Experimental Comparison of Algorithms for
Energy-Efficient Multicasting in Ad Hoc
Networks*

Stavros Athanassopoulos, Toannis Caragiannis, Christos Kaklamanis, and
Panagiotis Kanellopoulos

Research Academic Computer Technology Institute and
Dept. of Computer Engineering and Informatics
University of Patras, 26500 Rio, Greece

Abstract. Energy is a scarce resource in ad hoc wireless networks and it
is of paramount importance to use it efficiently when establishing com-
munication patterns. In this work we study algorithms for computing
energy-efficient multicast trees in ad hoc wireless networks. Such algo-
rithms either start with an empty solution which is gradually augmented
to a multicast tree (augmentation algorithms) or take as input an initial
multicast tree and ‘walk’ on different multicast trees for a finite number
of steps until some acceptable decrease in energy consumption is achieved
(local search algorithms).

We mainly focus on augmentation algorithms and in particular we have
implemented a long list of existing such algorithms in the literature and
new ones. We experimentally compare all these algorithms on random
geometric instances of the problem and obtain results in terms of the
energy efficiency of the solutions obtained. Additional results concerning
the running time of our implementations are also presented. We also ex-
plore how much the solutions obtained by augmentation algorithms can
be improved by local search algorithms. Our results show that one of our
new algorithms and its variations achieve the most energy-efficient solu-
tions while being very fast. Our investigations shed some light to those
properties of geometric instances of the problem which make augmenta-
tion algorithms perform well.

1 Introduction

Wireless networks have received significant attention during the recent years.
Especially, ad hoc wireless networks emerged due to their potential applications
in battlefield, emergency disaster relief, etc. [T5]. Unlike traditional wired net-
works or cellular wireless networks, no wired backbone infrastructure is installed
for ad hoc wireless networks.

A node (or station) in these networks is equipped with an omnidirectional
antenna which is responsible for sending and receiving signals. Communication
* This work was partially supported by the European Union under IST FET Project

CRESCCO and RTN Project ARACNE.

1. Nikolaidis et al. (Eds.): ADHOC-NOW 2004, LNCS 3158, pp. 183-[I36] 2004.
(© Springer-Verlag Berlin Heidelberg 2004

184 S. Athanassopoulos et al.

is established by assigning to each station a transmitting power. In the most
common power attenuation model, the signal power falls as 1/r%*, where r is the
distance from the transmitter and « is a constant which depends on the wireless
environment (typical values of a are between 1 and 6). So, a transmitter s can
successfully send a signal to a receiver ¢ if Py > v - d(s,t)¥, where Py is the
power of the signal transmitted, d(s,t) is the Euclidean distance between the
transmitter and the receiver, and -y is the receiver’s power threshold for signal
detection which is usually normalized to 1. In this case, we say that node s
establishes a direct link to node t. So, communication from a node s to another
node t may be established either directly if the two nodes are close enough and s
uses adequate transmitting power, or by using intermediate nodes. Observe that
due to the nonlinear power attenuation, relaying the signal between intermediate
nodes may result in energy conservation (we use the terms energy and power
interchangeably).

A crucial issue in ad hoc wireless networks is to support communication pat-
terns that are typical in traditional networks. These may include broadcasting,
multicasting, gossiping (all-to—all communication) and more. Since establishing
a communication pattern strongly depends on the use of energy, the important
engineering question to be solved is to guarantee a desired communication pat-
tern minimizing the total energy consumption.

An ad hoc wireless network is usually modelled as a complete directed graph
G = (V,E), with a non-negative edge cost function ¢ : E — R™. Intuitively,
V' is the set of stations or nodes, the edges in E correspond to potential direct
links, and the function ¢ denotes the minimum energy required for establishing
a direct link between any possible transmitter-receiver pair. Usually, the edge
cost function is symmetric (i.e., ¢(u,v) = ¢(v,u)). An important special case,
which usually reflects the real-world situation, henceforth called geometric case,
is when nodes of G are points in a Euclidean space and the cost of an edge (u,v)
is defined as the Euclidean distance between u and v raised to a fixed power
a, i.e. c(u,v) = d(u,v)*. Asymmetric edge cost functions can be used to model
medium abnormalities or batteries with different energy levels [12].

Consider a guest network denoted by a graph H = (U, A), with U C V and
A C FE. In order to establish the guest network H on the ad hoc network G, we
must set the energy level of node u to max,cy:(u,v)ea c¢(u,v). In other words,
the energy level at which node u operates should be such that it can establish
as direct links all edges of A directed out of u. The total energy needed for
establishing H on G is the sum of the energy levels of all nodes.

The optimization problem we study in this paper can be stated as follows.
Given an ad hoc network represented by a graph G = (V| E), with a non-
negative edge cost function ¢ : £ — RT, a special node r € V called root, and a
set of terminals D C V — {r}, find a multicast tree, i.e., a tree rooted at r and
spanning all the nodes in D, which can be established as a guest network in G
with the minimum total energy. This problem is known as MINIMUM ENERGY
MurricasT TREE (MEMT). The special case of MEMT where D =V — {r} is
known as MINIMUM ENERGY BroaDCAST TREE (MEBT).

Experimental Comparison of Algorithms for Energy-Efficient Multicasting 185

In the case of symmetric edge cost functions, Caragiannis et al. [4] present
logarithmic (in the number n of stations) approximation algorithms for MEMT
and MEBT. These results are asymptotically optimal since MEBT in symmetric
graphs has been proven to be inapproximable within a sublogarithmic factor [6].
In [4] it is also shown that, in the case of asymmetric edge cost functions, MEMT
is hard to approximate within O(log®~“n), while Liang [12] presents an O(|D|€)
approximation algorithm. For MEBT in the case of asymmetric edge costs, log-
arithmic approximation algorithms have been presented in [2/4]. The algorithm
in [4] for the symmetric case of MEMT and the algorithm in [2] for the asym-
metric case of MEBT borrow ideas from algorithms for a natural combinatorial
problem known as NODE WEIGHTED STEINER TREE (NWST) [9/T1].

