Chapter 13

Energy Consumption Minimization in Ad Hoc
Wireless and Multi-interface Networks

Alfredo Navarra, loannis Caragiannis, Michele FlammirtiriStos Kaklamanis,
and Ralf Klasing

Abstract This chapter deals with energy consumption issues in veisatetworks.
In such networks, energy is a scarce resource and, henaasttia used efficiently.
Under these circumstances, we consider two interestindpic@torial optimization
problems:Minimum Energy Broadcast Routirand Cost Minimization in Multi-
interface NetworksThe goal of the first problem is to perform broadcasting from
a given source while minimizing the overall energy requifedcommunication.
The second problem refers to the choice of activating a sstaifable communica-
tion interfaces at the network nodes in order to satisfy ¢ggiired connections in a
wireless multi-interface network with minimum total codthile Minimum Energy
Broadcast Routing has been studied extensively duringntgears, Cost Minimiza-
tion in Multi-interface Networks is rather new. For both plems we survey recent
complexity results and approximation algorithms undeied#nt assumptions.
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13.1 Introduction

In recent yearsvireless networkfiave been widely deployed, mostly because of
the recent drop in equipment prices and due to the featumsded by the new
technologies. Unlike traditionalired networksvhere signals pass from one device
to another through physical cables, in wireless networka ttansmissions from
each node (station) occur in the open air and within a givereiage area. In this
scenario, considerable attention has been devoted to thalledad hocwireless
networks, due to their potential applications in emergedisaster relief, on the
battlefield, in impervious areas, and so on [29, 44]. Ad haelets networks do not
require any fixed infrastructure. The network is simply dexion of devices that
can communicate with each other according to proximity aallable common
protocols and interfaces.

In this chapter we consider two important problems arismthe context of ad
hoc wireless networkd/linimum Energy Broadcast RoutimgdCost Minimization
in Multi-interface NetworksThe first problem considers the need of broadcasting
information from a given source to all other network nodegmwthe network nodes
are equipped with omnidirectional antennas. The secorfalgrmoaims at establish-
ing connections among heterogeneous nodes equipped wéthod isterfaces that
can be activated at a different cost.

The common objective in both the above scenarios is to madttie total energy
consumption in order to keep the network alive as long asiples&nergy is in fact
a scarce resource in wireless ad hoc networks, and comntiemisérongly depends
onit.

The chapter is organized as follows. Section 13.2 is devotéte Minimum En-
ergy Broadcast Routing problem. First, some motivatioriierproblem is provided
and, then, it is formally defined. Several results are swegeand details are given
for interesting analysis techniques. Section 13.3 is d&l/éd Cost Minimization
in Multi-interface Networks. Again, the problem is first meatted, then formally
defined, and a list of results is presented emphasizing sot@egting techniques.
Finally, Section 13.4 provides conclusive remarks andré@stting directions of fu-
ture research.

13.2 Minimum Energy Broadcast Routing

The study of a basic communication pattern such as broadgastof main inter-
est in the context of wireless ad hoc networks. Broadcastamgin fact be used to
set up the network or to rapidly spread useful informatiohne Wireless environ-
ment allows all devices in the range of a transmikéo receive messages sent by
X. The range of transmissions basically depends on the ema&nt where devices
are distributed. According to the widely used power attéionanodel [42], when

a stations transmits with powePs, a stationr can receive messages franif and
only if Ps > Bdist(s,r)?, wheredist(s,r) is the Euclidean distance betwegsand
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r, a is a parameter which depends on the environment with typedaks between
2 and 6, and3 is a positive parameter known as trexeption quality threshold
For the sake of simplicity, from now on we normalize param¢@eo 1. Due to
the nonlinearity of power attenuation, multi-hop transsiuoas of messages through
intermediate devices may result in energy conservatioa.riain property of wire-
less ad hoc networks is usually the lack of a fixed infrastmector routing purposes.
A natural issue arising in this setting is that of supportimgadcasting with min-
imum total energy consumption. This problem, calldohimum Energy Broadcast
Routing(MEBR), is well-known in the literature and it has been exteely studied
(see[1, 2,5,7-9,12, 13, 16, 19, 20, 24-26, 31, 33, 36, 41]).

13.2.1 Definitions and Notation

Given a set of stationS, let G(S) be the complete weighted directed graph whose
nodes are the stations 8and in which the weighiv(x,y) of each edgéx,y) is the
power required at in order to transmit correctly to noge A power assignment for
Sis a functionp : S— R assigning a transmission powg(x) to every statiorxin

S. A power assignmerp for Syields a directed communication grag = (S A)
such that, for each directed edgey) of G(S), (x,y) belongs toA if and only if
p(x) > w(x,y), i.e., if x can correctly transmit tg. In this case, we say thatis
within the range ok. The total cost of a power assignmenis then

cost(p) = Zp(X)-

MEBR takes as inpu6(S) together with a source statiae S and consists of
finding a power assignmentt of minimum cost such thaBP contains a directed
spanning tree rooted at(and directed towards the leaves). We call such a power
assignment anptimal power assignmeiind denote its cost by* (S, s).

