
EUROVIS 2024/ A. Diehl, C. Gillmann, and K. Kucher Poster

A Web Framework for Explainable and Malleable Visualisation

Simon Malthe Hansen1 , Ira Assent1 , Hans-Jörg Schulz1

1Department of Computer Science, Aarhus University, Denmark

Figure 1: Create multiple, movable Charts each with their own visualisation (A, B, C). Each Chart has unique, editable and seamlessly
executable Python code for pre-processing their own dataset and -model (D) and can use common Python libraries (E). The visual model of
each Chart can be changed with a dockable options pane (F), and data points can be highlighted to compare data between Charts (G, H).

Abstract
We present a novel web-framework which combines malleability in both the visualisation and pre-processing steps of the data
visualisation pipeline. The framework lets users create Charts which can be visually modified to the use case, and each have
their own fully editable Python code model with access to Python’s extensive libraries. This puts the user in control over both
pre-processing in Python and the final visualisation, making the effects of each pipeline step explainable and transparent.

CCS Concepts
• Human-centered computing → Visualization toolkits; • Software and its engineering → Integrated and visual develop-
ment environments;

1. Introduction

In data visualisation, the algorithmic analysis of datasets is often
done in a pre-preprocess using analytic tooling from the field of
data science, usually in Python. Whereas the mapping and render-
ing is done “live” using web-frameworks like D3 [BOH11] or Vega
Lite [SMWH17] to create interactive charts and diagrams. This di-
vide between the analytic pre-processing of the data and its interac-

tive visualisation hinders visualisation authors to easily understand
how a visualisation comes about, let alone to change it in a quick
manner that encompasses all stages of the visualisation pipeline.

Recent frameworks have reduced this gap in the visualisation
pipeline by letting users edit the visualisation code, but often
are limited to JavaScript [MCM∗18], focused on literate comput-
ing [BMR∗19], or introduce additional overhead [CTTAPGL22].

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.
This is an open access article under the terms of the Creative Commons Attribution License, which
permits use, distribution and reproduction in any medium, provided the original work is properly
cited.

https://orcid.org/0009-0007-5329-6924
https://orcid.org/0000-0002-1091-9948
https://orcid.org/0000-0001-9974-535X


Simon Malthe Hansen et al. / A Web Framework for Explainable and Malleable Visualisation

To address this challenge, we introduce a light-weight frame-
work using web technologies, which combines customisable visual
layouts with a Python editor for on-the-fly changes to both the pre-
processing and mapping steps of the data visualisation pipeline. To
illustrate our framework’s potential, we use it to compare dimen-
sionality reduction algorithms, each of which brings out different
aspects of a dataset. We do so by applying it to the creation of a
Political Compass visualisation of the Danish political spectrum.

2. Architecture

Our framework is built on three web-technologies – Svelte [BG23],
PyScript [SS23], and Monaco [Mic24] – and it is available
at https://vis-au.github.io/webframework/. It al-
lows creation of an arbitrary number of visualisations, called
Charts. Following the Visualisation Reference Model design pat-
tern [HA06], Charts serve the Visualisation role. They are defined
in Svelte, and each of them manages a clear separation of the data
and visual models, holds two controllers and has a single view.

The data model for each Chart is split into two parts: (1) A
Python code file holding the user-written pre-processing instruc-
tions, which is controlled by and edited through Monaco. (2) The
output of said Python code after it has been interpreted by PyScript.
This returns a Python chart-object, which holds the data in the form
of a set of nodes (data points) and up to two optional sets of edges
connecting them, in addition to relevant metadata. This chart object
is accessible in Svelte, and the Chart processes it slightly before
handing it to the visual model, a Svelte sub-component.

The visual model maps nodes and edges from the data model
to visual marks (HTML- and SVG-elements), and appends them
to the DOM to create the actual graph layout view of the Chart.
A dockable options pane serves as a controller, which uses Svelte’s
reactivity to let the user change the visual model, and thus the view.

Each Chart can have children, which themselves are Charts. Al-
though the Python environment of any Chart can access the Python
chart-objects of all other Charts, it is especially easy for a child to
access that of their parent. This lets the user split the pre-processing
pipeline into multiple steps with a dedicated view for each of them.

3. Malleable and Explainable Visualisations

By splitting the underlying model for each Chart into a data model
in Python, and a visual model in Svelte, both with their own
controller, we let the user change both steps of the visualisation
pipeline. This introduces malleability of the framework in both the
pre-processing steps for the data model, as well as the visual map-
ping aspects in the final view. The user can make changes while the
framework is running. This makes modifications of the models and
view for each Chart a seamless part of interacting with it.

Since the malleability of the framework puts the user in control
of the pipeline, they can make small changes and view the results.
This makes the effects of the changes transparent to the user, giving
a high degree of explainability over each step of the pipeline—for
example, how the hyperparameters of a pre-processing algorithm
change the data and thus the resulting visualisation, effectively be-
ing able to explain why the visualisation looks the way it does.

Figure 1 gives an overview of our framework, showing three
Charts in (A, B, C). Each Chart can be moved with direct manipu-
lation, adding to the malleability of the entire environment, and lets
the user create a multiple view setup suitable for their use case. The
user can modify the Python text model for each Chart by opening it
in Monaco (D). If the dataset after the pre-processing in Python is
2-dimensional, the visual model can be translated into a Scatterplot
(A) or a Graph (C) based on the settings in the options pane (F).