Although the above cases are very interesting from the theoretical point
of view, the most important questions in practice concern the geometric case.
This case was first considered in [I0] in a slightly different context. Geometric
cases of MEBT have received significant attention in the literature. When the
nodes are points on a line, MEBT can be optimally solved in polynomial time
[3/7]. The case where the nodes are points in the Euclidean plane has been
much studied. In this case, MEBT was proved to be NP-hard in [6]. The first
algorithms were proposed in the seminal work of Wieselthier et al. [I5]. These
algorithms were based on the construction of minimum spanning trees (MST)
and shortest path trees (SPT) on the graph representing the ad hoc network.
The approach followed in [15] for computing solutions of MEMT was to prune
the trees obtained in solutions of MEBT. Experimental results showed that the
algorithm Broadcast Incremental Power (BIP) outperforms algorithms MST and
SPT. In subsequent work Wan et al. [14] study the algorithms presented in [15]
in terms of efficiency in approximating the optimal solution. Their main result
is an upper bound of 12 on the approximation ratio of algorithm MST. This
result implies a constant approximation algorithm for MEMT as well. Slightly
weaker approximation bounds for MST have been presented in [6]. In [14], it is
also proved that the approximation ratio of BIP is not worse than that of MST,
and that other intuitive algorithms have very poor approximation ratio.

However, several intuitive algorithms have been experimentally proved to
work very well on random instances of the problem. In [13|[16], algorithms based
on shortest paths are enhanced with the potential power saving idea and are
experimentally shown to outperform most of the known algorithms. In [I], Ca-
galj et al. introduced a heuristic called Embedded Wireless Multicast Advantage
(EWMA) for computing efficient solutions to MEBT instances. This algorithm
takes as input a spanning tree and transforms it to an energy-efficient broad-
cast tree by performing local improvements. As we discuss in Section B] EWMA
can be easily converted to work for MEMT as well. Another heuristic called
Sweep was proposed in [15]; this also takes as input a tree and transforms it to
an energy-efficient tree by performing local improvements. In contrast to these
two algorithms, most of the algorithms discussed above are based on the idea
of constructing a tree gradually. This means that, starting from an empty solu-
tion, a tree is augmented by repeatedly including new structures (i.e., new nodes

186 S. Athanassopoulos et al.

and edges) until connectivity from the root to the terminals is established. An-
other issue of apparent importance is to design algorithms for MEMT that are
amenable to implement in a distributed environment (see e.g., [IJ5II6]).

In this work, we divide algorithms presented in the literature in two cat-
egories: local search algorithms and augmentation algorithms. We describe the
general features of both categories and report on the implementation of many
algorithms, both existing and new ones. Our implementations include algorithms
designed for approximating MEMT in the more general symmetric case as well
as algorithms which are more intuitive for the geometric case. Our purpose is to
experimentally compare all these algorithms in terms of the energy efficiency of
the solutions obtained on random instances of MEMT on the Euclidean plane.
An evaluation of the running time of the algorithms is also presented. The rest of
the paper is structured as follows. We devote Section2lto local search algorithms,
while augmentation algorithms are discussed in Section [3l The experimental re-
sults are presented and commented in Section @

2 Local Search Algorithms

Local search algorithms perform a ‘walk’ on multicast trees. The walk starts from
a multicast tree given as input. In each step, a local search algorithm moves to
a new multicast tree obtained by removing some of the edges of the previous
one and adding new edges, so that the necessary connectivity properties are
maintained. The rule used in each move for selecting the next multicast tree is
related to energy. Since local search algorithms require a multicast tree to start
walking on, they are usually called after an augmentation algorithm. Typical
representatives of this category are the algorithms Prune, EWMA and Sweep.

Algorithm Prune has been extensively used (see e.g., [I3/I5]) for obtaining a
multicast tree from a broadcast tree. In each step the algorithm performs the
following operation. For each leaf which is not a terminal, it removes it from the
tree together with its incoming edge. The algorithm terminates when all leaves
are terminals. Prune can be easily implemented to run in linear time.

EWMA was proposed in [I] for solving MEBT, where it was assumed that
the tree to start with is a minimum spanning tree. However, as it is clear in the
following description of the algorithm, it can be used for MEMT and can start
with any multicast tree. Starting with a multicast tree, EWMA walks on multicast
trees by performing the following two types of changes in each step: (1) outgoing
edges are added to a single node v; this node is said to be extended and (2) all
outgoing edges are removed from some descendants of v; in this case we say that
the particular descendants of v are excluded. Throughout its execution, EWMA
uses three sets C, F and E. Intuitively, C is the set of nodes which have been
considered by the algorithm, F' is the set of nodes that were extended at least
once in some previous step and were never excluded, and F is the set of nodes
that were excluded in some previous step. Initially, the algorithm sets C' = {r}
and F' = F = (). In each step, EWMA takes as input the multicast tree produced
in the previous step together with the sets C, F and E. Define the gain of a

Experimental Comparison of Algorithms for Energy-Efficient Multicasting 187

node v as the decrease in the energy of the multicast tree obtained by excluding
some of the nodes of the tree, in exchange for the increase in node v’s energy in
order to establish edges to all excluded nodes and their children. If no node in
C — F — FE has positive gain, the node with the minimum energy is included in
F and its children are included in C. Otherwise, the node with maximum gain is
included in the set F', the excluded nodes are included in the set F/, while both
the excluded nodes and their children are included in the set C'. The edges of the
excluded nodes to their children are removed (changes of type (2)) and outgoing
edges from v to all excluded nodes and their children are established (change of
type (1)). The new multicast tree together with the updated sets C, F' and E
are passed as input to the next step. The algorithm terminates when the root
and all terminals are contained in C. Our implementation of EWMA has running
time O(n?) in the worst case.