The weight functionw : E — R is usually symmetric (i.ew(X,y) = w(y,X)
for each pair of stationg, y € S). Nonsymmetric weight functions can be used to
capture the irregularity of the environment or situatiorieve stations use batteries
of different types which may operate on different fixed egdeyels. An important
case of symmetric weight functions arises in the geomegrision of MEBR. In this
case, the stations &correspond to points inég—dimensional Euclidean space and
the weight function is defined ag(x,y) = dist(x,y)?, wheredist is the Euclidean
distance andr > 1 is a positive parameter. Equivalently, in this case, wk agange
assignment : S— R such that the rang&x) of a stationx denotes the maximum
Euclidean distance fromat which signals can be correctly received. Again, a range
assignment for Syields a directed communication gragh = (S A) such that the
directed edgé€Xx,y) belongs toA if and only if y is at distance at mostx) from x.
We use the notatio, (S) andmj; (S, s) to denote the input graph and the cost of
the optimal range assignment in the geometric case.
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13.2.2 The Geometric Version of MEBR

We first study the geometric version of MEBR. In general, teergetric version
of MEBR is NP-hard, while it is solvable in polynomial time whem = 1 or
d =1 [13, 20]. Many heuristics and corresponding experimereallts can be
found in the literature. We can find the Shortest Paths Tr&d | Sthe Minimum
Spanning Tree (MST), and the Broadcast Incremental Powé) (B [42]; the It-
erative Maximum-Branch Minimization (IMBM) in [37]; the Aaptive Broadcast
Consumption (ABC) in [33]; a refined BIP version in [43]; anémy Integer Lin-
ear Programming approaches like the ones in [22, 30, 33,68 4lso [2] for a
comparative experimental study).

While such heuristics have been observed experimentallgrfopn pretty well
on random instances of MEBR, the only one for which extendedyéical studies
were done is the MST heuristic. It is based on the idea of turamges so that the
communication graph contains a minimum spanning tree (seo® 1.5.1.1) of the
cost graphG(S). More precisely, denote bly(S) a minimum spanning tree &(S).
The MST heuristic considerB(S) rooted at the source statiendirects the edges
of T(S) towards the leaves, and sets the powér) of every internal statiorx of
T(S) with k > 0 childrenxy,...,x in such a way thap(x) = max_1__w(X,%). In
other words p is the power assignment of minimum cost inducing the dicktitee
derived fromT (S), and is such thatost(p) < ¢(T(S)), wherec(T(S)) denotes the
total cost of the edges if(S). Therefore, the approximation ratio of the heuristic is
bounded by the ratio between the cost of a minimum spannéegdfG(S) and the
optimal power costn*(S,s).

N

Fig. 13.1 The lower bound of 6 for the MST heuristic. On this instancerahsg a source station
s and six additional stations, five of which are on the circumfegeoica circle of radius ¥ ¢
centered as. The MST heuristic produces a tree (path) consisting of six edfjedal cost 6. The
optimal solution is a star connectisdo the other six nodes at a cost of-k£. The approximation
ratio can become arbitrarily close to 6 by selecting be arbitrarily small

For the two-dimensional case (which is actually the casehiha been given
most attention in the literature), a lower bound of 6 on theragimation ratio of
the MST heuristic was provided in [42] (see Figure 13.1). Tilgt constant upper
bound was provided in [19]. The analysis led to an approxonatatio of 40 for
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MST, immediately reduced to 20 by the same authors. The gkitera behind the
analysis is to represent each edgesgdf) chosen by the MST heuristic by a two-
dimensional shape and evaluate the area occupied by alkbagies, since the cost
of a solution provided by the MST heuristic (far= 2) is proportional to the con-
sidered area. The 40-approximation was obtained by assarisith each edge a
circle whose diameter is the length®{see Figure 13.2.a). The 20-approximation
arises by associating a circle with each edgeéhose center is the middle point ef
and diameter is half the length ef(see Figure 13.2.b). A further improvement ob-
tained by using the same technique but varying the shapeiwasig [33, 41]. The
obtained approximation ratio is 15 and the shape associated with each edge
a rhombus whose bigger diagonal coincides wjtand the angles at its endpoints
formed by the sides of the rhombus are 60 degrees (see Figire)l Note that the
third shape implies an interesting property for which nortaoccurs among two
shapes associated with two different edges of the minimusnrspg tree. By re-
fining the geometrical arguments but without changing tleembus shape, a better
bound of 1086 was obtained in [8].

