
Chapter 13
Energy Consumption Minimization in Ad Hoc
Wireless and Multi-interface Networks

Alfredo Navarra, Ioannis Caragiannis, Michele Flammini, Christos Kaklamanis,
and Ralf Klasing

Abstract This chapter deals with energy consumption issues in wireless networks.
In such networks, energy is a scarce resource and, hence, it must be used efficiently.
Under these circumstances, we consider two interesting combinatorial optimization
problems:Minimum Energy Broadcast Routingand Cost Minimization in Multi-
interface Networks. The goal of the first problem is to perform broadcasting from
a given source while minimizing the overall energy requiredfor communication.
The second problem refers to the choice of activating a set ofavailable communica-
tion interfaces at the network nodes in order to satisfy the required connections in a
wireless multi-interface network with minimum total cost.While Minimum Energy
Broadcast Routing has been studied extensively during recent years, Cost Minimiza-
tion in Multi-interface Networks is rather new. For both problems we survey recent
complexity results and approximation algorithms under different assumptions.
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13.1 Introduction

In recent yearswireless networkshave been widely deployed, mostly because of
the recent drop in equipment prices and due to the features provided by the new
technologies. Unlike traditionalwired networkswhere signals pass from one device
to another through physical cables, in wireless networks data transmissions from
each node (station) occur in the open air and within a given coverage area. In this
scenario, considerable attention has been devoted to the so-calledad hocwireless
networks, due to their potential applications in emergencydisaster relief, on the
battlefield, in impervious areas, and so on [29, 44]. Ad hoc wireless networks do not
require any fixed infrastructure. The network is simply a collection of devices that
can communicate with each other according to proximity and available common
protocols and interfaces.

In this chapter we consider two important problems arising in the context of ad
hoc wireless networks:Minimum Energy Broadcast RoutingandCost Minimization
in Multi-interface Networks. The first problem considers the need of broadcasting
information from a given source to all other network nodes when the network nodes
are equipped with omnidirectional antennas. The second problem aims at establish-
ing connections among heterogeneous nodes equipped with a set of interfaces that
can be activated at a different cost.

The common objective in both the above scenarios is to minimize the total energy
consumption in order to keep the network alive as long as possible. Energy is in fact
a scarce resource in wireless ad hoc networks, and communication strongly depends
on it.

The chapter is organized as follows. Section 13.2 is devotedto the Minimum En-
ergy Broadcast Routing problem. First, some motivation forthe problem is provided
and, then, it is formally defined. Several results are surveyed and details are given
for interesting analysis techniques. Section 13.3 is devoted to Cost Minimization
in Multi-interface Networks. Again, the problem is first motivated, then formally
defined, and a list of results is presented emphasizing some interesting techniques.
Finally, Section 13.4 provides conclusive remarks and interesting directions of fu-
ture research.

13.2 Minimum Energy Broadcast Routing

The study of a basic communication pattern such as broadcasting is of main inter-
est in the context of wireless ad hoc networks. Broadcastingcan in fact be used to
set up the network or to rapidly spread useful information. The wireless environ-
ment allows all devices in the range of a transmitterx to receive messages sent by
x. The range of transmissions basically depends on the environment where devices
are distributed. According to the widely used power attenuation model [42], when
a stations transmits with powerPs, a stationr can receive messages froms if and
only if Ps > βdist(s, r)α , wheredist(s, r) is the Euclidean distance betweens and
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r, α is a parameter which depends on the environment with typicalvalues between
2 and 6, andβ is a positive parameter known as thereception quality threshold.
For the sake of simplicity, from now on we normalize parameter β to 1. Due to
the nonlinearity of power attenuation, multi-hop transmission of messages through
intermediate devices may result in energy conservation. The main property of wire-
less ad hoc networks is usually the lack of a fixed infrastructure for routing purposes.
A natural issue arising in this setting is that of supportingbroadcasting with min-
imum total energy consumption. This problem, calledMinimum Energy Broadcast
Routing(MEBR), is well-known in the literature and it has been extensively studied
(see [1, 2, 5, 7–9, 12, 13, 16, 19, 20, 24–26, 31, 33, 36, 41]).

13.2.1 Definitions and Notation

Given a set of stationsS, let G(S) be the complete weighted directed graph whose
nodes are the stations inSand in which the weightw(x,y) of each edge(x,y) is the
power required atx in order to transmit correctly to nodey. A power assignment for
S is a functionp : S→ R+ assigning a transmission powerp(x) to every stationx in
S. A power assignmentp for Syields a directed communication graphGp = (S,A)
such that, for each directed edge(x,y) of G(S), (x,y) belongs toA if and only if
p(x) ≥ w(x,y), i.e., if x can correctly transmit toy. In this case, we say thaty is
within the range ofx. The total cost of a power assignmentp is then

cost(p) = ∑
x∈S

p(x).

MEBR takes as inputG(S) together with a source stations∈ S and consists of
finding a power assignmentp of minimum cost such thatGp contains a directed
spanning tree rooted ats (and directed towards the leaves). We call such a power
assignment anoptimal power assignmentand denote its cost bym∗(S,s).

