
Preset-based Generation and Exploration of Visualization Designs

Hans-Jörg Schulza,∗, Steffen Hadlaka

aFraunhofer Institute for Computer Graphics Research IGD, Rostock, Germany

Abstract

Generating the “right” visual representation for the data and task at hand remains a standing challenge in visualization research
and practice. A variety of different approaches to produce visual representations have been proposed in the past, including such
noteworthy instances as visualization by example and visualization by analogy. With this paper, we add a new twist to creating
visual representations by proposing a way to construct new visualization designs by blending together a number of existing visual
representations, called presets. We embed this novel blending approach in suitable visual interfaces, such as a gridded canvas to
be used by the casual user in the style of a palette for mixing colors, or a range of sliders to be used by the expert user in the style
of a studio mixer for audio tracks. These can be employed for rapid prototyping of a specific visual representation, as well as to
explore the overall design space of visual representations captured by our approach. We showcase our preset-based blending and
its interfaces with examples of the design of 2D tree visualizations and product plots.

Keywords: visualization design, design spaces, preset-based interaction, product plots, tree visualization

1. Introduction

Visualization design, i.e., the process of creating a suitable
visual representations for a dataset and task at hand, is a com-
plex creative procedure [1]. As a means to reduce the com-
plexity that is exposed to the user, output-driven visualization
design approaches, such as visualization by example [2] or vi-
sualization by analogy [3], have been developed. They utilize
ways to configure visualization designs, which allow for defin-
ing a visual representation in an illustrative manner by exem-
plifying its result. This stands in contrast to the common algo-
rithmic definition (i.e., mapping) that details the procedure in
which the visual representation is produced. Approaches like
visualization by example offer a shortcut to generate visual-
izations without the need to specify this procedure, let alone
to write lines of code. Due to this straightforward “What You
See Is What You Get” (WYSIWYG) form of visualization de-
sign, it holds the promise to play a central role in the efforts to
develop visualization for the masses and casual visualization.
Their importance is underlined by Heer and Shneiderman [4],
who remark that “novel interfaces for visualization specifica-
tion are still needed, as new tools requiring little to no pro-
gramming might place custom visualization design in the hands
of broader audiences.” This implies that in order to contribute
new creative means to visualization design, we need both – a
practical approach beyond programming to describe visualiza-
tion configurations, as well as interfaces to make this approach
interactively accessible to a broader audience.

In this paper, we propose such a new creative way of gen-
erating visual representations in an output-driven manner by
following the idea of remixing existing visualizations into new

∗Corresponding author: hans-joerg.schulz@igd-r.fraunhofer.de

ones. This idea sprung from similar recent endeavors in closely
related domains, such as the suggestion of a data DJ who remixes
live data feeds [5], the use of actual mixing boards to explore
visualizations [6] or UI designs [7], as well as the mashup of
visualization pipelines [8] and layouts [9]. To realize this idea,
we contribute a new approach to describe and configure visual-
izations1 through numerical parameters and propose two novel
interface variants to make this new form of visualization config-
uration interactively accessible to casual and expert users alike.

Our approach to describe visual representations is based
on a set of numerical configuration parameters that are generic
enough to capture both, a visualization’s fundamental mapping
and its further fine-tuning through individual settings. This is
an important strength of our approach, as mapping and fine-
tuning are usually considered two separate steps in visualiza-
tion. Of these two steps, often only the fine-tuning is exhibited
to the user allowing for marginal changes to an otherwise fixed
mapping. Since our approach encapsulates both in a unified
set of configuration parameters, it can express a wide range of
different visualizations. Due to the numeric nature of the con-
figuration parameters, this form of specifying visualizations en-
ables us to blend visual designs by interpolating between their
respective parameter values. Starting with existing visualiza-
tions, which we call presets [10], we can thus create new visu-
alizations by remixing them. This is exemplified in Figure 1 for
the two examples that we use throughout this paper: visual rep-
resentations for hierarchically structured data – i.e., tree visual-
izations [11], and visual representations for distributions across
different categories – so called product plots [12].

1Note that for the sake of readability and brevity, the term visualization is
used in this paper synonymously to the terms visual representation and visual
design, even though we do not consider a visualization’s interactive features.

Preprint submitted to Journal of Visual Languages and Computing September 25, 2015

mailto:hans-joerg.schulz@igd-r.fraunhofer.de

1 2 3

4 5 6

A B C

D E F

Figure 1: Two sets of intermediate visual designs (blue) generated by blending existing visual representations (yellow presets). The left side shows a set of tree
visualizations including the following presets: (1) axis-parallel tree layout, (2) icicle plot [13], (3) pietree [14], (4) cascaded treemap [15], (5) sunburst [16], and (6)
radial layout. The right side shows a set of product plots [12] including the following presets: (A) grouped column chart, (B) sector chart, (C) pie chart, (D) stacked
bar chart, (E) mosaic plot, and (F) stacked pie chart.

Two interface variants to make this approach accessible
are proposed for casual and expert users. The first interface that
is mainly thought for the casual user is inspired by the metaphor
of an artist’s color palette and it aims to make blending visual-
izations as intuitive as mixing colors. Similar to a number of
base colors scattered across the palette and the space in between
them being used for mixing them, we place a number of known
visualizations (presets) on a gridded canvas and interpolate the
visualization designs in the remaining empty grid cells. This
allows sampling a visualization from anywhere on the palette,
and also rearranging the presets by dragging them across the
palette to reposition them and thus to generate different blends.
By this means, the user can quickly try possible alternatives to
yield a visualization result as an informed choice from the vast
range of possible visualizations that would in principal fit the
data. The second interface that is mainly thought for the ex-
pert user is inspired by the metaphor of an audio mixing device.
Similar to the combination of a number of audio channels into
a single output signal via sliders, we use one slider per preset to
adjust its influence on the blended output design. By means of
shifting the sliders, the user can explore the captured visualiza-
tion design space as a whole to gain a deeper understanding of
the effects of individual presets and design parameters.

The following Section 2 gives an overview of the existing
approaches for describing visualizations and ties them to the in-
terface classes for visualization design as they were identified
in a recent survey [17]. Section 3 introduces our approach for
capturing visual representations through a set of numerical pa-
rameters and details how to construct such parameter sets for
the two examples of tree visualizations and product plots. We
then detail our two interfaces for this form of configuring visual
representations, the palette and the mixer, in Section 4. Their
utility for generating visualization designs by remixing presets
is briefly showcased by two examples and a user study in Sec-
tion 5. Section 6 outlines further extensions, such as how to
combine configurations with each other to extend the range of
possible visual representations. Finally, Section 7 summarizes
our contribution and outlines ideas for future research.

2. Related Work

Over the years, different approaches of capturing and de-
scribing various visualizations in a unifying way have been pro-
posed – ranging from early classifications to recent declara-
tive methods. On top of these various ways to describe visu-
alizations, different user interfaces have been built to facilitate
their use. In the following, we give an overview of the exist-
ing ways of describing and characterizing visualizations, which
can be divided into enumerative, constructive, and descriptive
approaches, before discussing the gap between choosing and
creating visualizations and how our blending approach aims to
bridge this gap.

2.1. Enumerative Approaches

Enumerative approaches aim to describe the space of visu-
alization designs through a comprehensive compilation of the
existing individual visualizations that constitute it. Common
examples for enumerative approaches are visualization direc-
tories and visualization references that list various existing vi-
sualization techniques in an order that aids in locating individ-
ual techniques – e.g., in an alphabetical order [18] or by using
a look-up scheme for data types and visualization tasks [19].
More confined subspaces of visualization designs are described
in visualization taxonomies (e.g., [20, 11]) and in visualization
typologies (e.g., [21]). A detailed definition of and distinction
between taxonomies and typologies can be found in [22]. In
essence they form the two fundamental approaches of classi-
fication and thus often employ classes or categories of visual-
ization techniques to structure their listing. This already bears
aspects of descriptive top-down approaches (cf. Section 2.3),
yet these classes are not (meant to be) specific enough to actu-
ally pinpoint and generate individual visualization designs.