Sweep was proposed in [I5] as a simple heuristic for improving solutions of
MEBT obtained by spanning tree and shortest path algorithms. Clearly, it can be
used on any multicast tree as well. Sweep works as follows. It first assigns distinct
IDs (consecutive integers 0, 1,...) to all nodes. Starting from the multicast tree,
it proceeds in steps. In the i-th step, it examines the node v; having ID equal
to 4. If, for some nodes v;,,v;,,... which are not ancestors of v;, v;’s energy
in the multicast tree is not smaller than the cost of all the edges from v; to
Uiy, Uiy, --., SWeep removes the incoming edges of v;,, v;,, ... and adds edges from
v; t0 V4, Viy, ... in the multicast tree. The algorithm terminates when all nodes
have been examined. Although several variations of Sweep seem natural (this
is also mentioned in [15]), somewhat surprisingly, none of several variations we
implemented is better than Sweep in terms of the energy efficiency of the solution
obtained. A simple implementation of Sweep runs in time O(n?).

3 Augmentation Algorithms

Augmentation algorithms build a multicast tree by starting from an empty solu-
tion which is gradually augmented until a guest network having directed paths
from the root to the terminals is established. Clearly, once such a guest net-
work is available, it can be easily converted to a multicast tree. The solution
is augmented in phases. In each phase, an augmentation algorithm adds to the
solution a structure. This may be an edge to a node (e.g., in BIP and well known
implementations of MST [8]), a set of edges directed out of the same node (e.g.,
in a variation of BIP called BAIP [15]), a path (e.g., in algorithms presented in
[13/16]), a spider (a special directed graph used in [2] and implicitly in [4]), etc.
The structure is selected among all candidate structures so that a local objective
is minimized. The local objective is usually related to the energy needed in order
to establish the edges of the structure. We devote the rest of this section to the
detailed description of several augmentation algorithms. These include existing
algorithms in the literature as well as new ones with several variations.

Basic algorithms. Starting from a multicast tree containing only the root, the
algorithms Shortest Path First (SPF), Multicast Incremental Power (MIP), Dens-

188 S. Athanassopoulos et al.

est Shortest Path First (DSPF) and Densest Two Shortest Paths First (D2SPF)
augment the multicast tree in phases, until all terminals are included in the tree.
In each phase, algorithm SPF adds to the multicast tree the shortest directed
path (i.e., the path whose establishment requires the minimum amount of en-
ergy) that connects some node of the tree to a terminal out of the tree. Algorithm
MIP adds the path requiring the minimum additional energy that connects the
tree to a terminal out of the tree. This means that after each phase the cost of the
edges directed out of each node v in the path selected in the phase is decreased
by the cost of the edge outgoing from v in the path. Algorithm DSPF selects
among the minimum additional energy paths from the tree to the terminals out
of the tree, the one minimizing the ratio of additional energy over the number
of new terminals that are included in the tree. Algorithm D2SPF is similar to
DSPF; the difference being that, for any node v and any terminal ¢ both not in
the multicast tree, D2SPF considers paths from the tree to ¢ passing through v.

In our implementations, we make extensive use of algorithms for computing
shortest paths. Computing shortest paths from a node to all other nodes in a
complete directed graph can be done in time O(n?) using a simple implementa-
tion of Dijkstra’s algorithm using binary heaps as priority queues [§]. More com-
plex heaps which have been proved to yield faster implementations of Dijkstra’s
algorithm (e.g., Fibonacci heaps) do not decrease the running time substantially
in our case since the graph representing the ad hoc network is complete. SPF,
MIP and DSPF run in time O(mn?), where m is the number of terminals. In each
of the at most m phases, the algorithms perform a shortest path computation.
The processing of the graph (i.e., the decrease to the edge costs) required in MIP
and DSPF does not affect their asymptotic running time compared to SPF. Each
phase of D2SPF requires the computation of all-pairs shortest paths which needs
time O(n3) leading to overall running time of O(mn?).

The potential power saving idea. The basic algorithms do not examine
whether establishing a new path could also include nodes which had been in-
cluded in the multicast tree in previous phases, and could now be connected to
the multicast tree as children of some node in the path. In this way, the energy
of their previous parent could be decreased. The total decrease is denoted as
potential power saving ([1316]). The algorithms described here are variations of
the basic algorithms; their difference being that, when computing the additional
energy of a candidate path, they subtract the potential power saving. When a
new path is established, the multicast tree is modified accordingly, i.e., nodes
previously included in the multicast tree might now be connected as children of
nodes in the new path.

Algorithms SP3SF, DSP3SF and D2SP3SF are variations of MIP, DSPF and
D2SPF with potential power saving, respectively. Algorithm SP3SF was originally
proposed in [I3] and, according to our knowledge, computes the most energy-
efficient solutions in the setting studied here. Algorithm 2SP3SF is a variation
of D2SP3SF where the local objective in each phase is to minimize the addi-
tional energy minus the potential power saving. The necessary computations for
computing the potential power saving increase the running time of algorithms

Experimental Comparison of Algorithms for Energy-Efficient Multicasting 189

SP3SF and DSP3SF to O(m?n?), while algorithms 2SP3SF and D2SP3SF run in
time O(mn?). However, in practice the running time of SP3SF and DSP3SF is
only slightly worse than that of MIP and DSPF, respectively.

NWST-based algorithms. We now present six algorithms which borrow ideas
from approximation algorithms for NWST presented in [OITI]. In fact, the al-
gorithm of [4] for the symmetric case of MEMT reduces instances of MEMT
to instances of NWST. Although, the size of the resulting instance of NWST
is polynomial in theory, even for small instances of MEMT the corresponding
instance of NWST is intractable to be solved with the algorithms of [9II] in
practice. The algorithms presented below apply ideas from [9[11] to the MEMT
instance directly. A similar algorithm has been designed for MEBT in [2]. All
these algorithms use the idea of gradually augmenting a guest network by re-
peatedly adding spiders or forks of small density.