N A
NIDAS=RIN

a) b) c)

Fig. 13.2 The three shapes associated with an ezlgea spanning tree. The choice of shape a)
leads to a 40-approximation, b) to 20, and c) tolE2

A different method was used in [24, 31]. A new process to ealthe approxi-
mation factor of the MST heuristic was introduced, leadingf tio an upper bound
of 8 and then to 83 by more refined geometrical arguments. The basic ideajwhi
will be explained in detail in the next section, is to grow ariecle centered at
each node of the network until all the circles belong to threesaonnected compo-
nent, that is, the union of all the circles forms one and omlg delimited area. The
bounds of the MST heuristic were then determined by evalgétie covered area by
such a process. This method was also extended to the moreabeé+ttmensional
case for which g3% — 1)-approximation ratio has been obtained. It is worth men-
tioning that, for any Euclidean dimensiaghand powera > d, the MST heuristic
is lower-bounded by the so-calleddimensionakissing numbef19]. More pre-
cisely, thed-dimensional kissing number is the maximum number of miydis-
joint d-spheres (or hyperspheres) of a given raditisat can simultaneously touch
ad-sphere of the same radiusn the d-dimensional Euclidean space [21]. For the
three-dimensional Euclidean space, for instance, thankjssimber is 12 while the
upper bound provided by [24, 31] is 26. Such a bound has beproirad in [38]
to 188 by extending to the three-dimensional space argumenikasito the ones
that led the upper bound for the two-dimensional case from@33. In [1] the gap
between the lower bound of 6 and the upper bound.88 @or the MST heuristic
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in the two-dimensional case was finally closed by decreasiegipper bound to 6.
The author provided a new analysis technique based on tlaiBey triangulation.
An interesting direction for providing worst-case sceosiand studying the per-
formance of the MST or other heuristics was given in [26]. Bgams of a random-
ized procedure, the approach showed an almost tight 4-gippaion ratio of the
MST heuristic in the case of uniform high-density distribas of the radio stations.

13.2.3 An8-Approximation Upper Bound for the MST Heuristic

In this section, we present the main ideas that can be uskd analysis of the MST
heuristic. The particular arguments used in the followired/an upper bound of 8
on the approximation ratio and are relatively easy to folldtve improved results
in [31] and [1] follow significantly more involved analysis.

Given a graphG and a weight functionv defined on its edges, for amye R,
let N(G, c) be the number of connected components in the graph obtaiostG
by keeping only the edgesc E such thatw(e) < c. Then, the cosMST(G) of a
minimum spanning tree fdg is given by the following lemma.

Lemma 13.1 (Frieze and McDiarmid [27]). MST(G) = [ (N(G,c) — 1)dc.

For any subset of statioli3C S, let G4 (Q) be the subgraph @ (S) induced by
Q. Also, letn(Q,r) = N(G4(Q),r?), that is, the number of connected components
in G4 (Q) obtained by maintaining only the edges between the nodestande at
mostr in Q. Recalling that each edde,y) has cosw(x,y) = dist(x,y)? and ex-
ploiting Lemma 13.1 by substituting the varialglaiith r, we obtain the following
corollary.

Corollary 13.1 (Klasing et al. [31]).For any subset of stations QS, MST G4 (Q))
=a /5 (n(Q,r)—1)ro-1dr.

Now, the main argument in the proof is the following. We addrihe case = 2
since the upper bound far > 2 can be directly inferred [24, 31]. Consider an
optimal power assignment of cast (S, s) in whichk stationsxy, ..., X are assigned
nonzero power. Far=1,...,k, denote by; the range of statior, and letQ; be the
set of stations within the range of statign\We will show thatMST(Gq (Q;)) < 8rf.

In this way, we will obtain that

MST(Ga(S)) < _iMST(Ga@i)) < s_irﬁ —8m'(S.s),

thus proving the upper bound. Without loss of generality,camsider a set of sta-
tionsQ C Ssuch that there exists a statigre Q with max.cqdist(x,y) = 1. Thus,

all the points ofQ belong to a circle of radius 1 in the plane, from now on denoted
by Ci, and the cost of each edge of the weighted complete grapbsenpting the
input network is proportional to the square of the distanegvben its endpoints.
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For simplicity of notation, for any set of statiolg G2(Q) is denoted simply as
G(Q).
Let G(Q,r) be the graph obtained by considering only the edge&(@) of
length at most, or equivalently of cost at most, and 1etCC(Q, r) be the set of the
connected components &(Q,r). Let rmax be the minimunr such thaiG(Q,r) is
connected (i.en(Q, rmax) = |CC(Q, rmax)| = 1). Then, directly from Corollary 13.1,

MST(G) = 2 /O " 0(Q,r) — )rdr.

For the sake of readability, from no@ is dropped from the notation, so th@at
G(r) CC(r), n(r), andr maxWwill denoteG(Q), G(Q,r) CC(Q,r), n(Q,r) andrmax Q),
respectively.

Theorem 13.1 ([31]).Given any subset of stations@S within a circle of radius
1, MST(G(Q)) < 8.