The interface type that builds directly on top of these lists
of visualizations is the so-called template editor [17]. It mir-
rors the list-style of the underlying enumerative description by
providing a fixed list of available visualization techniques (tem-
plates) to pick from. While not being strictly output-driven,

2

template editors usually feature iconic representations as exam-
ples of what the result will look like. Well known examples are
the charting wizards of standard office software packages.

2.2. Constructive Approaches
While enumerative approaches consider a visualization as

a whole, constructive approaches capture visualizations in a
bottom-up fashion through the individual graphical or func-
tional building blocks that form them. They understand the
space of visualization designs as the realm of all possible com-
binations of these building blocks. In contrast to enumera-
tive approaches, they cannot only capture existing visualiza-
tions, but also so far non-existing visualizations that result from
novel combinations of these building blocks. Examples for con-
structive approaches that utilize graphical elements and their
visual properties as building blocks are algebraic notations,
such as the Grammar of Graphics [23] or APT [24], as well as
declarative domain-specific languages, such as D3 [25, 26] or
VizQL [27, 28]. Examples for constructive approaches that uti-
lize functional building blocks are state/operator frameworks,
such as HiVE [29] or GLO-STIX [30], generative layouts [31],
or transformation-based methods [32] that use high-level oper-
ators to form customized visualization procedures.

The most common interface type for constructive approaches
is certainly the textual programming [17], which is the most di-
rect way to use them. Yet, it is not output-driven, which is why
other interfaces have been developed that can be used along
the lines of the WYSIWYG-paradigm: the visual builder [17]
for graphical building blocks and the visual dataflow program-
ming [17] for functional building blocks.

The visual builder allows users to construct a desired chart
by interactively arranging graphical building blocks on a draw-
ing canvas. Early examples include Gold [33] that relies on
a rule-based heuristic for linking the graphical elements to the
data, and SageBrush [34] that builds on the notation of APT. A
more recent example is Lyra [35] that utilizes VEGA, a JSON-
based visualization grammar that can be used to specify visual
representations and interactions alike [36]. With the advent of
modern touch-based input devices, these ideas have been ex-
tended, for example, to allow for free-form sketching of charts,
as it is realized by NapkinVis [37], which uses the D3 prede-
cessor Protovis [38, 25] as an underlying description of the
sketched visualization. A more restricted interface type is the
shelf configuration [17], which exposes only parts of the con-
structive approach in the form of a fixed set of visual variables
that can be adjusted through a custom user interface. An exam-
ple using shelf configuration is Polaris/Tableau [27, 28], which
relies on the VizQL language for its realization.

Similar to the visual builder, the visual dataflow program-
ming allows users to interactively arrange and connect func-
tional building blocks into visualization pipelines. Examples
include VANISH [39], Gadget/IV [40], or iVisDesigner [41].
While these abolish the need to type lines of code, constructing
these pipelines remains a complex and time-consuming task.
Thus some incarnations of this interface type provide semi-
automatic approaches, such as auto-completion of partial op-
erator pipelines [42] or visualization by analogy [3] to aid the

user. In the latter case, the user specifies a desired operator net-
work by choosing a pair of visualizations that denote input and
output of the sought pipeline, which is then determined as the
difference graph between their respective operator networks.

2.3. Descriptive Approaches

Descriptive approaches likewise do not consider a visualiza-
tion in its entirety, but aim to specify it by detailing a number of
independent design characteristics. In contrast to constructive
approaches, the space of visualization designs is not an emer-
gent result formed bottom-up by the various possible arrange-
ments of different building blocks. Instead, it is a top-down
characterization that already starts with a vision of the diver-
sity it aims to capture through the various design characteristics.
Unlike the rough categorical break-down of the taxonomic enu-
merative approaches, these characteristics are specific enough
to fully describe and generate concrete visualizations – existing
and novel designs alike. An example of such descriptive ap-
proaches are visualization design spaces [43, 44, 45] that span
the space of visualization designs by establishing independent
design dimensions and consider visualizations as tuples of de-
sign decisions made along these dimensions. Note that earlier
examples of design spaces did not have such a generative notion
and were mainly used for classification purposes of existing vi-
sualization techniques in an enumerative sense – e.g., [46].

To this point, there exists no standard interface type that
fully supports descriptive approaches in the sense that it al-
lows for interactively describing a visualization and thereby
generating it in terms of both steps: its fundamental mapping
and its detailed parametrization. Yet for the latter step – i.e.,
the parametrization and fine-tuning of a predetermined princi-
pal visualization design or chart type – visualization spread-
sheets [17] are an established output-driven interface type. They
use the design characteristics as independent axes of a parame-
ter space from which to sample different visualization configu-
rations. These samples are then shown as previews in a gridded
spreadsheet or on a continuous canvas spanned by the indepen-
dent axes. Examples are manifold and include spreadsheet-like
interfaces for choosing transfer functions [2, 47, 48], selecting
viewpoints [49], picking data placements [50], adjusting color
maps and isovalues [51], and even for manipulating color distri-
butions [52]. Moreover, such interfaces can act as visual histo-
ries that exemplify each interactive adjustment with a respective
visualization instance within the configuration space [53].

2.4. The Gap between Choosing and Creating Visualizations

The approaches discussed above allow a user to either choose
a visualization as a whole from an enumeration of existing chart
types, or to create customized visualizations from scratch –
bottom-up by constructing them from a variety of building blocks
or top-down by describing their various visual properties and
thus pinpointing it in a visualization design space. While choos-
ing from a list of existing visualizations is simple and intuitive,
it is also restricted by the choice of visualization techniques pro-
vided. Whereas the creation of custom visualizations provides
the needed flexibility, but at the cost of being more difficult to

3

(a) Icicle Plot [13] (b) Information Slices [54] (c) Aggregate Tree Map [55] (d) Sunburst [16]

Figure 2: Between (a) the axis-parallel icicle plot [13] and (d) the radial sunburst [16], a number of intermediate techniques exist. Two such intermediates are, for
example, (b) the semicircular information slices [54] and (c) the aggregate tree map [55]. To generate them and other intermediates, we propose weighted blends of
the two presets icicle plot and sunburst. A first impression of these blends is shown in the middle column of Figure 1 (left).

use. In between these two principal paths lies the gap of those
approaches that one actually wants to use – approaches that are
flexible and simple at the same time.

Some approaches aim to bridge this gap from the side of
creating custom visualization by reducing its difficulty through
the sketching or spreadsheet mechanisms mentioned in the above
sections. Even though these approaches are output-driven, they
require the user to know in beforehand what they want to cre-
ate, so that they can combine the appropriate building blocks or
configure the relevant visual properties, accordingly. These ap-
proaches embody Georg Christoph Lichtenberg’s famous apho-
rism that “many people, probably most, must, to find something,
know in advance that it’s there.”

In our work, we aim to go past this restriction by also in-
cluding solutions, which the user may not yet know they ex-
ist. To do so, we pursue an opposite approach by bridging the
gap from the side of choosing existing visualization techniques
(presets) and allow for blending them to increase the flexibil-
ity in terms of the possible outcomes. By sampling the result-
ing solution space and displaying it, we can furthermore sug-
gest novel visualization blends of which the user may not have
previously thought. Thus, this approach makes it possible to
build upon the knowledge about the benefits and drawbacks of
the existing visualizations, but unlike the pure enumerative ap-
proaches, it allows the user to choose a customized compromise
between them. The usefulness of this approach is underlined by
the fact that a number of such visualization blends already exist
as visualization techniques in their own right.