The weight functionw : E 7→ R+ is usually symmetric (i.e.,w(x,y) = w(y,x)
for each pair of stationsx, y ∈ S). Nonsymmetric weight functions can be used to
capture the irregularity of the environment or situations where stations use batteries
of different types which may operate on different fixed energy levels. An important
case of symmetric weight functions arises in the geometric version of MEBR. In this
case, the stations ofScorrespond to points in ad−dimensional Euclidean space and
the weight function is defined asw(x,y) = dist(x,y)α , wheredist is the Euclidean
distance andα ≥ 1 is a positive parameter. Equivalently, in this case, we seek a range
assignmentr : S→ R+ such that the ranger(x) of a stationx denotes the maximum
Euclidean distance fromx at which signals can be correctly received. Again, a range
assignmentr for Syields a directed communication graphGr = (S,A) such that the
directed edge(x,y) belongs toA if and only if y is at distance at mostr(x) from x.
We use the notationGα(S) andm∗

α(S,s) to denote the input graph and the cost of
the optimal range assignment in the geometric case.
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13.2.2 The Geometric Version of MEBR

We first study the geometric version of MEBR. In general, the geometric version
of MEBR is NP-hard, while it is solvable in polynomial time whenα = 1 or
d = 1 [13, 20]. Many heuristics and corresponding experimentalresults can be
found in the literature. We can find the Shortest Paths Tree (SPT), the Minimum
Spanning Tree (MST), and the Broadcast Incremental Power (BIP) in [42]; the It-
erative Maximum-Branch Minimization (IMBM) in [37]; the Adaptive Broadcast
Consumption (ABC) in [33]; a refined BIP version in [43]; and many Integer Lin-
ear Programming approaches like the ones in [22, 30, 33, 43] (see also [2] for a
comparative experimental study).

While such heuristics have been observed experimentally to perform pretty well
on random instances of MEBR, the only one for which extended analytical studies
were done is the MST heuristic. It is based on the idea of tuning ranges so that the
communication graph contains a minimum spanning tree (see Section 1.5.1.1) of the
cost graphG(S). More precisely, denote byT(S) a minimum spanning tree ofG(S).
The MST heuristic considersT(S) rooted at the source stations, directs the edges
of T(S) towards the leaves, and sets the powerp(x) of every internal stationx of
T(S) with k > 0 childrenx1, . . . ,xk in such a way thatp(x) = maxi=1,...,kw(x,xi). In
other words,p is the power assignment of minimum cost inducing the directed tree
derived fromT(S), and is such thatcost(p) ≤ c(T(S)), wherec(T(S)) denotes the
total cost of the edges inT(S). Therefore, the approximation ratio of the heuristic is
bounded by the ratio between the cost of a minimum spanning tree ofG(S) and the
optimal power costm∗(S,s).

s
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1

1

1

1

Fig. 13.1 The lower bound of 6 for the MST heuristic. On this instance, there is a source station
s and six additional stations, five of which are on the circumference of a circle of radius 1+ ε
centered ats. The MST heuristic produces a tree (path) consisting of six edgesof total cost 6. The
optimal solution is a star connectings to the other six nodes at a cost of 1+ ε. The approximation
ratio can become arbitrarily close to 6 by selectingε to be arbitrarily small

For the two-dimensional case (which is actually the case that has been given
most attention in the literature), a lower bound of 6 on the approximation ratio of
the MST heuristic was provided in [42] (see Figure 13.1). Thefirst constant upper
bound was provided in [19]. The analysis led to an approximation ratio of 40 for
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MST, immediately reduced to 20 by the same authors. The general idea behind the
analysis is to represent each edge ofG(S) chosen by the MST heuristic by a two-
dimensional shape and evaluate the area occupied by all suchshapes, since the cost
of a solution provided by the MST heuristic (forα = 2) is proportional to the con-
sidered area. The 40-approximation was obtained by associating with each edgeea
circle whose diameter is the length ofe (see Figure 13.2.a). The 20-approximation
arises by associating a circle with each edgeewhose center is the middle point ofe
and diameter is half the length ofe (see Figure 13.2.b). A further improvement ob-
tained by using the same technique but varying the shape was given in [33, 41]. The
obtained approximation ratio is 12.15 and the shape associated with each edgee is
a rhombus whose bigger diagonal coincides withe, and the angles at its endpoints
formed by the sides of the rhombus are 60 degrees (see Figure 13.2.c). Note that the
third shape implies an interesting property for which no overlap occurs among two
shapes associated with two different edges of the minimum spanning tree. By re-
fining the geometrical arguments but without changing the rhombus shape, a better
bound of 10.86 was obtained in [8].

c)

Oe e e

a) b)

60

Fig. 13.2 The three shapes associated with an edgee of a spanning tree. The choice of shape a)
leads to a 40-approximation, b) to 20, and c) to 12.15.