ICC(r2)| =5, r=

NS

r=

Fig. 13.3 The expanding process described in Theorem 13.1

The proof of Theorem 13.1 considers a growing process inlwtiicles of equal
radii centered at the stations @fare synchronously grown starting from a radius
r=0till r = fmax < %; i.e., the process ends wh&{2r) becomes connected. This
is accomplished by increasing at any infinitesimal step thieeat radii, all equal to
a givenr, by dr.
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For a set of stationB and a radius, let P(r) be the set of the points in the plane
contained in the union of all the circles of radiuassociated with the stations Bf
Leta(P,r) be the area oP(r).

Suitable lower and upper bounds on the total aE@ ”“Tax) covered by all the
circles related t® at the end of the process, that is, when all the radii are @qual
Imax, can be determined as follows.

Consider a connected componéne CC(2r) of G(2r). Then, since two circles
of radiusr centered in two stations at distance at mastdich each otheR(r)
corresponds to a closed region of the plane having perinpéer) equal to at least
2mr, that is, equal to at least the perimeter of a single circleadfusr centered
in a station ofP. Thus, the increasp(P,r)dr of a(P,r) whenr is increased by an
infinitesimal stepr is at least 2rdr.

If PeCC(2r) andR € CC(2r) are two different connected component<¢er ),
P(r)NR(r) =0, as any point belonging to the intersection would corittatie fact
that the distance between any statiofPiand any station iR is strictly greater than
2r. Therefore,

'max

aQ ) = [" 5 peor
0 pecclar)
2/T n(2r)2mrdr
0

"Imax

= 27'[/ n(r)rdr

Moreover, the total region of the plane covered by the uniballathe circles
related toQ of radius™g, that is,Q(™%), is included in a circle of radius-& "
centered at the stationsuch thatist(x,y) < 1 for everyy € Q (see Figure 13.3), so
thata(Q, "g2) < 1+ (‘1) Therefore,

T s r r
ZMST(G) + i< a(Q, =0%) < M1+ 27

and thus, sincemax< 1,

MST(G) < 4(1+ '”“7"’“)2 12 = AL+ Tma) < 8
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13.2.4 Experimental Studies with the MST Heuristic

We now show an interesting technique from [26] for obtairibgd” instances for
the MST heuristic. The goal is to maximize the cost of a pdedibST insideCy
considering its centexas the source. This was done in order to better understand the
actual quality of the performance of the MST heuristic omeiiesting instances that
are more representative of real-world applications. Biguftom random instances,
the maximization consists of slight movements of the nodesraling to some use-
ful properties of the MST construction. For instance, if wenivto increase the cost
of an edge of the MST, the easiest idea is to increase thendestaf its endpoints.
Let us now consider a node# s of a generic instance given as input. We consider
the degree of such a node in the undirected tree obtainedtfrerMST heuristic
before assigning the directions. Letv) = {vi,v2,...,w} be the set of the neigh-
bors ofvin such a tree. We evaluate the median pgiat (x,y), whose coordinates
are given by the average of the corresponding coordinaté®afodes ifN(v). The
idea is then to move the noddarther fromp but, of course, inside the considered
circle. In general this should augment the cost of the MSTheneidge connecting
the nodev to the rest of the tree (see Figure 13.4).

Fig. 13.4 Augmenting the edge costs when a node has one or more neighlabvghan it is on
the circumference dof;

It can also happen that such a movement completely changestriiicture of
the MST, reducing the initial cost. In that case we do notdak the movement.
Given an instance, the augmenting algorithm performs thimputation for each
node twisting over all the nodes kgjtuntil no movements are allowed. Therefore, in
order to give to a node a “second chance” to move, we can repeattomputations
for a fixed number of rounds. Note that when a node reachesattiebthat is the
circumference o€, the only allowed movement is over such a circumference.

Another way to increase the cost of the MST is to try to deleteode. The
chosen candidate is the node with the highest degree. Thebielend this choice
is that the highest degree node could be considered as #enigdiary node to
connect its neighbors, so removing it, a “big hole” will peddty appear. On the one
hand, this means that the distances to connect the remalisijoint subtrees should
increase the overall cost. On the other hand, we are creaiimg space for further
movements. After a deletion, the algorithm starts agaih thi¢ movements. Indeed,
the deletion can be considered as a movement in which twosnomlacide. If the
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deletion does not increase the cost of the current MST, ibivalidated. In such a
case, the next step will be the deletion of the second higlezgte node and so on.
The whole procedure is repeated until no movements and ediaes are allowed.
Note that eventually the algorithm can be repeated sevieraktin order to obtain
more accurate results. Sometimes, in fact, it can happenhbalgorithm is stuck
in some local maximum. Due to its randomness on the movemirgsnore it is
executed, the higher is the probability to exit from suchtaadion.

The algorithm was evaluated over hundreds of instances fieenup to 100
nodes. Table 13.1 shows the average and the maximum cosisabbn random
instances using and not using the augmenting methadfresents the maximum
distance allowed for movements).