A spider is a directed graph consisted of a node called head and a set of
directed paths called legs, each of them from the head to the nodes called feet of
the spider. The definition allows legs to share nodes and edges. The weight of a
spider is the maximum cost of the edges leaving the head plus the sum of costs
of the legs, where the cost of a leg is the sum of the cost of its edges without the
edge leaving the head. A fork is a spider having a center node that is reached
through a shortest directed path from the head so that the subgraph of the fork
induced by removing the edges of this path and all nodes in the path but the
center is a spider having the center as its head. We call this spider the subspider
of the fork. The weight of the fork is the cost of the edges on the directed path
from the head to the center plus the weight of its subspider. We say that a node
u can be connected for free to a path, if the cost ¢(v;, u) of the edge from a node
v; in the path to u is smaller than the cost of the edge directed out of v; in the
path.

Algorithm Densest Spider First (DSF) establishes a guest network H in which
the root and the terminals are contained in the same loosely connected compo-
nent. Loose connectivity of a directed graph means that its undirected coun-
terpart (i.e., the graph obtained by substituting directed edges by undirected
ones) is connected. Then, for establishing a multicast tree in G, the algorithm
computes a tree directed from the root to the terminals in the supergraph of H
containing all the edges in H and their opposite-directed edges. The algorithm
assigns indices to nodes to keep track of which nodes belong to the same loosely
connected component in H. Each index is a non-negative integer; nodes having
the same finite index are loosely connected and nodes having different or infinite
indices are not connected at all. Initially, the index of the root is 0, terminals
have finite, positive and distinct integer indices, while all other nodes have in-
finite index. The algorithm proceeds in steps until the root and all terminals
have index 0. In each step, the algorithm finds a node v and a spider having v
as its head and nodes having pairwise distinct, different than v and not infinite
indices as its feet, so that the ratio of the weight of the spider over the number
of its feet (called the density of the spider) is minimized. Let 41, io, ..., i be the
indices of the nodes in the spider in non-decreasing order. For each node in the

190 S. Athanassopoulos et al.

graph with index ¢; or s, ..., or ¢ the algorithm sets its index to ¢; and adds
the edges of the spider to H. Algorithms DSF-2 and DSF-3 are slight variations
of DSF; the only difference being that the node selected as the head of the spider
in each step is constrained to have finite index in DSF-2 and index 0 in DSF-3.

In our implementations, these algorithms first perform a preprocessing to
compute, for each node and each possible energy level of this node, the shortest
paths from this node to all other nodes. This requires time O(n*) and dominates
the asymptotic running time of the algorithms. Once the length of all shortest
paths has been computed, then computing the minimum density spider having
as head a particular node with a particular energy level can be done in time
O(m). Hence, the minimum density spider in each of the at most m phases is
computed in time O(mn?).

Algorithm Densest Incremental Spider First (DISF) is a variation of DSF-3.
In each step, after the minimum density spider has been selected, for each node
u in the spider, the cost of the edges directed out of w in G is decreased by
the maximum cost of the edges directed out of u in the spider. Intuitively, the
weight of the spider in algorithms DSF, DSF-2 and DSF-3 is an upper bound on
the energy required to establish the edges of the spider. In DISF, the weight of the
spider computed in each step is an upper bound on the additional energy required
to establish the edges of the spider, given that edges that were included in H
in previous steps have already been established. Due to the update in the edge
cost function required in each phase of algorithm DISF, a similar preprocessing
to that used in DSF is required in each phase. This needs time O(mn*) and
dominates the asymptotic running time of the algorithm.

Algorithm Densest Fork First (DFF) is a variation of DISF. In each step a
fork having as head a node of index 0 minimizing the ratio of the weight of the
fork over the number of feet is added to the guest network H. Finally, algorithm
DFF-2 is similar to DFF. The main difference is that the number of feet plus the
number of non-zero finite indices of nodes which can be connected for free to the
path from the head to the center is used in the denominator of the local objective.
The running time of algorithms DFF and DFF-2 is asymptotically the same with
that of DISF. In each phase the time required for preprocessing asymptotically
dominates the time required for computing the densest fork.

Constrained and iterative versions. In many of the above algorithms, more
than one terminals can be added to the multicast tree in each phase. It may be
the case that adding a structure with many new terminals in a phase worsens
the final solution. We have implemented constrained versions of the algorithms
described above. which take as input an augmentation constraint parameter de-
noting the maximum number of new terminals allowed to be included in each
phase and constrain appropriately the space of candidate structures. Iterative
versions of algorithms DSPF, DSP3SF, SP3SF, D2SPF, D2SP3SF, 2SP3SF, DISF,
DFF and DFF-2 repeatedly run their constrained versions for all possible values
of the augmentation constraint parameter and output the best solution. These
algorithms are called iDSPF, iDSP3SF, iSP3SF, iD2SPF, iD2SP3SF, i2SP3SF, iD-
ISF, iDFF and iDFF-2, respectively. Clearly, an iterative version of an algorithm

Experimental Comparison of Algorithms for Energy-Efficient Multicasting 191

is superior to its unconstrained version in terms of energy efficiency; however,
it may require running time proportional to the number of terminals times the
running time of the unconstrained version.

4 Experimental Results

In this section we discuss the outcome of our experimentation with the algorithms
presented in the previous sections. Results of our experiments are depicted in
Tables[HEl We have also implemented a few more broadcasting algorithms (e.g.,
variations of algorithms BIP and BAIP) and performed experiments with them
by running algorithm Prune to their solutions in order to obtain multicast trees.
These results are certainly inferior to those presented below and will not be
further discussed. In addition, we have considered variations of the algorithms
which are appropriate to implement in a distributed setting. The corresponding
experimental results are usually worse than those of the centralized algorithms.
We will not discuss distributed implementation issues here; we prefer to focus on
centralized implementations since they give lower bounds on the energy efficiency
of the solutions and the overall work required in their distributed implementa-
tions.