A different method was used in [24, 31]. A new process to evaluate the approxi-
mation factor of the MST heuristic was introduced, leading first to an upper bound
of 8 and then to 6.33 by more refined geometrical arguments. The basic idea, which
will be explained in detail in the next section, is to grow onecircle centered at
each node of the network until all the circles belong to the same connected compo-
nent, that is, the union of all the circles forms one and only one delimited area. The
bounds of the MST heuristic were then determined by evaluating the covered area by
such a process. This method was also extended to the more general d-dimensional
case for which a(3d −1)-approximation ratio has been obtained. It is worth men-
tioning that, for any Euclidean dimensiond and powerα ≥ d, the MST heuristic
is lower-bounded by the so-calledd-dimensionalkissing number[19]. More pre-
cisely, thed-dimensional kissing number is the maximum number of mutually dis-
joint d-spheres (or hyperspheres) of a given radiusr that can simultaneously touch
a d-sphere of the same radiusr in thed-dimensional Euclidean space [21]. For the
three-dimensional Euclidean space, for instance, the kissing number is 12 while the
upper bound provided by [24, 31] is 26. Such a bound has been improved in [38]
to 18.8 by extending to the three-dimensional space arguments similar to the ones
that led the upper bound for the two-dimensional case from 8 to 6.33. In [1] the gap
between the lower bound of 6 and the upper bound of 6.33 for the MST heuristic
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in the two-dimensional case was finally closed by decreasingthe upper bound to 6.
The author provided a new analysis technique based on the Delaunay triangulation.

An interesting direction for providing worst-case scenarios and studying the per-
formance of the MST or other heuristics was given in [26]. By means of a random-
ized procedure, the approach showed an almost tight 4-approximation ratio of the
MST heuristic in the case of uniform high-density distributions of the radio stations.

13.2.3 An8-Approximation Upper Bound for the MST Heuristic

In this section, we present the main ideas that can be used in the analysis of the MST
heuristic. The particular arguments used in the following yield an upper bound of 8
on the approximation ratio and are relatively easy to follow. The improved results
in [31] and [1] follow significantly more involved analysis.

Given a graphG and a weight functionw defined on its edges, for anyc∈ R+,
let N(G,c) be the number of connected components in the graph obtained from G
by keeping only the edgese∈ E such thatw(e) ≤ c. Then, the costMST(G) of a
minimum spanning tree forG is given by the following lemma.

Lemma 13.1 (Frieze and McDiarmid [27]). MST(G) =
∫ ∞

0 (N(G,c)−1)dc.

For any subset of stationsQ⊆S, letGα(Q) be the subgraph ofGα(S) induced by
Q. Also, letn(Q, r) = N(Gα(Q), rα), that is, the number of connected components
in Gα(Q) obtained by maintaining only the edges between the nodes at distance at
most r in Q. Recalling that each edge(x,y) has costw(x,y) = dist(x,y)α and ex-
ploiting Lemma 13.1 by substituting the variablec with rα , we obtain the following
corollary.

Corollary 13.1 (Klasing et al. [31]).For any subset of stations Q⊆S, MST(Gα(Q))
= α

∫ ∞
0 (n(Q, r)−1)rα−1dr.

Now, the main argument in the proof is the following. We address the caseα = 2
since the upper bound forα ≥ 2 can be directly inferred [24, 31]. Consider an
optimal power assignment of costm∗(S,s) in whichk stationsx1, ...,xk are assigned
nonzero power. Fori = 1, ...,k, denote byr i the range of stationxi and letQi be the
set of stations within the range of stationxi . We will show thatMST(Gα(Qi))≤ 8rα

i .
In this way, we will obtain that

MST(Gα(S)) ≤
k

∑
i=1

MST(Gα(Qi)) ≤ 8
k

∑
i=1

rα
i = 8m∗(S,s),

thus proving the upper bound. Without loss of generality, weconsider a set of sta-
tionsQ⊆ Ssuch that there exists a stationx∈ Q with maxy∈Qdist(x,y) = 1. Thus,
all the points ofQ belong to a circle of radius 1 in the plane, from now on denoted
by C1, and the cost of each edge of the weighted complete graph representing the
input network is proportional to the square of the distance between its endpoints.
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For simplicity of notation, for any set of stationsQ, G2(Q) is denoted simply as
G(Q).

Let G(Q, r) be the graph obtained by considering only the edges ofG(Q) of
length at mostr, or equivalently of cost at mostr2, and letCC(Q, r) be the set of the
connected components ofG(Q, r). Let rmax be the minimumr such thatG(Q, r) is
connected (i.e.,n(Q, rmax) = |CC(Q, rmax)|= 1). Then, directly from Corollary 13.1,

MST(G) = 2
∫ rmax

0
(n(Q, r)−1)rdr.

For the sake of readability, from nowQ is dropped from the notation, so thatG,
G(r)CC(r), n(r), andrmaxwill denoteG(Q), G(Q, r)CC(Q, r), n(Q, r) andrmax(Q),
respectively.

Theorem 13.1 ( [31]).Given any subset of stations Q⊆ S within a circle of radius
1, MST(G(Q)) ≤ 8.

|CC(rmax)| = 1,

1+ rmax
2

1

x

xx

x

r = r2
2|CC(r2)| = 5,

r = rmax
2

r = r1
2|CC(r1)| = 6,r = 0|CC(0)| = 7,

Fig. 13.3 The expanding process described in Theorem 13.1

The proof of Theorem 13.1 considers a growing process in which circles of equal
radii centered at the stations ofQ are synchronously grown starting from a radius
r = 0 till r = rmax

2 ≤ 1
2; i.e., the process ends whenG(2r) becomes connected. This

is accomplished by increasing at any infinitesimal step the current radii, all equal to
a givenr, by dr.
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For a set of stationsP and a radiusr, let P(r) be the set of the points in the plane
contained in the union of all the circles of radiusr associated with the stations ofP.
Let a(P, r) be the area ofP(r).

