding game graph), then
we may construct a new game by excluding server j and client c from the original
one; it can be easily seen that the new game has worse price of anarchy since both
the cost of the optimal assignment and the social cost of the Nash equilibrium
are decreased by 1 + b. So, let j′ and j′′ be the servers to which server j is
connected corresponding to clients c1 and c2 selecting servers j′ and j in the
optimal assignment and servers j and j′′ in the Nash assignment, respectively.

Server j′ is of type 0/1. Assume otherwise that it is of type nj′/oj′ for nj′ > 0
or oj′ > 1. If nj′ > 0, we can construct a new game by excluding server j
and substituting clients c1 and c2 by a client selecting server j′ in the optimal
assignment and server j′′ in the Nash assignment. If oj′ > 1, then we can add a
new server j′1 and change the strategy of client c1 to {j′1, j}. In both cases, we
obtain games with higher price of anarchy.

Denote by F the set of servers of type 1/1 and by S the set of servers of
type 0/1 which are connected through an edge to a server in F in the game
graph. Also, for each server j in F we denote by S(j) the server of S from
which the client destined for j originates. By the Nash inequality, we obtain
that

∑
j (n2

j + bnj) ≤
∑

j (ojnj + (1 + b)oj) and, since
∑

j nj =
∑

j oj , we have
that
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∑

j

n2
j ≤

∑

j

(njoj + oj) =
∑

j

(

njoj +
18 + 7

√
21

30
oj − 7

√
21 − 12
30

nj

)

=
∑

j �∈F∪S

g(nj, oj) +
∑

j∈F

(
g(nS(j), oS(j)) + g(nj , oj)

)

≤
∑

j �∈F∪S

h(nj , oj) +
∑

j∈F

(
h(nS(j), oS(j)) + h(nj, oj)

)

=
6 −√

21
10

∑

j

n2
j +

6 +
√

21
6

∑

j

o2
j

where the first equality follows since
∑

j nj =
∑

j oj , the second equality follows
by the definition of function g, the second inequality follows by Lemma 2, and
the last equality follows by the definition of function h. Hence, we obtain that
the price of anarchy is

∑
j

(
n2

j + bnj

)

∑
j

(
o2

j + boj

) ≤
∑

j n2
j∑

j o2
j

≤ 2
3

√
21−1. �	

4 Greedy Load Balancing

Similarly to the case of selfish load balancing, in the study of the competitive-
ness of greedy load balancing, we consider load balancing instances in which
each client has at most two strategies. This is clearly sufficient when proving
lower bounds. In order to prove upper bounds, we can assume that the highest
competitiveness is obtained by such an instance. Consider any load balancing in-
stance and let O and N be the optimal assignment and the greedy assignment of
the highest cost, respectively. The instance with the same clients and servers in
which each client has its strategies in O and N as strategies also has the same op-
timal assignment and the same greedy assignment (and, consequently the same
competitiveness). We represent such instances as directed graphs (called greedy
graphs) having a node for each server and a directed edge with timing informa-
tion for each client; the direction of each edge is from the strategy of the client
in the optimal assignment to the strategy of the client in the greedy assignment
and the timing information denotes the time the client appears. We can show
that the upper bound of [26] for arbitrary servers is tight.

Theorem 5. For any ε > 0, greedy load balancing has competitiveness at least
17/3− ε.

We also study the case of identical servers with latency function f(x) = x + b.
By reasoning about the structure of the load balancing instance that yields the
worst competitiveness and using the greedy inequality developed in [26], we can
prove the following theorem.

Theorem 6. Greedy load balancing on identical servers has competitiveness at
most 2

3

√
21 + 1.



320 I. Caragiannis et al.

We also present an almost matching lower bound.

Theorem 7. For any ε > 0, greedy load balancing on identical servers has com-
petitiveness at least 4 − ε.