The algorithms were executed on geometric instances of the problem of differ-
ent size. Input instances consist of nodes corresponding to points with uniformly
random coordinates in [0,5). A node is randomly selected to be the root and
terminals are selected uniformly at random without replacement among all other
nodes. For each instance, we use the term group to denote the set of terminals
together with the root.

Basic algorithms and algorithms with potential power saving were executed
on instances of size 100 for groups of size 10, 20, ..., 100 and values 2 and 4 for
a. Table [1 shows the performance of the basic algorithms and algorithms with
potential power saving with respect to the energy efficiency. For each group size,
100 random instances with the particular group size are constructed and all
algorithms are executed on these random instances. The energy values shown
in Table [[]for each algorithm in its executions on a particular group size, is the
average energy of the multicast trees computed by the algorithm in its execution
on all random instances of the particular group size.

All potential power saving algorithms perform better than basic algorithms
(this had been experimentally observed for SP3SF and MIP in [13J[16]). This dif-
ference is larger in the case o = 2. Interestingly, D2SPF is at most 1% worse than
SP3SF in this case. D2SP3SF outperforms all potential power saving algorithms
in the case a = 2; it is significantly better than SP3SF and 2SP3SF and slightly
better than DSP3SF. Also, 2SP3SF is marginally better than SP3SF. In the case
a = 4, SP3SF and 2S5P3SF seem to produce the most energy-efficient solutions
(with DSP3SF being marginally worse). In our experiments, we observed that
algorithms using two concatenated shortest paths as structures are always much
slower than algorithms using as structures single shortest paths (see e.g., Table
B). This is interesting (and somewhat surprising) since the asymptotic running

192 S. Athanassopoulos et al.

time of all algorithms using the potential power saving idea is essentially the
same for large group sizes.

Table 1. Comparison of basic algorithms, algorithms using the potential power saving
idea and their iterative versions on random instances with 100 nodes, « = 2 and v = 4
and group sizes 10, 20, ..., 100.

[@=2 10 [20 [30 [40 [50 [60 [70 [80 90 [100]|
SPF 5.27[7.19]8.49]9.51]10.07[10.56]11.26]11.55[12.09[12.45
MIP 4.986.78(7.96|8.85[9.47 [9.89 [10.52|10.84|11.26|11.61
DSPF__ ||4.93/6.64|7.83|8.66|9.22 [9.61 |10.17|10.40[10.73|11.07
D2SPF__||5.01]6.59|7.80]8.56|9.06 |9.46 |10.00|10.22|10.53|10.86
SP3SF__ ||4.92]6.59]7.66|8.50(9.03 [9.38 [9.00 |10.10|10.49]10.79
DSP3SF_||4.87]6.51|7.598.43/8.88_|9.25 [9.76 |10.01|10.26|10.63
2SP3SF_||4.906.56|7.62|8.45/8.99 [9.32 [9.89 |10.07|10.39|10.74
D25SP3SF [[4.96(6.50]7.60|8.34[8.87 [9.18 [9.69 [9.90 [10.18]10.49
iDSPF__||4.89]6.55|7.708.52|9.07 |9.44 [9.97 |10.23|10.56]10.92
iD2SPF_||4.87]6.49|7.61|8.41[8.89 [9.30 [9.78 |10.0510.39]10.71
iSP3SF_ ||4.92]6.59|7.66|8.50(9.03 [9.38 [9.90 [10.1010.48]10.79
iDSP3SF ||4.81]6.37|7-38|8.16]8.58 [8.94 [9.41 [9.63 [9.92 [10.28
2SP3SF_||4.90[6.55]7.62|8.45[8.99 [9.32 |9.88 |10.07|10.38|10.73
iD25P35F||4.81]6.38]7.40|8.16]8.64 [8.98 [9.47 |9.68 [9.96 |10.25
[@=4 10 20 [30][40][50 60 [70 [80 90 [100]|
SPF T.51[1.97]2.46]2.65]2.89 [2.99 [3.19 [3.25 [3.40 [3.61
MIP 1.48(1.93|2.41]2.50|2.82 [2.93 [3.10 [3.18 [3.32 [3.52
DSPF__ ||1.49|1.03|2.41[2.61|2.82 |2.93 [3.11 [3.10 |3.32 [3.52
D2SPF__||1.49|1.94]2.42[2.60|2.81 [2.91 [3.10 |3.18 [3.29 [3.52
SP3SF__ ||1.47|1.91|2.36|2.55|2.74 |2.85 [3.02 |3.08 [3.21 [3.41
DSP3SF_||1.46(1.92|2.38|2.55(2.75 |2.87 |3.04 [3.12 [3.25 [3.43
2SP3SF_||1.46|1.90(2.36]2.55|2.74 [2.85 [3.02 [3.00 [3.21 [3.41
D2SP3SF |[1.48|1.92|2.38|2.55(2.75_|2.86 [3.03 [3.12 [3.22 [3.41
iDSPF__ |[1.47|1.91|2.38|2.56|2.78 |2.89 [3.06 [3.13 [3.27 |3.46
iD2SPF__||1.47|1.90|2.37|2.55|2.77 |2.87 [3.05 |3.12 |3.24 [3.44
iSP3SF__||1.47|1.91]2.36|2-55|2.74 |2.85 |3.02 [3.08 [3.21 |3.41
iDSP3SF ||1.45|1.88(2.33|2.50[2.70 |2.81 [2.96 |3.04 [3.16 |3.34
2SP3SF_|[1.46]1.90|2.36|2.55|2.74 |2.85 [3.02 |3.09 [3.21 [3.41
iD2SP3SF|[1.46]1.89|2.34[2.51[2.71 [2.82 |2.99 [3.06 [3.17 |3.35