For example, the icicle plot for tree-structured data [13]
(Figure 2a) has the advantage of an explicitly ordered layout,
with the hierarchical order being encoded vertically and any lin-
ear order among the siblings being encoded horizontally, mak-
ing it easy to visually scan and parse it. On the downside, it uti-
lizes the same amount of screen space for each level, whether
it holds only a single node, as the root level does, or whether it
contains a much larger number of nodes. The opposite to these
traits can be found in the sunburst [16] (Figure 2d) whose radial
alignment yields a more balanced spatial distribution, but at the
cost of the explicit vertical and horizontal ordering, as the tree
now spreads in all directions.

Existing visualization designs, which compromise between
these two techniques and their traits, are on the one hand the
information slices [54] (Figure 2b) that aim to maintain the ver-
tical and horizontal ordering in part, while nevertheless utilizing
the screen space somewhat more effectively through a semicir-

cular design. On the other hand, there are the so-called aggre-
gate tree maps [55] (Figure 2c) that do no longer keep the ver-
tical ordering in a top-to-bottom arrangement, but still encode a
linear left-to-right order by leaving a small empty wedge in the
circular design to denote a clear beginning and end point.

Yet, simply adding these two visualization techniques to an
enumerative list of chart types in a visualization system is not
enough, as the list will never be exhaustive. The reason is that a
compromise between the blended visualizations must be rene-
gotiated each time the underlying data or visualization tasks
change. This means that for another input tree with different
characteristics and another visualization task to be performed,
the user may need to strike another compromise and use yet
another visualization, which may not already exist. This is the
motivation behind our preset-based visualization approach that
is introduced in the following section. Instead of offering only
a limited number of such preconfigured compromises – if at all,
as most visualization systems do not include any of the above
intermediate visualization examples – our approach captures
the entire range of possible compromises and offers users to
choose from this range through adequate visual interfaces.

3. Defining Parametric Visualization Configurations

Capturing a domain of visualization designs requires to an-
swer the questions of What to capture? and How to capture
it? This section answers these questions – first by introducing
our general approach to capture visualizations through numeric
design parameters that permit us to blend them, and then by
applying this approach to the specifics of our two running ex-
amples of product plots and tree visualizations.

3.1. A General Approach to Parametric Visualization Designs

The above questions of What? and How? target two crucial
points of the characterization of visualizations designs:

1. What? asks for the visualization domain: which kind of
visualization designs to capture, how many and which
presets to include, as well as which visual characteristics
to choose for describing them;

2. How? asks for the visualization specification: which
continuous numerical design parameters can be used in
which way to capture the characteristics of the visualiza-
tion domain including all variants that lie in between.

4

While the focus and the novelty of this paper lies mainly on the
second point, it cannot be used without an understanding of the
challenges posed by the first point. Hence we discuss both in
the following two sections.

3.1.1. Visualization Domain: What to capture?
In order to actually generate and not merely classify visual-

izations, their description must be quite specific, which is hard
to achieve for a variety of visualization designs that is too broad
and thus too diverse to be captured with an overarching set of
characteristics. This challenge is not new and its common so-
lution is to confine the description to subsets or types of visu-
alizations, such as only considering tree visualizations [44] or
2-dimensional charts [45]. While this seems restrictive at a first
glance, it actually makes a lot of sense, as the data to be visual-
ized will usually not require both of these visualization types at
the same time. If the data is hierarchically structured, it is prob-
ably best visualized with a tree visualization; and if the data is
a set of tuples, the use of a 2-dimensional chart seems to be a
logical choice for their depiction.

More complex and heterogeneous data can be visualized by
a combination of such simpler visualization approaches. For
example, this is the case for time-varying graphs [56] – i.e., data
that has network traits requiring a graph visualization and asso-
ciated dynamics calling for time-oriented visualization. These
are often visualized by means of combining the two through a
set of common compositing mechanisms, such as juxtaposition,
superimposition, or embedding [57]. Therefore, it is reasonable
to capture one type of visualization at a time – whereby “type”
is used in the usual sense of the general “data type” for which a
class of visualization was developed.

While this defines the breadth of the visualization domain,
it leaves open its granularity. The granularity is governed by
the number of presets one wants to include, as the more presets
we aim to capture, the more design characteristics we need to
describe them in order to distinguish all the presets from each
other. This is evident from looking at an example of tree visual-
ization presets: If we want to include visualizations that are dif-
ferent at a first glance, such as a treemap and a radial node-link-
layout, we only need a few visual characteristics to describe
them. Yet, if we want to include more similar visualizations,
such as slice&dice treemaps [58] and squarified treemaps [59],
we need a more detailed description consisting of additional vi-
sual properties, such as they were employed in a recent study
on tree visualization designs and their interrelations [60].

In general, one can observe an inverse relation between breadth
and granularity. If we want to describe a domain at a very fine
granularity, we can only do so by reducing its breadth, and vice
versa. For example, a visualization characterization that is able
to distinguish between different treemap layouts can only do
so in a manner that is still practical by reducing its breadth
to the subset of sequential, rectangular, space-filling tree vi-
sualizations [43]. Whereas on the other end of the spectrum,
a visualization characterization that is so wide that it captures
the entirety of all visualizations can only do so by reducing its
granularity up to a point where the design space is no longer
generative [46]. The reason for this is simple: the larger the

domain, the more visual characteristics are needed to describe
them – but the more visual characteristics we utilize, the harder
it becomes to keep them independent of each other. Yet, inde-
pendence is one of their most important traits, as it allows us
to make changes to an individual visual characteristic without
implying changes to other visual characteristics.

So finding useful compromises between the breadth and
granularity of a visualization description is not simple and many
publications have been devoted to this challenge. We acknowl-
edge the complexity of constructing such compromises and ad-
vocate to build upon the work that has already been done in
this regard. Concretely, this means that we utilize existing de-
sign spaces (or parts thereof) as valid and practically proven
such compromises between capturing all important visualiza-
tion presets of a given domain (completeness) and maintain-
ing independence between their visual characteristics (consis-
tency). We use these design spaces that have been established
in their own right as a solid foundation on which to build our
parametric visualization configurations.

It is noteworthy that we usually use only binary design di-
mensions with two either/or design decisions for each dimen-
sion in order to ease the process of turning a design space into
a parametric configuration, which is described in the following
section. Having only two given endpoints that must be met by
a parametric transformation makes it much easier to find such a
transformation. Yet in principle, design dimensions with more
than two design decisions are possible and an example for a pa-
rameter that interpolates between three design choices (vertical
slice, strip treemap, horizontal slice) is given in Section 6.2.

3.1.2. Visualization Specification: How to capture it?
A design space characterizes a visualization through a num-

ber of discrete design choices for all its different visual proper-
ties. It is basically a more detailed version of enumeration, only
that it does not list pre-defined visualizations from which to
choose, but visual properties. So for the example given in Sec-
tion 2.4, the visual property “alignment” would feature the two
mutually exclusive design choices of radial and axis-parallel [11].
None of the two would capture the intermediate visualizations.
Again, we could add them as additional design choices, yet it
would never be exhaustive. That is why we aim to turn the
discrete design choices into a more continuous spectrum from
which we can freely choose. To do so, we utilize three tools:
transformation, deformation, and combination.

Transformation is used where we can express the spectrum
between two or more discrete design decisions by simple trans-
lation, rotation, or scaling. It is probably the most established
way of gradually changing the visual appearance, as it is gov-
erned by a numerical parameter – i.e., an offset along a trans-
lation vector, a rotation angle, or a scaling factor. An example
for scaling is the transformation between implicit, space-filling
tree visualizations and explicit, node-link tree visualizations, as
described in [31]: when the nodes are at their full size, they
are space-filling and mask the underlying edges completely; but
when the nodes are scaled-down to their minimal size, they are
mere dots and the edges connecting them are clearly visible.

5

a)

b)

c)

d)

Figure 3: Four possible transitions that interpolate between vertical and horizontal orientation, with the “key frames” shown in a darker blue and the “inbetweens”
shown in a lighter blue: (a) rotation, (b) simultaneous scaling and translation in horizontal and vertical direction, (c) staged transition in two steps: 1. simultaneous
horizontal scaling and translation, 2. simultaneous vertical scaling and translation, (d) staged transition in four steps: 1. horizontal scaling, 2. horizontal translation,
3. vertical translation, 4. vertical scaling.