Suitable lower and upper bounds on the total areaa(Q, rmax
2 ) covered by all the

circles related toQ at the end of the process, that is, when all the radii are equalto
rmax

2 , can be determined as follows.
Consider a connected componentP∈CC(2r) of G(2r). Then, since two circles

of radiusr centered in two stations at distance at most 2r touch each other,P(r)
corresponds to a closed region of the plane having perimeterp(P, r) equal to at least
2πr, that is, equal to at least the perimeter of a single circle ofradiusr centered
in a station ofP. Thus, the increasep(P, r)dr of a(P, r) whenr is increased by an
infinitesimal stepdr is at least 2πrdr.

If P∈CC(2r) andR∈CC(2r) are two different connected components ofG(2r),
P(r)∩R(r) = /0, as any point belonging to the intersection would contradict the fact
that the distance between any station inP and any station inR is strictly greater than
2r. Therefore,

a(Q,
rmax

2
) =

∫ rmax
2

0
∑

P∈CC(2r)

p(P, r)dr

≥
∫ rmax

2

0
n(2r)2πrdr

=
1
4

2π
∫ rmax

0
n(r)rdr

=
1
4

2π
∫ rmax

0
(n(r)−1)rdr +

1
4

2π
∫ rmax

0
rdr

=
π
4

MST(G)+
π
4

r2
max.

Moreover, the total region of the plane covered by the union of all the circles
related toQ of radius rmax

2 , that is,Q( rmax
2 ), is included in a circle of radius 1+ rmax

2
centered at the stationx such thatdist(x,y)≤ 1 for everyy∈ Q (see Figure 13.3), so
thata(Q, rmax

2 ) ≤ π +( rmax
2 )2. Therefore,

π
4

MST(G)+
π
4

r2
max≤ a(Q,

rmax

2
) ≤ π(1+

rmax

2
)2

and thus, sincermax≤ 1,

MST(G) ≤ 4(1+
rmax

2
)2− r2

max= 4(1+ rmax) ≤ 8.



13 Minimization of Energy Consumption 343

13.2.4 Experimental Studies with the MST Heuristic

We now show an interesting technique from [26] for obtaining“bad” instances for
the MST heuristic. The goal is to maximize the cost of a possible MST insideC1

considering its centersas the source. This was done in order to better understand the
actual quality of the performance of the MST heuristic over interesting instances that
are more representative of real-world applications. Starting from random instances,
the maximization consists of slight movements of the nodes according to some use-
ful properties of the MST construction. For instance, if we want to increase the cost
of an edge of the MST, the easiest idea is to increase the distance of its endpoints.
Let us now consider a nodev 6= s of a generic instance given as input. We consider
the degree of such a node in the undirected tree obtained fromthe MST heuristic
before assigning the directions. LetN(v) = {v1,v2, . . . ,vk} be the set of the neigh-
bors ofv in such a tree. We evaluate the median pointp = (x,y), whose coordinates
are given by the average of the corresponding coordinates ofthe nodes inN(v). The
idea is then to move the nodev farther fromp but, of course, inside the considered
circle. In general this should augment the cost of the MST on the edge connecting
the nodev to the rest of the tree (see Figure 13.4).

p v

v

p
v

p

Fig. 13.4 Augmenting the edge costs when a node has one or more neighbors and when it is on
the circumference ofC1

It can also happen that such a movement completely changes the structure of
the MST, reducing the initial cost. In that case we do not validate the movement.
Given an instance, the augmenting algorithm performs this computation for each
node twisting over all the nodes buts, until no movements are allowed. Therefore, in
order to give to a node a “second chance” to move, we can repeatsuch computations
for a fixed number of rounds. Note that when a node reaches the border that is the
circumference ofC1, the only allowed movement is over such a circumference.

Another way to increase the cost of the MST is to try to delete anode. The
chosen candidate is the node with the highest degree. The idea behind this choice
is that the highest degree node could be considered as the intermediary node to
connect its neighbors, so removing it, a “big hole” will probably appear. On the one
hand, this means that the distances to connect the remainingdisjoint subtrees should
increase the overall cost. On the other hand, we are creatingmore space for further
movements. After a deletion, the algorithm starts again with the movements. Indeed,
the deletion can be considered as a movement in which two nodes coincide. If the
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deletion does not increase the cost of the current MST, it is not validated. In such a
case, the next step will be the deletion of the second highestdegree node and so on.
The whole procedure is repeated until no movements and no deletions are allowed.
Note that eventually the algorithm can be repeated several times in order to obtain
more accurate results. Sometimes, in fact, it can happen that the algorithm is stuck
in some local maximum. Due to its randomness on the movements, the more it is
executed, the higher is the probability to exit from such a situation.

The algorithm was evaluated over hundreds of instances fromfive up to 100
nodes. Table 13.1 shows the average and the maximum costs obtained on random
instances using and not using the augmenting method (ε represents the maximum
distance allowed for movements).