In general, NWST-based algorithms are slow. This has been already justified
in Section B where we discuss their running time (see also Table [Hl). This fact
did not allow us to perform large experiments. Our experiments with instances
of the problem with size 40 (see Table[2)) show that NWST-based algorithms are
inferior to most of the algorithms discussed above. DSF, DSF-2 and DSF-3 are
not much slower than D2SP3SF and 2SP3SF but their solutions are much worse
in terms of energy efficiency (in particular in the case a = 2). DISF is slightly
better in the case a = 2 and rather worse in the case o = 4. Its running time
is huge. DFF and DFF-2 are even slower but seem to be the best among the
NWST-based algorithms in terms of energy efficiency in their solutions. Over-
all, all NWST-based algorithms are worse than algorithms using the potential
power saving idea. Algorithms DISF, DFF and DFF-2 include some of those prop-
erties which make basic algorithms with potential power saving perform well, i.e.,
they augment a multicast tree containing the root by including in it new ter-
minals in each phase. Unfortunately, the local objective used in NWST-based

Experimental Comparison of Algorithms for Energy-Efficient Multicasting 193

algorithms contains the weight of spiders or forks and this may not always be
proportional to the energy. In addition, we see no clear way of incorporating the
potential power saving (or a similar) idea to NWST-based algorithms. Recall
that NWST-based algorithms are variations of DSF which was designed to effi-
ciently approximate optimal solutions of MEMT in the more general symmetric
case. The performance of NWST-based algorithms indicates that the particular
geometric version of the problem we consider here has certain properties which
are better exploited by algorithms with simple and intuitive local objectives.

Table 2. Comparison of NWST-based algorithms and their iterative versions with
algorithms MIP, SP3SF and DSP3SF on random instances with 40 nodes, o = 2 (left)
and « = 4 (right) and group sizes 10, 20, 30 and 40.

[e=2 [10 20] 30] 40[[[a =4] 10] 20[30] 40|
MIP 7.16| 9.61|10.99(11.97||[[MIP 5.66(8.22(9.25(10.00
SP3SF [[6.94| 9.09(10.28|11.18||||{SP3SF |[[5.55[7.96|8.98| 9.66
DSP3SF|[6.83| 8.87| 9.97|11.04[||[DSP3SF|[5.51|7.87]9.06] 9.70
DSF 8.49(11.29(12.31[12.57||[|[DSF 6.52(9.13(9.99(10.27
DSF-2 {[8.11(10.54|11.62|12.57||||[DSF-2 [|5.83|8.36(/9.50{10.27
DSF-3 8.12(10.40|11.28|11.95||||DSF-3 6.15(8.91(9.99(10.65
DISF 7.72(10.06|11.00{11.79]|||DISF 6.01(8.76(9.74[10.49
DFF 7.20| 9.63|10.69(|11.79||||DFF 5.74(8.37(9.38(10.11
DFF-2 |{7.19| 9.54|10.66{11.72||||DFF-2 |{5.71{8.33|9.37(10.11
iDISF 6.94] 9.15[10.18[10.95]|||iDISF 5.57(8.05(9.11| 9.79
iDFF 7.06| 9.47|10.50{11.55]|[[iDFF 5.67(8.20(9.33[10.05
iDFF-2 [|7.04| 9.39(10.44|11.53]|||iDFF-2 ||5.65|8.20{9.32|{10.00

We also investigated iterative versions of our algorithms. By the definition of
these algorithms, it is clear that they always perform better than their uncon-
strained counterparts in terms of energy efficiency at the expense of multiplying
the running time with the group size. In practice, in most of our implemen-
tations, the running time of iterative algorithms is closer to the running time
of their unconstrained counterparts (see Table [)). iDSP3SF computes the most
efficient solutions with respect to energy efficiency. iD2SP3SF is slightly worse
than iDSP3SF in terms of energy efficiency but its running time is enormous.
The only iterative algorithm with running time comparable to that of iDSP3SF
is iISP3SF which does not actually improve its unconstrained counterpart SP3SF.
Opverall, the solutions obtained by iDSP3SF are up to 5% (and about 2%) better
than those of iSP3SF in the case of & = 2 (and «a = 4, respectively). The cor-
responding results are depicted in Tables[dl. The solutions obtained by iterative
versions of NWST-based algorithms are usually much worse while their running
time is huge. It is interesting, however, that the solutions obtained by iDISF
significantly improve the results obtained by DISF. Unfortunately, this seems to
be the slowest among all algorithms we implemented.

Our next investigation probably answers why iDSP3SF is superior to iSP3SF
while DSP3SF and SP3SF compute solutions of comparable energy efficiency. In
TableBlwe present the performance of constrained versions of algorithms DSP3SF
and SP3SF (additional results for the constrained version of DSPF are also pre-

194 S. Athanassopoulos et al.

sented). It is clear that the constrained version of SP3SF computes solutions of
almost the same energy regardless of the augmentation constraint parameter,
while this is not the case for DSP3SF. This indicates that, given an instance of
the problem, many different augmentation constraint parameter values are pos-
sible to give the best solution of iDSP3SF with respect to energy efficiency, while
the solution obtained by iSP3SF is marginally better than the solution obtained
by the constrained version of SP3SF with augmentation parameter constraint
equal to 1.

Table 3. The energy efficiency of constrained versions of algorithms DSPF, SP3SF and
DSP3SF on random instances with 100 nodes, & = 2 and « = 4, and group sizes 50 and
100 for different augmentation constraint parameter values. The last column contains

the energy of the best solution for parameter values greater than 10.