Deformation is used for more complex transitions that can-
not be expressed by transformation and require a continuous
morphing between discrete designs. These are usually pieced
together from simpler distortions as functional building blocks.
An example that can be realized through deformation is the
transformation between straight, axis-parallel visualizations and
fully curved, radial visualizations, as it is shown in [61, Fig.13].

Combination is used to couple multiple transitions together
– in parallel as a simultaneous transition, in sequence as a staged
transition [62], or any combination of the two. An example is
given in Figure 3 for the simple case of transforming a vertically
sliced proportional area plot into one that is horizontally sliced.
Both of these instances are common subdivisions as they occur
in mosaic plots or treemaps, as well. The naı̈ve transition would
be to rotate the entire rectangle (Figure 3a). Yet this leads to the
situation in which the intermediate stages lie partially outside of
the rectangle, which means that they are either not fully visible
(if the rectangle is the viewing area) or they occlude other infor-
mation (if the rectangle is a drawing area that is part of a larger
view). Another option is to simultaneously apply scaling and
translation, both in horizontal and vertical direction, to the indi-
vidual subdivisions (Figure 3b). While this ensures that the in-
termediate stages do not cross the rectangle boundaries, it leads
to the problem that the individual subdivisions overlap and thus
occlude each other, which is equally disadvantageous. So, we
set apart the simultaneously applied transformations and apply
them in sequence. We can subdivide the simultaneous transition
in either two steps of first scaling and translating horizontally,
and then performing the vertical scaling and translation after-
wards (Figure 3c); or we can even subdivide it into four steps
by further separating the scaling and the translation into transi-
tion steps in their own right (Figure 3d). These two transition
variants resolve the problems of the earlier transitions, yet they
do so at a cost: while the first two variants maintained a cor-
rect mapping of a numerical attribute to each partition’s area,
the latter two variants do not. Hence, the generated intermedi-

ate visualizations are only of limited use if one wanted to carry
out a task that involved getting correct readings on this attribute
from the areas, but they would still be useful if only the number
of partitions were necessary for a task.

In general, one would aim to maintain as much of the ini-
tial mapping as possible in order to facilitate a diverse set of
possible tasks to be carried out on any of the intermediate vi-
sualizations. Yet trying to maintain the mapping in full can
result in rather complex transitioning schemes. For example,
to resolve the problems of the staged transitions in Figures 3c
and 3d, we developed a staged transition that requires to incor-
porate two visual design features at once, as it is discussed in
the following section. Hence, if the task to be carried out does
not require it, we may choose a simpler transition that does not
maintain certain aspects of the mapping. In some cases, we may
not even be able to maintain the mapping even with a complex
transition, as one of the two design choices between which we
want to transition does not offer such a mapping. For exam-
ple, when transitioning from a space-filling tree visualization
to a node-link visualization, the latter does not offer to map a
numeric attribute onto the node size.

Finally, once a suitable transition is chosen, we need to map
it onto a continuous [0 . . .1] interval. In case of a single trans-
formation, this can easily be done by normalizing the transfor-
mation parameter (e.g., the rotation angle or the scaling factor)
to [0 . . .1]. For simultaneous transitions, the transition parame-
ter in [0 . . .1] can be seen as a high-level compound parameter
that simultaneously steers all individual transition parameters,
which is a known concept in visualization [63]. For sequen-
tial transitions, the transition parameter interval [0 . . .1] has to
be subdivided into subintervals for the individual stages of the
transition. Note that this mapping onto [0 . . .1] does not neces-
sarily have to be linear and the subdivision into subintervals for
sequential transitions does not have to be equidistant. Further
examples show that it can be beneficial to use non-linear map-
pings in order to yield perceptual linearity in the outcome [64]

6

or to increase tracking performance [65].
All three of the above tools – transformation, deformation,

and combination – have in common that they operate solely
on the geometry of the visualization design. This makes them
independent from the algorithm with which the design was cre-
ated. Thus, it is in theory possible to create presets with their
respective native layout algorithms that may function very dif-
ferently and have different runtimes, and to interpolate between
their resulting geometry, similar to the approach of transmo-
grification [61]. In practice though, instead of implementing
all the different layout algorithms, it is often simpler to use a
custom layout algorithm that produces a generic base layout
and applies said transformations to yield the necessary presets.
This approach allows the user to define new presets on the fly
by adjusting these transformations, as it is exemplified in Sec-
tion 6.1.

3.2. Parametric Product Plots

Following the two steps outlined above, we build our para-
metric description of product plots on selected parts of a de-
sign space put forward in the seminal work by Wickham and
Hofmann [12]. They describe product plots in the form of a
mathematical framework for combining rectangular shapes into
a variety of visualizations for showing numerical distributions
over various categories. As it is outside the scope of this pa-
per to recap the wealth of construction possibilities and plots
put forward in their work, the interested reader is referred to
the original publication [12] for more details. We use the 1-
dimensional atoms for 2-tiered charts (i.e., showing a two-fold
categorization, such as age groups on tier 1 and gender on tier
2) to build a design space of product plots with five dimensions:

PI) Tier 1 – vertical vs. horizontal: Product plots can be
oriented either vertically (column chart) or horizontally
(bar chart).

PII) Tier 1 – bar vs. spine: Product plots using bars (bar
charts or column charts) map a numerical variable onto
the height of rectangles of uniform width, whereas those
using spines map the numerical variable onto the width
of rectangles of uniform height (subdivision, slicing).

PIII) Tier 2 – vertical vs. horizontal: Same as PI, but in this
case to configure the orientation of the rectangles of the
second-level categories nested inside the rectangles of the
first-level categories.

PIV) Tier 2 – bar vs. spine: Same as PII, but in this case to
configure the mapping to height vs. width of the rectan-
gles of the second-level categories nested inside the rect-
angles of the first-level categories.

PV) axis-parallel vs. radial: Axis-parallel product plots sub-
divide along the x/y-axes of a Cartesian coordinate sys-
tem to generate rectangles (mosaic plot). Radial product
plots subdivide along the radius/angle of a polar coordi-
nate system to generate circle segments (pie chart).

These five design dimensions can be used to describe 32 differ-
ent design combinations, as they are shown in Figure 4. These
32 design combinations define our visualization domain by pro-
viding the cornerstones between which the visualization spec-
ification must interpolate to describe all possible intermediate
product plots. Finding and realizing such a scheme is the sec-
ond step of our approach.

For PI and PIII, we showed in Section 3.1.2 that the straight-
forward interpolation between horizontal and vertical orienta-
tion produce either cropped, overlapping, or unfaithful interme-
diate representations. This is fine, if the aim of the intermediate
stages is to animate a transition between two chart types so that
the viewer can maintain his mental map, but it is not sufficient
if the intermediates shall be used as visualizations in their own
right. To interpolate between orientations while maintaining
a faithful mapping of a numerical attribute onto the area, we
create a staged transition that takes both into account – the ver-
tical/horizontal design decision (PI and PIII) and the bar/spine
design decision (PII and PIV). The input parameters of this in-
terpolation are 0 ≤ hv ≤ 1 with 0 = horizontal orientation and
1 = vertical orientation, as well as 0 ≤ bs ≤ 1 with 0 = bar
and 1 = spine. We determine an intermediate product plot with
given parameter values hv and bs from a number of base di-
agrams, as it is schematically depicted in Figure 5. The four
endpoints of the combined interpolation are:

• HB: column chart hv = 0,bs = 0

• VB: bar chart hv = 1,bs = 0

• HS: horizontal proportional area chart hv = 0,bs = 1

• VS: vertical proportional area chart hv = 1,bs = 1

On top of these four, we define two additional base diagrams
that form intermediate stages (“key frames”) between them, but
maintain a correct mapping onto the area:

• HVS (hv = 0.5,bs = 1) can be thought of as an area-
preserving variant of the intermediate stages that stand
in the center of the transitions depicted in Figure 3c+d.