Table 13.1 The average and the maximum costs obtained on standard random instances and using
the previous augmenting algorithm on instances of five up to 100nodes andε equal to 0.1 and 0.5.

n Random Augmented,ε = .5 Augmented,ε = .1
Average Max Average Max Average Max

5 1.301 2.875 3.645 4.000 3.627 4.000
7 1.480 2.479 4.545 5.738 4.560 5.879

20 1.854 2.618 4.281 5.090 4.131 5.122
50 1.812 1.971 3.732 3.890 3.633 3.759

100 1.683 1.883 3.567 3.722 3.490 3.812

Compared to the standard random generated instances, the average costs were
almost tripled while the maximum costs were almost doubled.The numerical results
obtained are very interesting since they show that standardrandom instances are
not really representative when studying the bounds of the MST heuristic for the
MEBR problem. Moreover, as a “side effect” of such experiments, another very
interesting property concerns the topologies obtained in the augmented instances.
Whereas for instances up to around 20 nodes the method modifiesthe distribution of
nodes, collapsing them to the hexagon shape of Figure 13.1, increasing the number
of nodes makes things more interesting.

In Figure 13.5 an instance of 100 nodes is given before and after the movements
and deletions. What follows from those experiments is an evident regularity on the
final obtained instances. As shown in Figure 13.5, in general, after the augmentation,
nodes look like they are being disposed of on some kind of regular grid, and this
reflects the lower bound given by the regular hexagon shape.

13.2.5 Solving More General Instances of MEBR

In non-geometric versions of MEBR, the MST heuristic can be easily shown to have
a poor approximation ratio. Better algorithms exist in bothcases, where the weight
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(a) before (b) after

Fig. 13.5 A random instance of 100 nodes before and after applying the augmenting method. The
number of nodes decreased from 100 to 65, while the cost increasedfrom 1.877 to 3.681

function is symmetric and nonsymmetric. For the former case, [13–15] present al-
gorithms with a logarithmic (in the number of nodes) approximation ratio. The
main idea is to reduce instances of the problem to instances of the problem Node-
Weighted Connected Dominating Set [13, 14] or Node-Weighted Steiner Tree [15].
Such instances can be approximated within a logarithmic factor [28], which car-
ries over as the approximation factor of the original instance. For nonsymmetric
instances, [15] exploits a reduction due to Liang [36] of instances of MEBR to
instances of Directed Steiner Tree. The obtained instanceshave some special prop-
erties, which allow for logarithmic approximations using techniques of Zosin and
Khuller [45] for approximating special instances of Directed Steiner Tree. Similar
results using different techniques have been obtained independently by Calinescu et
al. [9]. All these results are the best possible; a matching inapproximability result
has been presented in [19].

In the following, we discuss a recent algorithm from [12] forsymmetric instances
of MEBR, which has important implications for the geometricversion of MEBR as
well. The algorithm starts with the solution computed by theMST heuristic and
gradually performs improvements on this solution according to a well-selected cri-
terion. At the end, the solution obtained has significantly smaller cost than the initial
one.

Before presenting the algorithm, we give some necessary definitions. Given a
power assignmentp and a stationx∈ S, let E(p,x) = {(x,y)|w(x,y) ≤ p(x)} be the
set of the undirected edges induced byp at x, andE(p) =

⋃

x∈SE(p,x) the set of
all the undirected edges induced byp. For every subset of undirected edgesF ⊆ E
of a weighted graphG = (S,E), we denote asc(F) the overall cost of the edges in
F , that is, the total sum of their weights. For the sake of simplicity, we will identify
trees with their corresponding sets of edges. Aswap setfor a spanning treeT of an
undirected graphG(S,E) and a set of edgesF with endpoints inS is any subsetF ′

of edges that must be removed from the multigraphT ∪F so thatT ∪F \F ′ is a
spanning tree ofG.

We are now ready to describe the algorithm by first giving the basic underlying
idea. Starting from a spanning treeT of G(S), if the cost ofT is significantly higher
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than the one of an optimal solution for performing broadcasting from a given source
nodes∈ S, then there must exist a cost-efficientcontractionof T. Namely, it must
be possible to set the transmission powerp(x) of at least one stationx in such a way
that p(x) is much lower than the cost of some swap setA(p,x) for T andE(p,x).
The algorithm then repeatedly chooses at each stepp(x) in such a way that, starting
from the current spanning tree,c(A(p,x))/p(x) is maximized. The final tree will be
such that, considering the correct orientation of the edgesaccording to the final as-
signmentp, some edges will be in the reverse direction, i.e., from the leaves towards
the sources. However, the transmission powers can then be properly set with low
additional cost in order to obtain the right orientation from s to the other stations.

At any intermediate step of the algorithm in whichp andT are the current power
assignment and maintained tree, respectively, consider a contraction at a given sta-
tion x consisting of setting the transmission power ofx to p′(x), and letp′ be the
resulting power assignment. Then, a maximum cost swap setA(p′,x) to be attributed
to the contraction can be trivially determined by lettingA(p′,x) contain the edges
that are removed when determining a minimum spanning tree inthe multigraph
T ∪E(p′,x) with the cost of all the edges inE(p′,x) set equal to 0. We call the ratio
c(A(p′,x))

p′(x) thecost-efficiencyof the contraction.
Formally, the algorithm performs the following steps:

• Set the transmission powerp(x) of every station inx∈ Sequal to 0.
• Let T = T(S) be a minimum spanning tree ofG(S).
• While there exists at least one contraction of cost-efficiency strictly greater than

2

– Perform a contraction of maximum cost-efficiency, and letp′(x) be the corre-
sponding increased power at a given stationx, andp′ be the resulting power
assignment.