Table 13.1 The average and the maximum costs obtained on standard randancigsand using
the previous augmenting algorithm on instances of five up tonb@des and equal to 01 and 05.

n Random Augmented; =.5 Augmentedg = .1

Average Max Average Max Average Max

5 1301 2875 3.645 4.000 3.627  4.000

7 1480 2479 4.545 5.738 4.560 5.879

20 1.854 2.618 4.281 5.090 4.131 5.122
50 1.812 1.971 3.732 3.890 3.633 3.759
100 1.683 1.883 3.567 3.722 3.490 3.812

Compared to the standard random generated instances, dregawcosts were
almost tripled while the maximum costs were almost doubl&éé.numerical results
obtained are very interesting since they show that standardom instances are
not really representative when studying the bounds of thd M&uristic for the
MEBR problem. Moreover, as a “side effect” of such experitsganother very
interesting property concerns the topologies obtainethénaugmented instances.
Whereas for instances up to around 20 nodes the method mdh#idsstribution of
nodes, collapsing them to the hexagon shape of Figure Ikdsing the number
of nodes makes things more interesting.

In Figure 13.5 an instance of 100 nodes is given before aed it movements
and deletions. What follows from those experiments is anentidegularity on the
final obtained instances. As shown in Figure 13.5, in genafiar the augmentation,
nodes look like they are being disposed of on some kind oflaegyrid, and this
reflects the lower bound given by the regular hexagon shape.

13.2.5 Solving More General Instances of MEBR

In non-geometric versions of MEBR, the MST heuristic candmslg shown to have
a poor approximation ratio. Better algorithms exist in bedlses, where the weight
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Fig. 13.5 A random instance of 100 nodes before and after applying thmanting method. The
number of nodes decreased from 100 to 65, while the cost incréased.877 to 3681

function is symmetric and nonsymmetric. For the former cfk&-15] present al-
gorithms with a logarithmic (in the number of nodes) appmuadion ratio. The
main idea is to reduce instances of the problem to instanfciée groblem Node-
Weighted Connected Dominating Set [13, 14] or Node-Weigj®teiner Tree [15].
Such instances can be approximated within a logarithmitofd@8], which car-
ries over as the approximation factor of the original ins&arnFor nonsymmetric
instances, [15] exploits a reduction due to Liang [36] oftamges of MEBR to
instances of Directed Steiner Tree. The obtained instamaes some special prop-
erties, which allow for logarithmic approximations usirgghniques of Zosin and
Khuller [45] for approximating special instances of DiegttSteiner Tree. Similar
results using different techniques have been obtainegartdently by Calinescu et
al. [9]. All these results are the best possible; a matchiagproximability result
has been presented in [19].

In the following, we discuss a recent algorithm from [12] $gmmetric instances
of MEBR, which has important implications for the geometrézsion of MEBR as
well. The algorithm starts with the solution computed by M8T heuristic and
gradually performs improvements on this solution accayda well-selected cri-
terion. At the end, the solution obtained has significantiaker cost than the initial
one.

Before presenting the algorithm, we give some necessaryitiefis. Given a
power assignment and a statiox € S, let E(p,Xx) = {(x,y)|w(x,y) < p(x)} be the
set of the undirected edges induced gt x, andE(p) = U,sE(p,Xx) the set of
all the undirected edges induced pyFor every subset of undirected eddges E
of a weighted grapls = (S E), we denote as(F) the overall cost of the edges in
F, that is, the total sum of their weights. For the sake of siaity] we will identify
trees with their corresponding sets of edgeswap sefor a spanning tre& of an
undirected grapls(S E) and a set of edgds with endpoints inSis any subsef’
of edges that must be removed from the multigrdph F so thatTUF \ F’ is a
spanning tree o6.

We are now ready to describe the algorithm by first giving thsi®underlying
idea. Starting from a spanning tr&eof G(S), if the cost ofT is significantly higher
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than the one of an optimal solution for performing broadogdrom a given source
nodes € S, then there must exist a cost-efficiaantractionof T. Namely, it must
be possible to set the transmission powéx) of at least one statioxin such a way
that p(x) is much lower than the cost of some swap Agp, x) for T andE(p,X).
The algorithm then repeatedly chooses at eachgtepin such a way that, starting
from the current spanning treg{A(p, x))/p(X) is maximized. The final tree will be
such that, considering the correct orientation of the edgesrding to the final as-
signmentp, some edges will be in the reverse direction, i.e., from ¢laes towards
the sources. However, the transmission powers can then be properly ietlow
additional cost in order to obtain the right orientatiomfreto the other stations.
At any intermediate step of the algorithm in whiplandT are the current power
assignment and maintained tree, respectively, considen@action at a given sta-
tion x consisting of setting the transmission powerxdd p’(x), and letp’ be the
resulting power assignment. Then, a maximum cost swafyg&tx) to be attributed
to the contraction can be trivially determined by lettixgp’,x) contain the edges
that are removed when determining a minimum spanning treéedrmultigraph
TUE(p/,x) with the cost of all the edges B(p’,x) set equal to 0. We call the ratio

c(/?%(.)x)) the cost-efficiencyf the contraction.