• HVB (hv = 0.5,bs = 0) is very similar to HVS, but the
final mapping scales the differently sized squares into
equally sized cells to produce a combination of the columns
of equal width in HB and the bars of equal height in VB.

The detailed procedure of generating these two plots is given in
Algorithm 1, which takes the kind of the plot (HVS vs. HVB)
as an input parameter. Its runtime complexity is O(|values|)
as it considers each value to be mapped onto the base layout
only once. Note that for the sake of brevity, Algorithm 1 and all
following algorithms do not detail the simple but tedious pro-
cedure of normalizing width and height of all rectangles in the
resulting chart to a given drawing area by means of stretching
or shrinking them after the transformation.

Unless the given parameter values for hv and bs already
match any of these six base diagrams, we interpolate in a first
step between bar and spine. If hv ≤ 0.5, then we compute H

7

(HS)(HS)A

(HB)(HS)A (VS)(HS)A (HS)(HB)A (HS)(VS)A (HS)(HS)R

(VB)(HS)A (HB)(HB)A (VS)(HB)A (HB)(VS)A (HB)(HS)R (VS)(VS)A (VS)(HS)R (HS)(VB)A (HS)(HB)R (HS)(VS)R

(VB)(HB)A (VB)(VS)A (VB)(HS)R (HB)(VB)A (VS)(VB)A (HB)(HB)R (VS)(HB)R (HB)(VS)R (VS)(VS)R (HS)(VB)R

(VB)(VB)A (VB)(HB)R (VB)(VS)R (HB)(VB)R (VS)(VB)R

(VB)(VB)R

1 2 3 4

5 6

7 8

9

Figure 4: Hasse diagram of our 5-dimensional design space of 2-tiered product plots. The different design decisions are noted underneath the techniques with H/V
standing for horizontal/vertical, B/S standing for bar/spine, and A/R standing for axis-parallel/radial. The two brackets in the notation denote the design decisions
for tier 1 and for tier 2 in this order. The design space already captures a wide variety of existing product plots, such as (1) grouped column chart, (2)+(3) mosaic
plot, (4) pie chart, (5) stacked bar chart, (6) stacked column chart, (7) grouped bar chart, (8) sector graph, and (9) racetrack plot – but also a large number of yet
unnamed and potentially novel design combinations.

and HV using transformations tw and twh, respectively – other-
wise (hv > 0.5) we compute HV and V using transformations
twh and th, respectively. In a second step, we interpolate be-
tween horizontal and vertical: If hv ≤ 0.5, then we compute
the intermediate between H and HV using transformation tw –
otherwise (hv > 0.5) we compute the intermediate between HV
and V using transformation th. Together with a linear interpola-
tion tpos for the positions of the generated rectangles, this two-
step procedure is schematically shown in Figure 5. Note that
this procedure does not introduce a dependence between these
two parameters, as they can still independently be changed and
one does not have an effect on the other. Merely the interpola-
tion process needs to take both into account at the same time in
order to maintain a correct proportional mapping onto the area.

This leaves design dimension PV – i.e., the interpolation
between axis-parallel and radial. For its realization, we use
the plot’s curvature and assume an underlying polar coordinate

system in which we map the plot onto an angular stretch at a
specific radius. For an axis-parallel plot (curvature = 0), the
angular stretch is very narrow and the radius very high, which
produces a seemingly straight plot whose curvature is within
subpixel range and thus not visible. Whereas for a radial plot
(curvature = 1), the angular stretch covers the full 360◦ at a
smaller radius. Between these two endpoints, we interpolate by
lowering the radius and at the same time increasing the angle
in order to increase the curvature from 0 to 1, as it is schemati-
cally shown in Figure 6. The full procedure is detailed in Algo-
rithm 2, which describes two functions: the first one for trans-
forming individual points and the second for rectangles, making
use of the first one. Note that this algorithm does not produce a
“truly” curved shape, but approximates it by sampling its inner
and outer boundary with 0 < #samples ≤ 500 sample points,
depending on the length of a rectangle’s side. The runtime com-
plexity of this algorithm is O(1), as it is bound by this sampling

8

horizontal/vertical parameter (hv)

ba
r/
sp
in
e
pa

ra
m
et
er

(b
s)

5.0<hv 5.0>hv

HS

HB

HVS

HVB

VS

VB

bs

),,21(HVVhvth ⋅−),,2(HVHhvtw ⋅

],[]),[],,[,(333222111 hwAhwAhwAptw = with

333

213

213

/
)1(
)1(

wAh
wpwpw
ApApA

=
⋅+⋅−=
⋅+⋅−=

333

213

213

/
)1(
)1(

hAw
hphph
ApApA

=
⋅+⋅−=
⋅+⋅−=

],[]),[],,[,(333222111 hwAhwAhwApth = with

333

213)1(

Ahw

ApApA

==

⋅+⋅−=

],[]),[],,[,(333222111 hwAhwAhwAptwh = with

),,(HBHSbstH w=),,(VBVSbstV h=),,(HVBHVSbstHV wh=

0.0 0.15.0

0.0

0.1

213

213

)1(
)1(

ypypy
xpxpx
⋅+⋅−=
⋅+⋅−=

],[]),[],,[,(333222111 yxAyxAyxApt pos = with

Figure 5: Schematic depiction of the 2-step interpolation scheme for a given horizontal/vertical-parameter hv and a bar/spine-parameter bs. The first step interpolates
the light gray base diagrams according to the bs parameter value to form the dark gray intermediates. The second step interpolates these intermediates according to
the hv parameter value into the final representations. The transformation functions interpolate between two rectangular areas A1 and A2 with given heights h1,h2 and
widths w1,w2 according to a given parameter value p either along the width (tw), the height (th), or both simultaneously (twh), if w = h. Since the area is interpolated
linearly in all three transformations and its width and height are determined accordingly, any mapping of a numeric attribute value onto the area will be preserved.
The positions (e.g., the midpoints) of the areas are interpolated linearly using tpos in all steps.

constant of 500, which has proven to be fine-grained enough in
practice to ensure a curved appearance in all observed cases.
Since this algorithm is invoked once for every value to be dis-
played, the overall complexity is O(|values|), as it was the case
for Algorithm 1.

The transition between axis-parallel and radial is an exam-
ple for a case in which an existing mapping onto the area of an
axis-parallel plot cannot be preserved. Radial plots are usually
read via the angular proportions of the resulting shapes as for
the same angle shapes of different areas can exist depending
on the radius at which they lie. Hence, we do not aim for an

Algorithm 1 Generating the Base Layouts HVB and HVS
1: function HV(bs, values[])

. bs ∈ {B,S}; values[] to map on rectangles
2: rects←∅ . create empty list of results
3: x← y← 0 . start at lower left side
4: step←

√
max(values[]) . side of largest square

5: for v ∈ values[] do . iterate over all values
6: w← h←

√
v . width = height =

√
value

7: rects← rects ∪ {(x,y,w,h)}
8: if bs = B then . generate HVB
9: x← x+ step

10: y← y+ step
11: else . generate HVS
12: x← x+w
13: y← y+h
14: end if
15: end for
16: return rects
17: end function

Algorithm 2 Curvature transformation
1: function CURVPOINT(c,Px,y) . c = curvature (0≤ c≤ 1)

. P = point (0≤ Px,Py ≤ 1)
2: r← 1/c−1 . radius of circle segment
3: α ← c∗2∗π . angular width of circle segment
4: αx← α ∗Px . angular position (0≤ αx ≤ α)
5: x← sin(αx)∗ (r+Py) . horizontal position
6: y← cos(αx)∗ (r+Py) . vertical position
7: return (x,y)
8: end function

9: function CURVRECT(c,Rx,y,w,h)
. c = curvature (0≤ c≤ 1)