– Set the weight of all the edges inE(p′,x) equal to 0.
– LetT ′ = T ∪E(p′,x)\A(p′,x).
– SetT = T ′ andp = p′.

• Orient all the edges ofT from the sources toward all the other stations.
• Return the transmission power assignmentp that induces such a set of oriented

edges.

For any instance of the problem where the minimum spanning tree of the cost
graphG(S) is guaranteed to cost at mostρ times the cost of an optimal solution
for MEBR, the algorithm achieves an approximation ratio bounded byρ if ρ ≤ 2
and by 2lnρ − 2ln2+ 2 if ρ > 2, which exponentially improves upon the MST
heuristic. Surprisingly, the algorithm and analysis do notmake use of any geomet-
ric arguments, and still the results significantly improve the previously best-known
approximation factor for Euclidean instances of the problem. The corresponding
approximation ratio is reduced (whenα ≥ d) from 6 [1] to 4.2 for d = 2, from
18.8 [38] to 6.49 ford = 3, and in general from 3d−1 [24] to 2.2d+0.61 ford > 3.
In the two-dimensional case, the achieved approximation iseven less than the lower
bound of 13/3 on the approximation ratio of the BIP heuristic [41]. In arbitrary
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(i.e., non-Euclidean) cost graphs, it is not difficult to seethat the cost of the mini-
mum spanning tree is at mostn−1 times the cost of an optimal solution for MEBR;
hence, the algorithm achieves a logarithmic approximationfor arbitrary symmetric
weight functions matching the results in [9, 15].

13.3 Cost Minimization in Multi-interface Networks

Nowadays wireless devices hold multiple radio interfaces,allowing switching from
one communication network to another according to requiredconnectivity and re-
lated quality. The selection of the “best” radio interface for a specific connection
might depend on various factors, namely, its availability in specific devices, the
required communication bandwidth, the cost (in terms of energy consumption) of
maintaining an active interface, the available neighbors,and so forth. While manag-
ing such connections, a lot of effort must be devoted to energy consumption issues.
Devices are, in fact, usually battery-powered and network survivability might de-
pend on their persistence in the network. This introduces a challenging and natural
optimization problem that must take care of different variables at the same time.
Generally speaking, given a set ofk interfaces and a graphG= (V,E), whereV rep-
resents the set of wireless devices andE the set of required connections according
to the proximity of the devices and the available interfacesthat they may share, the
problem can be stated as follows. What is the cheapest way, i.e., which subset of
available interfaces in each node must be activated, to satisfy (cover) all the con-
nections described byE? Note that a connection is satisfied when the endpoints of
the corresponding edge share at least one active interface.Moreover, for each node
v∈V there is a set of available interfaces, from now on denoted asW(v).

⋃

v∈V W(v)
determines the set of all the possible interfaces availablein the network whose car-
dinality is denoted byk. An example of a network instance is shown in Figure 13.6.

Depending on whetherk is a priori bounded or not, two different problems arise.
The first one is called Cost Minimization in Multi-interfaceNetworks (k-CMI for
short). The second one is called Cost Minimization in Unbounded Multi-interface
Networks (CMI for short). In this section, we report resultsabout the complexity of
bothk-CMI and CMI in various scenarios. The problems turn out to bevery hard
in general; hence, we also consider possible approximationalgorithms. We deal
with two main variations of the problem: the case in which thecost of activating
an interface is the same for each interface (uniform case), and the more general
case in which such a cost may differ (non-uniform case). Indeed, the first model is
equivalent to asking for the minimum total number of activated interfaces inside the
network to cover all the connections. We also consider different graph classes that
are of interest from both theoretical and practical points of view, namely, graphs
with bounded degree, since in real-world scenarios users are normally connected to
a limited number of nodes; planar graphs, since the induced graph of joining users
in a network is likely to be planar; trees, since middleware strategies are heavily
based on this kind of structure (see, for instance, [10]); and complete graphs, since
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Fig. 13.6 The composed network according to available interfaces and proximities

this is one of the main structures used for modeling peer-to-peer networks (see for
instance [18]).

Here we consider the bounded and the unbounded version of theproblem. The
two models reflect two different feasible cases, where available interfaces are ei-
ther known a priori or not, respectively. Since nowadays devices support many and
different interfaces, it makes sense either to assume the number of interfaces that
may occur in a composed network as given, or to not. It might depend, in fact, on
the number of nodes participating in the network. Regardless,k reflects the network
dynamics.

The problems originated from [11], where a slightly different model ofk-CMI is
introduced. That model considers bandwidth constraints and also the possibility of
having mutually exclusive interfaces, i.e., interfaces that, if activated, preclude the
activation of some other interfaces. The motivation is quite technical. For instance,
the WiFi interface can operate in different modalities:InfrastructureandAd Hoc.
If a device activates WiFi in the Infrastructure modality, it cannot satisfy connec-
tions that require Ad Hoc modality, and vice versa. This further constraint is not
introduced here since the problem, although of practical interest, is not easily solv-
able. Other related problems were recently addressed in [23, 35] and [4], concerning
connectivity and shortest path issues, respectively.