4. Visualising the Political Compass

To visualise the Danish political spectrum, we use a dataset based
on 35 questions answered by political candidates (N = 855) run-
ning in the Danish 2022 general election. The dataset is pre-
processed with dimensionality reduction algorithms to create a 2D
view. We use our web-framework to compare the embeddings from
t-SNE (B) and PCA (A), and how they change global structure.

We use template functionality from the framework’s Utility Li-
brary, a Python code file, to load in the dataset from disk. When
the Python code for a Chart is interpreted, this library is prepended.
It has out-of-the-box functionality for the user to easily get started,
and is fully editable, letting the user add methods, classes and ob-
jects shared between all Charts. Since PyScript runs a full Python
environment, it grants access to Python’s extensive libraries, which
we use to run PCA (A) and t-SNE (B). The resulting visualisations
shows their vastly different low-dimensional embeddings.

To compare how specific nodes (politicians) are positioned by
t-SNE and PCA, we first assign each node in the data model for
both Charts an id. We then ‘lock in’ the ids of interest in the visual
model (G). This highlights the nodes in the actual embeddings (H),
letting us see that PCA has a specific politician positioned between
two parties, which t-SNE instead puts squarely inside one of the
parties. This shows the stark difference of the position of individual
politicians based on the pre-processing algorithm chosen.

To understand the changes in global structure after dimension-
ality reduction, we create two sets of edges from kNN-graphs (E).
One for the high- and low-dimensional embedding respectively. We
then in (F) change the visual model to render both edge sets, and
bundle them to reduce clutter. The result in (C) shows the change
in nearest neighbours of each node after dimensionality reduction,
and how low- and high-dimensional structure differ.

5. Conclusion and Future work

We have presented a web-framework, which combines malleability
in both the visual mapping and pre-processing steps of the data vi-
sualisation pipeline. This gives high transparency and explainabil-
ity of the resulting visualisation. We seek to improve the framework
by adding more Chart visual layouts than graphs, better supporting
visualisation of metrics related to pre-processing algorithms, and
improve persistence of visualisation setup and model code.

Acknowledgements

Thanks to Andrew Alexander Draganov for discussions. This work
was supported by the Innovation Fund Denmark through the Grand
Solution project Hospital@Night.

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://vis-au.github.io/webframework/


Simon Malthe Hansen et al. / A Web Framework for Explainable and Malleable Visualisation

References
[BG23] BHARDWAZ S., GODHA R.: Svelte.js: The most loved frame-

work today. In 2023 2nd International Conference for Innova-
tion in Technology (INOCON) (2023), pp. 1–7. doi:10.1109/
INOCON57975.2023.10101104. 2

[BMR∗19] BADAM S. K., MATHISEN A., RÄDLE R., KLOKMOSE
C. N., ELMQVIST N.: Vistrates: A component model for ubiquitous
analytics. IEEE Transactions on Visualization and Computer Graphics
25, 1 (2019), 586–596. doi:10.1109/TVCG.2018.2865144. 1

[BOH11] BOSTOCK M., OGIEVETSKY V., HEER J.: D3: Data-driven
documents. IEEE Transactions on Visualization and Computer Graphics
17, 12 (2011), 2301–2309. doi:10.1109/TVCG.2011.185. 1

[CTTAPGL22] COSMIN-TOADER N., TRINCADO-ALONSO F., PAS-
TOR L., GARCIA-LORENZO M.: VMetaFlow: A meta-framework
for integrating visualizations in coordinated view applications. IEEE
Access 10 (2022), 94545–94559. doi:10.1109/ACCESS.2022.
3202543. 1

[HA06] HEER J., AGRAWALA M.: Software design patterns for infor-
mation visualization. IEEE Transactions on Visualization and Computer
Graphics 12, 5 (2006), 853–860. doi:10.1109/TVCG.2006.178.
2

[MCM∗18] MEI H., CHEN W., MA Y., GUAN H., HU W.: VisCom-
poser: A visual programmable composition environment for information
visualization. Visual Informatics 2, 1 (2018), 71–81. doi:10.1016/
j.visinf.2018.04.008. 1

[Mic24] MICROSOFT: Monaco editor, 2024. URL: https://
microsoft.github.io/monaco-editor/. 2

[SMWH17] SATYANARAYAN A., MORITZ D., WONGSUPHASAWAT K.,
HEER J.: Vega-Lite: A grammar of interactive graphics. IEEE Transac-
tions on Visualization and Computer Graphics 23, 1 (2017), 341–350.
doi:10.1109/TVCG.2016.2599030. 1

[SS23] SONG Q., SANJARI S.: Pyscript for scientific projects: an intro-
duction, May 2023. doi:10.5281/zenodo.7907144. 2

© 2024 The Authors.
Proceedings published by Eurographics - The European Association for Computer Graphics.

https://doi.org/10.1109/INOCON57975.2023.10101104
https://doi.org/10.1109/INOCON57975.2023.10101104
https://doi.org/10.1109/TVCG.2018.2865144
https://doi.org/10.1109/TVCG.2011.185
https://doi.org/10.1109/ACCESS.2022.3202543
https://doi.org/10.1109/ACCESS.2022.3202543
https://doi.org/10.1109/TVCG.2006.178
https://doi.org/10.1016/j.visinf.2018.04.008
https://doi.org/10.1016/j.visinf.2018.04.008
https://microsoft.github.io/monaco-editor/
https://microsoft.github.io/monaco-editor/
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.5281/zenodo.7907144