. R = rectangle (0≤ Rx,Ry,Rw,Rh ≤ 1)
with Rx +Rw ≤ 1,Ry +Rh ≤ 1

10: #samples = 500∗Rw . compute sampling resolution
11: polygon[]←∅ . initialize polygon
12: for i : 0≤ i≤ #samples do . iteration over lower side
13: P← (Rx +Rw ∗ i/#samples,Ry) . interpolate point
14: P← CURVPOINT(c,P) . transform point
15: polygon[].add(P) . add point to polygon
16: end for

17: for i : #samples≥ i≥ 0 do . iteration over upper side
18: P← (Rx +Rw ∗ i/#samples,Ry +Rh)

. interpolate point
19: P← CURVPOINT(c,P) . transform point
20: polygon[].add(P) . add point to polygon
21: end for
22: return polygon[]
23: end function

9

curvature⋅°= 360α 11
−=

curvature
r

0.0 0.1

α
r α

α
r r

curvature

Figure 6: Interpolation between an axis-parallel area with no visible curvature
(small angle α , large radius r⇒ rectangle) and a fully curved radial area (α =
360◦, small radius r⇒ circle).

area-preserving transformation in this case.
To visually summarize our detailed discussions of the inter-

polations for all five design dimensions, Figure 7 exemplifies
the individual effects of each of the five product plot design
parameters on a grouped column chart as a base visualization.
Yet it is also possible to combine the effects of these interpo-
lations to describe intermediates along multiple dimensions at
once by configuring them in the form of a 5-tuple of parameters
(hv1,bs1,hv2,bs2,curvature).

3.3. Parametric Tree Layouts

Establishing a parametric description of tree layouts follows
again the two steps of first defining a suitable design space and
then interpolating between its design choices. As tree visualiza-
tions are a well-researched domain, there is plenty of literature
from which to choose or build a design space. The one we use
here is loosely derived from work on generative tree visualiza-
tion, including [31, 43, 44]. It features five design dimensions:

TI) explicit vs. implicit: Explicit tree visualizations are node-
link layouts that rely on connector lines to associate a
parent node with its children. Implicit tree visualizations
are mainly space-filling layouts that rely on positional re-
lations to encode the parent-child relationship.

TII) structure vs. attributes: Structure-centric tree visual-
izations focus their layout on conveying the hierarchy,
whereas attribute-centric tree visualizations focus on a
numerical node attribute to be conveyed, which is usually
achieved by proportionally scaling the node primitives.

TIII) aligned vs. cascaded: Aligned tree visualizations layout
a parent’s children directly on top or underneath it, while
cascaded tree visualizations shift the layout slightly in or-
der to keep at least portions of the parent still visible.

TIV) inclusion vs. adjacency: Inclusion-based tree visualiza-
tions draw a parent’s children on top of it, so that their
drawing space is included in the drawing space of the par-
ent. Adjacency-based tree visualizations draw the child
nodes right beside the parent node instead of on its top.

(PI) Tier 1 - vertical to horizontal

(PII) Tier 1 - bar to spine

(PIII) Tier 2 - vertical to horizontal

(PIV) Tier 2 - bar to spine

(PV) axis-parallel to radial

Figure 7: Example of the effect of the five continuous visualization parameters
on a grouped column chart. From top to bottom: (PI) Tier 1 – vertical to hor-
izontal, (PII) Tier 1 – bar to spine, (PIII) Tier 2 – vertical to horizontal, (PIV)
Tier 2 – bar to spine, (PV) axis-parallel to radial.

TV) axis-parallel vs. radial: Axis-parallel tree visualizations
map the hierarchy levels onto the y-axis of a Cartesian co-
ordinate system. Radial tree visualizations map the levels
onto different radii in a polar coordinate system.

These five design dimensions are sufficient to describe a wide
variety of tree visualizations, for example, all those visualiza-
tions shown in yellow in Figure 1 (left). This yields a visualiza-
tion domain of 32 different design combinations between which
we want to specify any intermediate visualization designs.

To do so, the second step of interpolating between these
either/or design choices uses rather simple transformations, as
compared to the complex staged transformation described for
the product plots. For the switch between implicit and explicit
along dimension TI, we use the duality of the two, as it is de-
scribed in [31], by basically computing an implicit layout in
both cases and merely reducing the size of the node primitives
to turn it into an explicit layout. The transformation between
structure-centric and attribute-centric visualization, as captured
by design dimension TII, is realized as a linear interpolation
between having all node attributes set to the number of leaves
it contains (effectively yielding equal space distribution for all
leaves) and any numerical node attribute of the user’s choosing.
It is important though, that this attribute follows a hierarchical
aggregation scheme, so that for any internal node its value is
equal to the sum of the attribute values of its descendent leaves.
Design dimensions TIII and TIV are continuously interpolated
through a smooth displacement in x- and y-direction, respec-
tively. Finally, design dimension TV uses the curvature inter-

10

(TI) implicit to explicit

(TII) structure-centric to attribute-centric

(TIII) aligned to cascaded

(TIV) adjacency to inclusion

(TV) axis-parallel to radial

Figure 8: Example of the effect of the five continuous visualization parameters
on an icicle plot. From top to bottom: (TI) implicit to explicit, (TII) structure-
centric to attribute-centric, (TIII) aligned to cascaded, (TIV) adjacency to in-
clusion, (TV) axis-parallel to radial.

polation that was described for PV in the previous section.
The individual influence of each of the five resulting design

parameters on an icicle plot as a base representation is depicted
in Figure 8. Again, the effects of these interpolations can be
combined to specify any intermediate design as a configuration
in the form of a 5-tuple (size,attributed,∆x,∆y,curvature).

4. Interfaces for Parametric Visualization Configurations

Having established the description of visualization designs
in the form of parametric configurations, this section introduces
two novel interfaces for preset-based visualization design using
these configurations: the visualization palette and the visualiza-
tion mixer, as their metaphors are a perfect fit for our blending
approach. To showcase the interfaces, we use the tree visual-
ization design as a consistent example throughout this section.
The use cases described in the following Section 5 will also
show further examples of these interfaces being applied to the
design of product plots.

The visualization palette shown in Figure 9 is inspired in
its handling by an artist’s color palette and follows in its tech-
nical realization the preset-based parameter space visualization
developed by van Wijk and van Overveld [10]. It positions a
number of preset visualizations on a grid, which are shown in
yellow in Figure 9. The palette then uses the parametric visual-
ization descriptions to smoothly interpolate between the presets
and to fill in the remaining blank grid cells, which are shown
in blue in Figure 9. This is done by computing for every in-

Figure 9: The visualization palette smoothly interpolates between the visual-
ization presets placed on a 2D grid (yellow). The presets can be rearranged
and the palette can be sampled at any point (red cursor). Note that due to its
dimensions, it is usually not suitable to show a large dataset in this form, but
only an iconic representation while viewing the actual dataset in a linked view
using the visualization design that is currently sampled.

termediate grid cell the weighted average of the k nearest pre-
sets. These are determined by their Euclidian distance on the
2D grid and their weights are chosen inverse proportionally to
this distance, which is normalized with respect to the distance
of the k+ 1 nearest preset. This approach is illustrated in Fig-
ure 10. While other approaches for filling the non-preset grid
cells based on the presets would also be possible, we follow
the procedure put forward in [10] and for many more details
on the rationale behind it, we refer the interest reader to this
publication. As a rule of thumb, we achieved good results with
k = 5, which takes into account some, but not all of the presets
to prevent distant visualizations from affecting a grid cell – e.g.,
a radial layout anywhere on the palette would otherwise intro-
duce a slight curvature to all non-preset grid cells, no matter
how far away they are. The scope of the interpolation, i.e., the
value of k, can be adjusted by the user if needed. In order to not
overcrowd the palette with the actual visualization of a possibly
large dataset, we only use a very small fixed dataset to gener-
ate iconic representations of the visualization designs in each
grid cell. A user can sample the palette at any point (the red
square-shaped cursor in Figure 9) to pick the parametrization of
the shown iconic representations and apply it to the full dataset
shown alongside the palette in a linked view. Furthermore, the
user can drag any of the presets freely across the palette to repo-
sition them and thus to reconfigure the palette’s setup in order to
generate different blends from those currently shown. For ex-
ample, dragging two presets further apart increases the number
of intermediate designs in between them, which in turn permits