13.3.1 Definitions and Notation

Unless otherwise stated, the network graphG= (V,E) is always assumed to be sim-
ple (i.e., without multiple edges), undirected, and connected. Moreover, we always
denote byn andm the cardinality of the setsV andE respectively. The degree of
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nodev∈V is denoted bydeg(v) and the set of its neighbors byN(v). The maximum
node degree of graphG is denoted by∆(G).

A global characterization of interfaces of respective nodes from V is given in
terms of an appropriate interface assignment functionW, according to the following
definition.

Definition 13.1.A function W : V → 2{1,...,k} is said tocovergraphG = (V,E) if
for each{u,v} ∈ E the setW(u)∩W(v) 6= /0.

The cost of activating an interface for a node is assumed to beidentical for all
nodes and given by cost functionc: {1, . . . ,k} → Z+, i.e., the cost of interfacei is
written asci . The consideredk-CMI optimization problem is formulated as follows.

k-CMI: Cost Minimization in Multi-interface Networks

Input: A graphG = (V,E), a positive integerk, an allocation of available in-
terfacesW : V → 2{1,...,k} covering graphG, an interface cost function
c: {1, . . . ,k}→ R+.

Solution: An allocation of active interfacesWA : V → 2{1,...,k} covering graphG
such thatWA(v) ⊆W(v) for all v∈V.

Goal: Minimize the total cost of the active interfaces,c(WA) =

∑v∈V ∑i∈WA(v) ci .

The considered CMI optimization problem is formulated as follows.

CMI: Cost Minimization in Unbounded Multi-interface Networks

Input: A graph G = (V,E), an allocation of available interfacesW : V →
2{1,...,k} covering graphG, an interface cost functionc: {1, . . . ,k} →
R+.

Solution: An allocation of active interfacesWA : V → 2{1,...,k} covering graphG
such thatWA(v) ⊆W(v) for all v∈V.

Goal: Minimize the total cost of the active interfaces,c(WA) =

∑v∈V ∑i∈WA(v) ci .

13.3.2 Results fork-CMI

Table 13.2 summarizes known results fork-CMI [32]. The problem is polynomially
solvable fork = 2 but it is alreadyAPX-hard whenk grows. If the underlying graph
is complete or a tree, thenk-CMI is still polynomial while for planar graphs it is
NP-hard but admits aPTAS.
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Table 13.2 Hardness and approximability of thek-CMI problem

Graph class Interfaces Complexity ofk-CMI
non-uniform costs uniform costs

General graphs k = 2 O(n3) O(nm)

k≥ 3 (k−1)-approx,
APX-hard

min{⌈ k+1
2 ⌉, 2m

n }-approx,
APX-hard

Graphs of bounded
degree∆

k≥ 3 ∆ -approx,
APX-hard for∆ ≥ 5

∆+1
2 -approx,

APX-hard for∆ ≥ 5
Planar graphs k≥ 3 NP-hard,PTAS NP-hard,PTAS

Trees anyk O(n) O(n)

Complete graphs anyk O(n2) O(n2)

The proof that provides theAPX-hardness fork≥ 3 considers a polynomial trans-
formation from the well-known VERTEX COVER problem on subcubic graphs1 to
k-CMI. On those instances VERTEX COVER is known to beAPX-hard [39]. The
transformation works as follows. Given a subcubic graphG = (V,E), it is known
that, in general, its chromatic number is at most 3 [6]. Nodescan then be partitioned
into three subsetsV1, V2, andV3 according to an optimal coloring in such a way that
V1

⋃

V2
⋃

V3 ≡V and for each edgee= {x,y} ∈ E, x andy do not belong to the same
subsetVi for everyi = 1, 2, or 3.

2V1

{2}
{3}

{3}

V1

{1}

{2}

{1}
{3}

{1,2,3}

{1,2,3}

{2}

{1} {2}
{2,3}

{1,2}

{1,3}
{1}

{3}

V

{1,2,3}
G

{1,2,3}

{1,2,3}

{1,2,3}

V

V2

3 3

V

Fig. 13.7 On the left, the graphG subdivided into three node subsets according to a 3-coloring and
the three possible kinds of edges. On the right are the modifications obtained for each kind of edge
belonging toG and the interfaces associated with the related nodes

As illustrated in Figure 13.7, with each nodev∈V, three interfaces, namely 1, 2,
and 3 are associated. Moreover, to eachv∈V there are two new nodes connected.
Those new nodes have only one interface: 2 and 3 (1 and 3 or 1 and2 respectively)
if v∈V1 (v∈V2 or v∈V3). For each edge ofG a further node is added. With such
a node there are associated two interfaces. If the considered edge connectsV1 and
V2 (V1 andV3 or V2 andV3) then interfaces 1 and 2 (1 and 3 or 2 and 3 respectively)
are associated with the added node. Considering for instance an edgee= {x,y} ∈ E
such thatx∈V1 andy∈V2, in order to solvek-CMI on the new graph of maximum
degree 5 built fromG, a solution necessarily has to activate interfaces 2 and 3 in