Formally, the algorithm performs the following steps:

e Set the transmission powe(x) of every station irk € Sequal to 0.

e LetT =T(S) be a minimum spanning tree 6{(S).

e While there exists at least one contraction of cost-effigiestactly greater than
2

— Perform a contraction of maximum cost-efficiency, andléx) be the corre-
sponding increased power at a given statipand p’ be the resulting power
assignment.

— Set the weight of all the edgesH{p’,x) equal to 0.

— LetT'=TUE(p,x) \A(P,X).

— SetT=T'andp=1p.

e Orient all the edges of from the source toward all the other stations.
e Return the transmission power assignmeiiat induces such a set of oriented
edges.

For any instance of the problem where the minimum spannig of the cost
graphG(S) is guaranteed to cost at mgsttimes the cost of an optimal solution
for MEBR, the algorithm achieves an approximation ratiofwed byp if p <2
and by 2lnp —2In2+ 2 if p > 2, which exponentially improves upon the MST
heuristic. Surprisingly, the algorithm and analysis do make use of any geomet-
ric arguments, and still the results significantly improle previously best-known
approximation factor for Euclidean instances of the pnobl@he corresponding
approximation ratio is reduced (when> d) from 6 [1] to 42 for d = 2, from
18.8 [38] to 649 ford = 3, and in general fromB- 1 [24] to 22d +0.61 ford > 3.

In the two-dimensional case, the achieved approximatienes less than the lower
bound of 133 on the approximation ratio of the BIP heuristic [41]. In itndry
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(i.e., non-Euclidean) cost graphs, it is not difficult to $leat the cost of the mini-
mum spanning tree is at mast- 1 times the cost of an optimal solution for MEBR;
hence, the algorithm achieves a logarithmic approximdtomrbitrary symmetric
weight functions matching the results in [9, 15].

13.3 Cost Minimization in Multi-interface Networks

Nowadays wireless devices hold multiple radio interfaa#leywing switching from
one communication network to another according to requimthectivity and re-
lated quality. The selection of the “best” radio interface & specific connection
might depend on various factors, namely, its availabilityspecific devices, the
required communication bandwidth, the cost (in terms ofgneonsumption) of
maintaining an active interface, the available neighbams, so forth. While manag-
ing such connections, a lot of effort must be devoted to ghesgsumption issues.
Devices are, in fact, usually battery-powered and netwarkigability might de-
pend on their persistence in the network. This introducdsa#lenging and natural
optimization problem that must take care of different Valéa at the same time.
Generally speaking, given a setlohterfaces and a gragd = (V, E), whereV rep-
resents the set of wireless devices &nthe set of required connections according
to the proximity of the devices and the available interfabes they may share, the
problem can be stated as follows. What is the cheapest waywhéch subset of
available interfaces in each node must be activated, tefgqtiover) all the con-
nections described bg? Note that a connection is satisfied when the endpoints of
the corresponding edge share at least one active inteN&reover, for each node
veV there is a set of available interfaces, from now on denot&d@$. Uycy W(V)
determines the set of all the possible interfaces avaiialilee network whose car-
dinality is denoted bk. An example of a network instance is shown in Figure 13.6.
Depending on whethéxis a priori bounded or not, two different problems arise.
The first one is called Cost Minimization in Multi-interfadéetworks k-CMI for
short). The second one is called Cost Minimization in UnletachMulti-interface
Networks (CMI for short). In this section, we report resabout the complexity of
bothk-CMI and CMI in various scenarios. The problems turn out tovéey hard
in general; hence, we also consider possible approximaigorithms. We deal
with two main variations of the problem: the case in which tlst of activating
an interface is the same for each interface (uniform case),tike more general
case in which such a cost may differ (non-uniform case). éddéhe first model is
equivalent to asking for the minimum total number of actahinterfaces inside the
network to cover all the connections. We also consider iiffegraph classes that
are of interest from both theoretical and practical poirftsiew, namely, graphs
with bounded degree, since in real-world scenarios users@mally connected to
a limited number of nodes; planar graphs, since the inducaghgof joining users
in a network is likely to be planar; trees, since middlewaratsgies are heavily
based on this kind of structure (see, for instance, [10K); @mplete graphs, since
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Fig. 13.6 The composed network according to available interfaces amdmities

this is one of the main structures used for modeling pegretr networks (see for
instance [18]).

Here we consider the bounded and the unbounded version pfdoidem. The
two models reflect two different feasible cases, where abbldl interfaces are ei-
ther known a priori or not, respectively. Since nowadaydaEs/support many and
different interfaces, it makes sense either to assume timbauof interfaces that
may occur in a composed network as given, or to not. It migpedd, in fact, on
the number of nodes patrticipating in the network. Regasdleeflects the network
dynamics.