11

41.12 d

27.23 d

83.24 d

11 d

1

11

ki

i
dd

w

X

with

k

i

ik

i

i

w

w 1

1

1

X

node size
weight

x displacement
y displacement

curvature

i

i

i

i

i

41.12 d

27.23 d

83.24 d

11 d

2

3

4
1

1

11

ki

i
dd

w
with

k

i

ik

i

i

w

w 1

1

1

node size
weight

x displacement
y displacement

curvature

i

i

i

i

i
3k

2

3

4
1

Figure 10: Example of the weighted sum interpolation between presets to
compute the visualization design for a non-preset grid cell in the palette.
The used interpolation follows the approach introduced by van Wijk and van
Overveld [10].

a user to sample from them in a more fine-grained manner.
While the visualization palette gives a good preview of the

various intermediate visualization designs from which the user
can pick, it is still limited in the sense that it shows only one
possible 2-dimensional arrangement of the high-dimensional
space that all possible preset combinations span. This is the
reason why we see it first and foremost as a tool for the ca-
sual user, whereas the expert user might want a more direct and
more comprehensive access to this high-dimensional space.

For these users, the visualization mixer that is shown in
Figure 11 is the interface of choice. Like a mixing device for
audio tracks, it allows for directly adjusting the influence of in-
dividual presets onto the output design – yet, it does no longer
preview how the result will look like. Note that this missing
preview motivated the development of the preset-based param-
eter space visualization [10] that underlies our palette visual-
ization in a similar scenario – namely the issue of blending dif-
ferent synthesized instruments into new voices. Instead of mu-
sical instruments or audio tracks, our mixer allows for blending
visualization presets by computing a weighted average as a lin-
ear combination of their corresponding parametric descriptions.
Their individual weights can be chosen by the user via a slider,
yet they have to add-up to 1.0, effectively forming a convex
combination of visualizations. Hence, when the user adjusts
the weight of one preset, all other weights are adjusted accord-
ingly to ensure this constraint. This means, for example, as the
influence of one preset is increased, all the other presets are de-

Figure 11: The visualization mixer allows users to adjust the influence of each
individual visualization preset and combines them via a convex combination.
At the top and at the bottom of each slider, a preview shows how the resulting
visualization would look like if the slider was moved all the way up or down,
respectively. Since there is still hardly enough space to show a large dataset
at each slider, only an iconic representation is given while viewing the actual
dataset in a linked view.

creased proportionally to their current influence. We decided to
give at least some indication through iconized representations
at both end of each slider on how the resulting visualization de-
sign would look like, if the slider was moved all the way up
or down. At the sliders’ top, each of the presets is shown in
its pure form, as this would be how the resulting visualization
looked like if the slider was moved up all the way to a weight
of 1.0 for this visualization and consequently 0.0 for all others.
Below each slider, the resulting visualization is shown if the
corresponding visualization was to be removed (weight = 0.0)
from the current combination. While the preview at the top of
each slider remains fixed, the outcome of pushing a slider all the
way down depends on the settings of all other sliders and thus
changes when the sliders are moved. More elaborate preview
mechanisms, such as composite parallel coordinate plots [66],
can be used instead if one expects more fluctuation of the out-
come along each slider.

Note that while it is possible to transition from the “casual”
palette interface to the “expert” mixer interface, as any sampled
grid cell can be shown as a linear combination of presets in the
visualization mixer, this does not work the other way around.
The reason is that the mixer permits the user to set a weight
combination that does not necessarily have a corresponding po-
sition in a currently shown palette setup.

Finally, these interfaces do require a linked view showing
the full dataset using the current design configuration that was
picked from the palette or set via the sliders of the mixer. This
overall setup is shown in the screenshot in Figure 12. In this
linked output view, we additionally display two starglyphs [67]
in the corners of the view to give an indication of the parametric
configuration (i.e., the 5-tuple) that describes and generates the
current visualization design, as well as of a number of quality
metrics of this design displaying the currently loaded dataset.
For the product plots, we measure their quality by computing
how well they reflect the given numerical values by their height,

12

Figure 12: Screenshot showing the palette interface on the left and the full dataset in the picked visualization design (red cursor) on the right. The left starglyph
depicts the parameter values of the currently shown visualization design. It shows mainly that the curvature parameter (PV) is set to about 0.5 and the tier 2 bar/spine
parameter (PIV) is also set around 0.5, putting it half-way between a column chart and a horizontal subdivision. The right starglyph depicts the quality metrics,
showing that the tier 1 values are best determined from the height of the tier 1 geometric primitives, and that the tier-2 values are best determined from the area of
the tier-2 geometric primitives.

their width, and their area. We call this measure fidelity and
compute it for both tiers independently. The computation basi-
cally counts the number of different mapping factors between
values and geometric property (width, height, area). For radial
designs, width is understood as the angle α that a circle seg-
ment spans. In the best case (fidelity = 1) all mapping factors
for a geometric property are the same, which means that the
values are encoded by and can be determined from a geometric
property. In the worst case (fidelity = 0) all mapping factors are
different, which means that they are not encoded in a particular
property. In Figure 12, one can see from the quality glyph at
the top right that the values of the first tier are well represented
by the height of the tier-1 geometric objects, whereas the values
of the second tier can be determined from the areas of the tier-2
geometric objects.

For the tree visualizations, we use the following quality
metrics:

• the current visualization’s space utilization (ink-paper-
ratio [68]),

• the nodes’ fidelity of representing a given numerical at-
tribute through their areas (computed as above for prod-
uct plots),

• the percentage of the drawing space that is occupied by
more than one node (overplotted% [69]),

• the percentage of nodes that are occluded by sibling nodes
(horizontally overcrowded% [69]), and

• the percentage of nodes that are occluded by child nodes
(vertically overcrowded% [69]).

Note that all quality metrics are computed for the dataset at
hand and cannot be generalized as properties of the design in
general. For example, the particular tree structure of one dataset
may produce massive overplotting, while another one is shown
fine. This is in line with the common visualization design ex-
perience that different datasets require different visualizations.
The same is true for the task-dependence of visualization de-
sign: while one design supports correct readings of numerical
node attributes, but hampers the ease of determining the num-
ber of nodes, another one does it the other way around. The
starglyphs showing the quality metrics allow the user to judge
how well a currently picked visualization design fits the data
and task at hand.

5. Usage Examples and User Study

This section briefly describes two usage examples that are
also featured in the video material, which accompanies this pa-
per and which showcases the interactivity of our approach in a
way that the static images in this paper cannot. These examples
were also used as part of a small qualitative user study on which
we report after introducing them.

5.1. Usage Examples

The examples presented here aim to support our claim from
Section 2.4 that the blending approach allows us to recreate in-
termediate visualization designs that exist as visualization tech-
niques in their own right. Thus, the aim of both examples is
to recreate visualization prototypes that are not part of the set
of the 32 visualization designs that can be generated from the

13

(a) Information Slice [54]

displacement

gaps

(b) First Approximation (c) Resulting Design

Figure 13: Example of recreating information slices showing the original (a), a first approximation (b) picked from the palette shown in Figure 9, and the final result
(c) after shifting the presets on the palette around to decrease the influence of designs with unwanted visual properties.

(a) Staggered Stacked Bar Chart

curved appearance

gaps

(b) First Approximation (c) Resulting Design

Figure 14: Example of recreating a staggered stacked bar chart (image source: http://peltiertech.com) showing the original (a), a first approximation (b)
picked from the palette shown in Figure 9, and the final result (c) after fine-tuning the influence of the presets in the mixer interface.

design spaces alone, but require our more continuous interpola-
tion between them.