Ha = 2, group size: 50 “1 [2 [3 [4 [5 [6 [7 [8 [9 [10 [> 10 ”
DSPF 9.46 [9.36 |9.32 [9.27 [9.26 (9.25 |9.24 [9.23 (9.24 (9.23 |9.22
SP3SF 9.04 [9.03 |9.03 [9.03 [9.03 [9.03 |9.03 [9.03 [9.03 [9.03 |9.03
DSP3SF 9.04 [9.02 |8.91 |8.88 |8.85 |8.85 [8.86 |8.86 |8.88 |8.88 [8.87

[Ja =2, group size: 100][1 [2 [3 [4 [5 [6 [7 [8 [9 [10 [>10]
DSPF 11.61|11.43|11.32(11.25(11.21|11.18{11.15(11.15|11.12|11.11{11.07
SP3SF 10.83(10.80{10.80{10.79{10.79(10.79|10.79{10.79{10.79{10.79(10.79
DSP3SF 10.83|10.85(10.74]10.71{10.70(10.64|10.68|{10.64[10.64|10.67(10.62

[Ja = 4, group size: 50 [[1 [2 [3 [4 [5 [6 [7 [8 [9 [10 [>10]
DSPF 2.82 [2.83 |2.82 [2.82 [2.82 (2.82 |2.82 [2.82 (2.82 (2.82 |2.82
SP3SF 2.74 (2.74 12.74 |2.74 |2.74 |2.74 |2.74 [2.74 |2.74 |2.74 |2.74
DSP3SF 2.74 12.75 [2.74 |2.75 |2.75 [2.75 [2.76 |2.76 |2.76 |2.75 [2.75

[Jo = 4, group size: 100][1 [2 [3 [4 [5 [6 [7 [8 [9 [10 [>10]]
DSPF 3.52 [3.52 |3.52 |3.53 [3.53 [3.52 |3.52 [3.52 [3.52 |3.52 |3.51
SP3SF 3.41 [3.41 |3.41 |3.41 |3.41 |[3.41 |3.41 [3.41 |3.41 |3.41 |3.41
DSP3SF 3.41 [3.43 |3.43 [3.42 |3.43 |(3.42 |3.43 [3.43 |3.42 |3.43 |3.42

The effect of local search algorithms on solutions obtained by the augmen-
tation algorithms we have implemented is important in the case o = 2 while it
seems to be marginal in the case a = 4 (see TableH]). Such algorithms do not add
significant overhead to the overall running time and usually lead to much better
solutions. EWMA seems to be appropriate for the case a = 2 and in particular for
broadcasting instances for which it was originally designed, while Sweep seems
to be slightly better in the case o = 4. The improvement in solutions of aug-
mentation algorithms achieved after running EWMA and/or Sweep is larger for
the augmentation algorithms which are worse in terms of the energy efficiency
and smaller for those algorithms which output more efficient solutions. Usually,
running repeatedly local search algorithms can improve a solution further. This
improvement starts to be negligible after the first two or three executions. An
interesting question is whether running EWMA and/or Sweep after the uncon-
strained version of an algorithm is better than its iterative version. We observed
that this is the case for algorithms SP3SF and 2SP3SF (we have already seen that
iterative versions of these algorithms do not significantly improve on the energy
efficiency of the solutions), but this is not clear for algorithms DSPF, DSP3SF,

Experimental Comparison of Algorithms for Energy-Efficient Multicasting 195

D2SPF and D2SP3SF, even if we compare these algorithms followed by several
calls to EWMA and Sweep with their iterative versions. Also, running EWMA
after e.g., iDSP3SF improves the solutions further. This discussion implies that
local search algorithms cannot substitute iterative algorithms; however they can
be used to slightly improve their performance with respect to energy efficiency
of the solutions obtained.

In conclusion, iDSP3SF followed by EWMA seems to give the most energy-
efficient solutions. Algorithms SP3SF and DSP3SF followed by local search algo-

rithms provide a good compromise between energy efficiency and running time.

Table 4. Effects of local search algorithms on augmentation algorithms for random
instances with 100 nodes, a = 2 and a = 4, and group sizes 10,50 and 100. The four
columns for each group size denote the energy of the algorithm, the algorithm followed
by Sweep, the algorithm followed by EWMA, and the algorithm followed by executions
of EWMA, Sweep and EWMA, respectively.

[o=2 T 10 I 50 I 100 |
SPF__ [[5.27]5.13]5.15]5.04][10.07]9.55]9.40]9.06][12.45[11.76] 11.00] 10.77
MIP__ [|4.98[4.91|4.92]4.87|[9.47 |9.09]9.06|8.82|[11.61]10.93]10.7210.46

DSPF 4.93(4.87]4.89|4.85((9.22 |8.98(8.90(8.75((11.07|10.70{10.51|10.31
iDSPF 4.89(4.84]4.85|4.81((9.07 |8.82|8.79|8.63((10.92|10.57|10.37|10.19
DSP3SF |[4.87]4.87|4.84|4.83||8.88 [8.88(8.74(8.71{{10.63|10.63|10.30{10.23
iDSP3SF|[4.81(4.81(4.79(4.78(|8.58 [8.58(8.48(8.46/10.28({10.28({10.05[10.02
SP3SF [[4.92]4.92]4.89(4.89]|9.03 [9.02[8.85[8.79([10.79[10.78({10.39[10.32
iSP3SF []4.92]4.92]4.89]4.89]]9.03 [9.02[8.85[8.79([10.79]10.78[{10.39]|10.31

[o=4 T 10 I 50 I 100 |
SPF__ [[1.51[1.49]1.50[1.48][2.89 [2.81]2.85[2.79][3.61 [3.49 [3.53 [3.45
MIP _ [[1.48[1.47|1.48|1.47|[2.82 [2.752.79|2.74[[3.52 [3.41 [3.49 [3.40

DSPF 1.49]1.48(1.48|1.47(|2.82 |2.76|2.80(2.76||3.52 |3.42 |3.49 |3.42
iDSPF 1.47[1.46]1.47|1.46]|2.78 [2.73]|2.76]2.73|[3.46 [3.37 [3.43 |3.36
DSP3SF ||1.47[1.47(1.46{1.46(|2.75 [2.75|2.75|2.74||3.43 |3.43 |3.43 [3.42
iDSP3SF|[1.45(1.45[1.45(1.45(|2.70 [2.69]2.69]2.69(|3.34 [3.34 [3.34 [3.33
SP3SF [[1.47]1.47[1.46(1.46(|2.74 [2.74]|2.74]2.73||3.41 [3.41 |3.40 |3.39
iSP3SF [[1.47]1.47[1.46(1.46(|2.74 [2.74|2.74]2.73||3.41 [3.41 |3.40 |3.39

Table 5. Running time of the algorithms on random instances of 40 nodes and group
size 40.