The problems originated from [11], where a slightly differenodel ofk-CMl is
introduced. That model considers bandwidth constraindsadso the possibility of
having mutually exclusive interfaces, i.e., interfacest thf activated, preclude the
activation of some other interfaces. The motivation istgichnical. For instance,
the WiFi interface can operate in different modalitiesrastructureand Ad Hoc
If a device activates WiFi in the Infrastructure modalitycéannot satisfy connec-
tions that require Ad Hoc modality, and vice versa. ThisHartconstraint is not
introduced here since the problem, although of practidal@st, is not easily solv-
able. Other related problems were recently addressed ji35and [4], concerning
connectivity and shortest path issues, respectively.

13.3.1 Definitions and Notation

Unless otherwise stated, the network gr&pk (V, E) is always assumed to be sim-
ple (i.e., without multiple edges), undirected, and cotedcMoreover, we always
denote byn andm the cardinality of the set¢ andE respectively. The degree of
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nodev €V is denoted byleg(v) and the set of its neighbors bi{v). The maximum
node degree of grap@ is denoted by\(G).

A global characterization of interfaces of respective moffemV is given in
terms of an appropriate interface assignment funatigaccording to the following
definition.

Definition 13.1. A functionW: V — 2{4--K is said tocovergraphG = (V,E) if
for each{u,v} € E the seW(u) N"W(v) # 0.

The cost of activating an interface for a node is assumed fidéxdical for all
nodes and given by cost functian {1,...,k} — Z,, i.e., the cost of interfackis
written asc;. The considerell-CMI optimization problem is formulated as follows.

k-CMI: Cost Minimization in Multi-interface Networks

Input: A graphG = (V,E), a positive integek, an allocation of available in-
terfacesW: V — 211K covering graphG, an interface cost function
c:{1,....k} = R,.

Solution: An allocation of active interfaced/y: V — 2{1--K! covering graphG
such thatWa(v) CW(v) forallve V.

Goal:  Minimize the total cost of the active interfacess(Wa) =

2veV ieW(v) Gi-

The considered CMI optimization problem is formulated d®o¥es.

CMI: Cost Minimization in Unbounded Multi-interface Networks

Input: A graph G = (V,E), an allocation of available interfacé4': V —
211K covering graphG, an interface cost function: {1,...,k} —
Ry.

such thatVa(v) CW(v) forallve V.
Goal: Minimize the total cost of the active interfaces(Wa) =

Yvev Yiewa(v) Gi-

13.3.2 Results fok-CMI

Table 13.2 summarizes known resultske€ M| [32]. The problem is polynomially
solvable fork = 2 but it is alreadyAPX-hard wherk grows. If the underlying graph
is complete or a tree, thdrCMI is still polynomial while for planar graphs it is
NP-hard but admits  TAS.
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Table 13.2 Hardness and approximability of theCMI problem

Graph class Interfaces ComplexityloCMI
non-uniform costs uniform costs
General graphs k=2 o(n%) o (nm)
k>3 (k—1)-approx, min{ [kizl], Zﬁm}-approx,

APX-hard APX-hard
Graphs of bounded k>3 A-approx, %-approx,
degreed APX-hard forA > 5 APX-hard forA > 5
Planar graphs k>3 NP-hard,PTAS NP-hard,PTAS
Trees anyk o(n) o(n)
Complete graphs ay  0(n%) o(n?)

The proof that provides thePX-hardness fok > 3 considers a polynomial trans-
formation from the well-known ¥RTEX COVER problem on subcubic graphso
k-CMI. On those instances BRTEX COVER is known to beAPX-hard [39]. The
transformation works as follows. Given a subcubic gré&pk (V,E), it is known
that, in general, its chromatic number is at most 3 [6]. Namesthen be partitioned
into three subselg, V,, andV3 according to an optimal coloring in such a way that
Vi UV2UVs =V and for each edge= {x,y} € E, xandy do not belong to the same
subsed; for everyi =1, 2, or 3.

{1,2,3}0 V2

O Nn{123 0
S\

Fig. 13.7 On the left, the grapf® subdivided into three node subsets according to a 3-coloridg an
the three possible kinds of edges. On the right are the modifitatibtained for each kind of edge
belonging toG and the interfaces associated with the related nodes

As illustrated in Figure 13.7, with each node V, three interfaces, namely 1, 2,
and 3 are associated. Moreover, to eaehV there are two new nodes connected.
Those new nodes have only one interface: 2 and 3 (1 and 3 or 2 egpectively)
if ve Vi (ve Vs orv e V). For each edge d& a further node is added. With such
a node there are associated two interfaces. If the consigelge connectg; and
V, (V1 andVs or V, andVs) then interfaces 1 and 2 (1 and 3 or 2 and 3 respectively)
are associated with the added node. Considering for insamedge = {x,y} € E
such thak € V; andy € V,, in order to solvé&k-CMI on the new graph of maximum
degree 5 built fromG, a solution necessarily has to activate interfaces 2 and 3 in