Proof. We assume that there are m servers s1, s2, ..., sm, and k groups of clients
g1, ..., gk, where group gj has m/j2 clients cj

i , 1 ≤ i ≤ m/j2. We assume that
m is such that all groups have integer size. Each client cj

i has s1, s2, ..., si as
permissible servers. The clients appear in non-increasing order according to index
i, i.e., c1

m, c1
m−1, ..., c1

m/4+1, c2
m/4, c1

m/4, c2
m/4−1, c1

m/4−1, ..., c2
m/9+1, c1

m/9+1, c3
m/9,

c2
m/9, c1

m/9, ..., etc.
To upper bound the optimal cost opt, it suffices to consider the assignment

where each client cj
i chooses server si. We obtain that

opt ≤
k−1∑

i=1

i2(|gi| − |gi+1|) + k2|gk| = m + m

k−1∑

i=1

i2
(

1
i2

− 1
(i + 1)2

)

= m

(

1 + 2
k−1∑

i=1

1/ (i + 1) −
k−1∑

i=1

1/ (i + 1)2
)

≤ m(2Hk + ζ1)

for some positive constant ζ1, where Hk is the k-th Harmonic number.
A greedy assignment is obtained by making each client select the server with

the smallest index among its permissible servers having the minimum number
of clients. In the analysis we make use of sets of clients called columns. A client
belongs to column coli if, when it selects its server, it is the i-th client selecting
that server. For example, clients c1

m, c1
m−1, ...c

1
m/2+1 select servers s1, ..., sm/2,

respectively; each of them is the first client in its server, so they belong to col1.
Then, c1

m/2, ..., c
1
m/4+1 select servers s1, ..., sm/4; they belong to col2. We can

verify that the set of servers selected by clients in coli+1 is subset of the set of
servers selected by clients in coli for i = 1, ..., 2k − 3, that columns col2i−1 and
col2i contain clients of groups g1, ..., gi, and that |col2i| = m

(i+1)2 and |col2i−1| =
m

i(i+1) for any i = 1, ..., k − 1. So, for i = 1, ..., 2k − 3, the number of servers
receiving exactly i clients in the greedy assignment is |coli|−|coli+1|. We compute
a lower bound on the cost gr of the greedy assignment by considering only the
servers with at most 2k − 4 clients. We have that

gr ≥ m
k−2∑

i=1

(
(2i − 1)2(|col2i−1| − |col2i|) + (2i)2(|col2i| − |col2i+1|)

)

= m
k−2∑

i=1

(

(2i − 1)2
(

1
i(i + 1)

− 1
(i + 1)2

)

+ (2i)2
(

1
(i + 1)2

− 1
(i + 1)(i + 2)

))

≥ m
k−2∑

i=1

(
8

i + 1
− 20

(i + 1)2

)

≥ m(8Hk − ζ2)

for some positive constant ζ2. We conclude that for any ε > 0 and sufficiently
large k and m, the competitiveness of the greedy assignment is at least 4− ε. �	
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By slightly modifying the argument in the proof of Theorem 7 we can show that
the lower bound holds for any deterministic online algorithm.

5 Extensions and Open Problems

We have also considered clients with non-negative weights. In the case of clients
with weights, upper bounds of 3+

√
5

2 ≈ 2.618 and 3 + 2
√

2 ≈ 5.8284 for the
price of anarchy of selfish load balancing and the competitiveness of greedy load
balancing follow by the analysis of [4,7] for weighted linear congestion games and
by the analysis of [3], respectively. We have shown that both bounds are tight. In
particular, the second lower bound holds for greedy load balancing on identical
servers. For selfish load balancing of weighted clients on identical servers, we can
show a lower bound of 5/2 on the price of anarchy. It is interesting to close the gap
between this lower bound and the upper bound of 3+

√
5

2 which has been proved
for congestion games [4]. We believe that our lower bound is tight. Another
interesting open problem is to compute tight bounds for the price of stability of
weighted load balancing games. We have considered pure Nash equilibria of load
balancing games. Our results hold or can be extended to hold for mixed and
correlated equilibria [8] as well. There is also a small gap between 4 and 4.05505
for the competitiveness of greedy load balancing on identical servers. We believe
that it can be further narrowed by extending our upper bound technique.
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