[[Algorithm] Time[[Algorithm] Time[[Algorithm] Timel]

SPF 12 msec||iDSPF 95 msec||DSF-3 1.2 sec
MIP 14 msec||iD2SPF 6 sec||DISF 11.6 sec
DSPF 6 msec||iSP3SF 250 msec||DFF 15.7 sec
D2SPF 265 msec|[iDSP3SF [130 msec||DFF-2 18.1 sec
SP3SF 22 msec||i2SP3SF 10.7 sec||iDISF 349 sec
DSP3SF 6 msec||iD2SP3SF 6.7 sec||iDFF 137.6 sec
2SP3SF 1 sec||DSF 1.2 sec||iDFF-2 194.8 sec
D2SP3SF [280 msec||DSF-2 1.2 sec

196

S. Athanassopoulos et al.

References

1.

10.

11.

12.

13.

14.

15.

16.

M. Cagalj, J.P. Hubaux and C. Enz. Minimum-Energy Broadcast in All-Wireless
Networks: NP-completeness and Distribution Issues. In Proc. of the 8th ACM In-
ternational Conference on Mobile Networking and Computing (Mobicom ’02), pp.
172-182, 2002.

. G. Calinescu, S. Kapoor, A. Olshevsky and A. Zelikovsky. Network Lifetime and

Power Assignment in Ad-Hoc Wireless Networks. In Proc. of the 11th Annual
European Symposium on Algorithms (ESA ’03), LNCS 2832, Springer, pp. 114—
126, 2003.

I. Caragiannis, C. Kaklamanis and P. Kanellopoulos. New Results for Energy-
Efficient Broadcasting in Wireless Networks. In Proc. of the 13th Annual Inter-
national Symposium on Algorithms and Computation (ISAAC ’02), LNCS 2518,
Springer, pp. 332-343, 2002.

I. Caragiannis, C. Kaklamanis and P. Kanellopoulos. Energy-Efficient Wireless
Network Design. In Proc. of the 14th Annual International Symposium on Algo-
rithms and Computation (ISAAC ’03), LNCS 2906, Springer, pp. 585-594, 2003.

. J. Cartigny, D. Simplot, I. Stojmenovic. Localized minimum energy broadcasting

in ad hoc networks. In Proc. of IEEE INFOCOM 2003, 2003.

A.E.F. Clementi, P. Crescenzi, P. Penna, G. Rossi, and P. Vocca. On the Com-
plexity of Computing Minimum Energy Consumption Broadcast Subgraphs. In
Proc. of the 18th Annual Symposium on Theoretical Aspects of Computer Science
(STACS ’01), LNCS 2010, Springer, pp. 121-131, 2001.

A.E.F. Clementi, M. Di Ianni, R. Silvestri. The Minimum Broadcast Range As-
signment Problem on Linear Multi-Hop Wireless Networks. Theoretical Computer
Science, 299 (1-3), pp. 751-761, 2003.

T.H. Cormen, C.E. Leiserson, R.L. Rivest and C. Stein. Introduction to Algo-
rithms. The MIT Press, Second Edition, 2001.

S. Guha and S. Khuller. Improved Methods for Approximating Node Weighted
Steiner Trees and Connected Dominating Sets. Information and Computation,
150(1), pp. 57-74, 1999.

L. M. Kirousis, E. Kranakis, D. Krizanc, and A. Pelc. Power Consumption in Packet
Radio Networks. Theoretical Computer Science, 243(1-2), pp. 289-305, 2000.

P.N. Klein and R. Ravi. A Nearly Best Possible Approximation Algorithm for
Node-Weighted Steiner Trees. Journal of Algorithms, 19(1), pp. 104115, 1995.
W. Liang. Constructing Minimum-Energy Broadcast Trees in Wireless Ad Hoc
Networks. In Proc. of 3rd ACM International Symposium on Mobile Ad Hoc Net-
working and Computing (MOBIHOC ’02), pp. 112-122, 2002.

P. Mavinkurve, H.QQ. Ngo and H. Mensa. MIP3S: Algorithms for Power-conserving
Multicasting in Wireless Ad Hoc Networks. In Proc. of the 11th IEEE International
Conference on Networks (ICON ’03), 2003.

P.-J. Wan, G. Calinescu, X.-Y. Li, and O. Frieder. Minimum-Energy Broadcasting
in Static Ad Hoc Wireless Networks. Wireless Networks, 8(6), pp. 607617, 2002.
J. E. Wieselthier, G. D. Nguyen, and A. Ephremides. On the Construction of
Energy-Efficient Broadcast and Multicast Trees in Wireless Networks. In Proc. of
IEEE INFOCOM 2000, pp. 585-594, 2000.

V. Verma, A. Chandak and H.Q. Ngo. DIP3S: A Distributive Routing Algorithm
for Power-Conserving Broadcasting in Wireless Ad Hoc Networks. In Proc. of the
Fifth IFIP-TC6 International Conference on Mobile and Wireless Communications
Networks (MWCN ’03), pp. 159-162, 2003.

	Introduction
	Local Search Algorithms
	Augmentation Algorithms
	Experimental Results