1 Graphs with maximum degree bounded by 3.
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x, and 1 and 3 iry. In order for bothx andy to be able to communicate with the
new intermediate node, either such a node must activateitsatiterfaces, or one
amongx andy has to activate its third available interface. Both the Sohs are
locally equivalent. On the other hand, activating the tlvitérface for eithex ory
may lead to a decrease in the number of activated interfacte iglobal solution.
This is implied by the fact that the neighborhood of the adii¢elrmediate node
betweernx andy is constituted by onlx andy, while bothx andy may have many
other connections. This implies that one can look for sohgiwhere for each edge
of the original graph at least one endpoint has all its thnéerfaces activated. Note
that this reflects exactly the requirement cfRTEX COVER.

k-CMI can be approximated within a factorlof 1. A greedy algorithm activates
interfaces among the nodes. It starts from the cheapestiogel, and it activates it
in each node that has a neighbor holding that interface/1 €tV be the set of nodes
in which the algorithm activated interface 1 andB&¥/;) be the corresponding set
of covered edges. Note that the optimal solution restrittesl(V4) (i.e., the set of
activated interfaces of an optimal solution at the endgaifithe edges belonging to
E(V1)) clearly costs at least as much as the cost of the algoriththel second step,
the same is done for the next cheapest interface 2 amongrttaniag connections
E\ E(V1). Again, the cost of the optimal solution restrictedg(V/,) is at least the
price paid by the algorithm. This is implied by the fact thay aonnection belonging
to E(V2) cannot be covered by interface 1; otherwise, the algorithonlevhave
covered it in the previous step. This process is continuedlfdhe interfaces in a
non-decreasing cost order, but for the last two interfaBegerring to Table 13.2,
whenk = 2, k-CMI is polynomially solvable. Hence, when the two most engiee
interfaces remain, the optimal algorithm floe= 2 can be applied. Since each step
costs at most as much as the optimal solution,(khe 1)-approximation holds by
observing that the whole process requikesl steps.

Concerning the uniform cost case, an easy approximatiaritig for solving
k-CMI leads to a factor oﬁ%“. The algorithm simply chooses one interface for each
edge of the input graph in order to satisfy the required cotime. This means that
for each edge at most one interface in each endpoint is edivl follows that for
m edges it activates at mostZnterfaces fom nodes. The %]-approximation
mentioned in Table 13.2 is instead obtained by suitablyyapgla hitting set algo-
rithm.

13.3.3 Results foCM|

Table 13.3 summarizes results obtained for CMI [34]. Whkelepends on the in-
stance, i.e., it is not set a priori, the problem becomesdragden for complete
graphs and trees. In general, CMI is hard to approximatemétiiactor of&'(logk),
even when restricted to the unit cost interface case. Thaf proceeds by reduction
to the MINIMUM HITTING SET problem. We recall that for a collection of non-
empty subset€;,Cy,...,C C {1,2,...,k}, setSC {1,2,...,k} is called ahitting
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setif for all i € [1,...,£], CiNS# 0. The problem of minimizing the cardinality
of the hitting set is as hard as theiimMum SET COVER problem [3], and conse-
quently, hard to approximate within a factor @flogk) [40].

Concerning the,/n(1+ Inn)-approximation factor, this is obtained by means
of a polynomial transformation of the problem to the welblkm WEIGHTED
MINIMUM SET CoVER problem. This leads to the claim that the existence of
any a-approximation algorithm for WIGHTED MINIMUM SET COVER leads to
an (ay/n)-approximation algorithm for CMI. Since WGHTED MINIMUM SET
CoveR admits a(1+ Inn)-approximation [17]4/n(1+Inn) is obtained.

Table 13.3 Hardness and approximability of the CMI problem. Entries matke(t) follow from
k-CMI results

Graph class Complexity of CMI
non-uniform costs uniform costs

General graphs (k— 1)-approx (*) [%517-approx (*)

(vn(1+Inn))-approx 2M_approx (*)

not approx withing (logk) not approx withing(logk)
Graphs of bounded A-approx (*) %-approx *)
degreeA APX-hard forA > 5,k >3 (*) APX-hard forA >5,k> 3 (¥)
Planar graphs 6-approx 6-approx

APX-hard APX-hard
Trees 2-approx 2-approx

APX-hard APX-hard
Complete graphs not approx withif(logk) not approx withing'(logk)

13.4 Conclusion and Future Work

The chapter surveys recent results obtained for two infageproblems arising in
the field of wireless ad hoc networks. Both the problems déhltive minimization
of the overall energy needed to perform desired commupicgtrotocols. In par-
ticular, the Minimum Energy Broadcast Routing problem egses the necessity to
perform the basic broadcast pattern of communication frayiven source, and the
network is composed of homogeneous nodes equipped withdin@ctional radio
antennas. The Cost Minimization in Multi-interface Netk®expresses the need
of establishing connections among heterogeneous nodégpeduwith different
subsets of interfaces, each associated with some activedist. Many interesting
directions for future work arise from both problems. Thasdude the extensions
of the studies to different communication protocols, téed#nt objective functions,
and to distributed environments.
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