1 Graphs with maximum degree bounded by 3.
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x, and 1 and 3 iny. In order for bothx andy to be able to communicate with the
new intermediate node, either such a node must activate bothits interfaces, or one
amongx andy has to activate its third available interface. Both the solutions are
locally equivalent. On the other hand, activating the thirdinterface for eitherx or y
may lead to a decrease in the number of activated interfaces in the global solution.
This is implied by the fact that the neighborhood of the addedintermediate node
betweenx andy is constituted by onlyx andy, while bothx andy may have many
other connections. This implies that one can look for solutions where for each edge
of the original graph at least one endpoint has all its three interfaces activated. Note
that this reflects exactly the requirement of VERTEX COVER.

k-CMI can be approximated within a factor ofk−1. A greedy algorithm activates
interfaces among the nodes. It starts from the cheapest interface 1, and it activates it
in each node that has a neighbor holding that interface. LetV1 ⊆V be the set of nodes
in which the algorithm activated interface 1 and letE(V1) be the corresponding set
of covered edges. Note that the optimal solution restrictedto E(V1) (i.e., the set of
activated interfaces of an optimal solution at the endpoints of the edges belonging to
E(V1)) clearly costs at least as much as the cost of the algorithm. In the second step,
the same is done for the next cheapest interface 2 among the remaining connections
E \E(V1). Again, the cost of the optimal solution restricted toE(V2) is at least the
price paid by the algorithm. This is implied by the fact that any connection belonging
to E(V2) cannot be covered by interface 1; otherwise, the algorithm would have
covered it in the previous step. This process is continued for all the interfaces in a
non-decreasing cost order, but for the last two interfaces.Referring to Table 13.2,
whenk = 2, k-CMI is polynomially solvable. Hence, when the two most expensive
interfaces remain, the optimal algorithm fork = 2 can be applied. Since each step
costs at most as much as the optimal solution, the(k−1)-approximation holds by
observing that the whole process requiresk−1 steps.

Concerning the uniform cost case, an easy approximation algorithm for solving
k-CMI leads to a factor of2m

n . The algorithm simply chooses one interface for each
edge of the input graph in order to satisfy the required connection. This means that
for each edge at most one interface in each endpoint is activated. It follows that for
m edges it activates at most 2m interfaces forn nodes. The⌈ k+1

2 ⌉-approximation
mentioned in Table 13.2 is instead obtained by suitably applying a hitting set algo-
rithm.

13.3.3 Results forCMI

Table 13.3 summarizes results obtained for CMI [34]. Whenk depends on the in-
stance, i.e., it is not set a priori, the problem becomes harder even for complete
graphs and trees. In general, CMI is hard to approximate within a factor ofO(logk),
even when restricted to the unit cost interface case. The proof proceeds by reduction
to the MINIMUM HITTING SET problem. We recall that for a collection of non-
empty subsetsC1,C2, . . . ,Cl ⊆ {1,2, . . . ,k}, setS⊆ {1,2, . . . ,k} is called ahitting
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set if for all i ∈ [1, . . . , ℓ], Ci ∩S 6= /0. The problem of minimizing the cardinality
of the hitting set is as hard as the MINIMUM SET COVER problem [3], and conse-
quently, hard to approximate within a factor ofO(logk) [40].

Concerning the
√

n(1+ lnn)-approximation factor, this is obtained by means
of a polynomial transformation of the problem to the well-known WEIGHTED

M INIMUM SET COVER problem. This leads to the claim that the existence of
any a-approximation algorithm for WEIGHTED M INIMUM SET COVER leads to
an (a

√
n)-approximation algorithm for CMI. Since WEIGHTED M INIMUM SET

COVER admits a(1+ lnn)-approximation [17],
√

n(1+ lnn) is obtained.

Table 13.3 Hardness and approximability of the CMI problem. Entries markedby (*) follow from
k-CMI results
Graph class Complexity of CMI

non-uniform costs uniform costs
General graphs (k−1)-approx (*)

(
√

n(1+ lnn))-approx
not approx withinO(logk)

⌈ k+1
2 ⌉-approx (*)

2m
n -approx (*)

not approx withinO(logk)
Graphs of bounded
degree∆

∆ -approx (*)
APX-hard for∆ ≥ 5, k≥ 3 (*)

∆+1
2 -approx (*)

APX-hard for∆ ≥ 5, k≥ 3 (*)
Planar graphs 6-approx

APX-hard
6-approx
APX-hard

Trees 2-approx
APX-hard

2-approx
APX-hard

Complete graphs not approx withinO(logk) not approx withinO(logk)

13.4 Conclusion and Future Work

The chapter surveys recent results obtained for two interesting problems arising in
the field of wireless ad hoc networks. Both the problems deal with the minimization
of the overall energy needed to perform desired communication protocols. In par-
ticular, the Minimum Energy Broadcast Routing problem expresses the necessity to
perform the basic broadcast pattern of communication from agiven source, and the
network is composed of homogeneous nodes equipped with omnidirectional radio
antennas. The Cost Minimization in Multi-interface Networks expresses the need
of establishing connections among heterogeneous nodes equipped with different
subsets of interfaces, each associated with some activation cost. Many interesting
directions for future work arise from both problems. These include the extensions
of the studies to different communication protocols, to different objective functions,
and to distributed environments.
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