The first example aims to create a tree visualization that is
similar to the information slice [54], which is shown in Fig-
ure 13a. A good starting point is to pick a similar looking vi-
sualization from the visualization palette (cf. Figure 9). From
our discussion in Section 2.4, it is obvious that such a first start-
ing point would be positioned somewhere between the icicle
plot and the sunburst visualization – for example, the position
marked by the red cursor in Figure 9. The resulting first ap-
proximation of an information slice is shown in Figure 13b. Its
appearance still has a few flaws that we need to eliminate: there
is a small displacement of the rings and there are some gaps
in between nodes. The displacement is due to the influence
of the cascaded treemap on the picked palette position and it
can easily be removed by dragging the cascaded treemap preset
away from the picked location. The gaps are caused by the in-
fluence of the two node-link layouts, which prevent the design
from being completely space-filling. Yet, these presets cannot
be moved further away, as they are already positioned in the cor-
ners of the palette. As an alternative, we move the two visual-
izations that have desired properties (i.e., the icicle plot and the

sunburst) closer to the position of the picked design to increase
their influence and to marginalize the influence of the node-link
layouts. The visualization prototype resulting of these adapta-
tions is shown in Figure 13c. It is quite close to the original,
apart from a blank area in the middle of the diagram that is due
to our particular curvature interpolation.

The second example aims to create a product plot that is
similar to a staggered stacked bar chart, which is shown in Fig-
ure 14a. Furthermore, we can see from the Hasse diagram in
Figure 4, that such a chart cannot be generated by simply ap-
plying the design space with its discrete design choices. To gen-
erate a blend of visualizations that is close to the desired result,
we pick a similar looking visualization from the visualization
palette (cf. Figure 12). This first approximation of such a stag-
gered stacked bar chart picked from the center of the palette is
shown in Figure 14b. Yet, it exhibits a slightly curved appear-
ance and also wastes drawing space with overly large gaps in
between the tier-1 geometric primitives. There is not much that
we can do about these remaining visual glitches in the palette,
as for example all the radial presets that are responsible for the
curved appearance, are already positioned in the corners and
thus as far away as possible. That is why we switch to the mixer

14

http://peltiertech.com

interface, in order to adjust the influence of the presets individ-
ually and without being constrained by the 2D topology of the
palette. In the mixer, we reduce the influence of the radial plots
to 0.0 to straighten the plot and we balance the remaining pre-
sets so that the gaps in between the primitives become smaller.
The result of this fine-tuning is shown in Figure 14c. Its appear-
ance differs from the original mainly by having different heights
for each tier-1 primitive, instead of bars of equal height. This is
a limitation of our design space, as it does not offer the option
of not encoding a value (at least partially) onto the height, as
the tree visualization design space does with design dimension
(TII). How to include such additional design dimensions to a
parametric configuration is shortly sketched in Section 6.2.

5.2. User Study
We conducted a qualitative user study with 8 participants (6

male and 2 female) to validate our approach and the interfaces
we built on top of it. The participants were between 25 and
36 years old with an average age of 30. They all had a back-
ground in computer science with different levels of exposure
to visualization in the past. We conducted a separate study of
about 30 minutes with each participant during which they were
encouraged to think aloud.

In a training phase, the participants were first given a short
verbal introduction into the data and the interfaces by using two
simple examples – a stacked bar chart for the product plots and
an axis-parallel tree layout for the hierarchy visualization. Af-
terwards, the participants had time to familiarize themselves
with the interfaces and the various presets by freely browsing
the space of possible visualization designs on their own. Dur-
ing this phase, we paid attention to principle hurdles that might
occur when first learning and using our interfaces. In a second
phase, the execution phase, the participants were asked to ful-
fill two visualization design tasks using our interfaces. These
tasks basically comprised of recreating the two visualization
examples given in the previous section (information slice and
staggered bar chart) from a printout that was handed to them.
During this phase, we mainly observed the strategy the partici-
pants followed when using the palette and the mixer to recreate
the visualization, as well as how long it took them.

During the training phase, it appeared that the palette inter-
face was the most liked and it seemed to be intuitively under-
stood. Its possibility to transition between visualizations in a
smooth way was well perceived by all participants. Yet, this
possibility was not apparent to them in the beginning, as the
gridded appearance suggested only a picking of the shown in-
termediate designs. The participants also stated that it helped
them in understanding those presets they have not known be-
fore, as for example, smoothly transitioning from a stacked bar
chart to a mosaic plot and from there to a stacked pie chart
helped them to intuitively grasp the idea behind them. This use
of our interface for such “self-teaching purposes” was not an-
ticipated by us and certainly points in an interesting research
direction, which is underlined by a recent study on teaching vi-
sualization by analogy [70].

Only one participant identified right from the start that the
palette only allows a limited number of design combinations

and favored the mixer for its higher degree of freedom. Though,
most participants complained that the mixer with its eight slid-
ers takes considerably more effort in terms of interaction cost
to gear towards a desired visual representation. They further-
more remarked that the mixer’s lack of previews for intermedi-
ate slider positions made it hard to anticipate their effects and
lead to quite a bit of trial and error in its use, which made it
overall less favorable than the WYSIWYG-style of the palette.
Yet this is certainly a point that can be fixed to some degree
in future incarnations of this interface by utilizing sliders that
provide better previews – for example, scented sliders [71].

By applying the two interfaces to the two tasks in the execu-
tion phase, all participants were able to recreate both visualiza-
tions. Yet they followed two different strategies. The first strat-
egy used by 5 of the participants included both interfaces. They
started with the palette to pick a visualization that looked rea-
sonably similar to the printout and then switched to the mixer
for fine-tuning the result. This is basically the same strategy
as we have employed it in the previous section. The remaining
3 participants ignored the palette and approached the visual de-
sign from a more analytical point of view. They tried to identify
design characteristics of the given examples and to rebuild them
by directly mixing the presets that embody these characteris-
tics. While they were also able to recreate the visualizations in
this way, it took them considerably longer (average completion
time around 5 min) than the other group who followed the first
strategy (average completion time around 1 min). This finding
confirms our initial assessment that the mixer is geared more
towards the expert user, but at the same time, it underlines the
importance of combining the two interfaces to support blended
visualization design.

6. Extending Parametric Visualization Configurations

The previous sections have outlined our basic approach for
parametric visualization configurations. To the end of utilizing
them for preset-based visualization design, one may soon find
the chosen visualization granularity (i.e., the selected presets
or the used design dimensions) or even the entire visualization
domain (i.e., the type of visualization it captures) to be too re-
stricting to express one’s design ambitions. This section gives
examples of how to go beyond them by adding new presets,
including further design dimensions, and combining configura-
tions for different visualization types.

6.1. Additional Presets
The effectiveness of the preset-based design approach stands

in direct relation to a suitable set of presets from which to blend
the final visualization design. Unfortunately, suitability lies in
the eye of the user and the presets can hardly be predefined
without either restricting the user by providing a small set that is
guaranteed to lack just the one design he needed, or overwhelm-
ing him with too many presets. The solution to this problem is
to allow the user to define and add presets himself. To do so, we
provide him with a direct interface to the parametric configura-
tion, which we call the visualization tuner and which is shown
in Figure 15.

15

Figure 15: The visualization tuner gives direct access to the parameter space
of the visualization design. It features one turn-dial per design dimension and
shows previews of how the visualization would look like if the dial was turned
to 0%, 25%, 50%, 75%, and 100% similar to the previews on the visualization
mixer. It allows to construct new presets by adjusting its parameters directly.

This interface shows one turn-dial for each design dimen-
sion and permits the user to generate new presets by adjust-
ing the design parameters individually and directly. Previews
alongside the dials give an indication how the resulting design
will look like if the dial was turned in their directions. As one
dial is turned, the previews alongside the other dials adapt ac-
cordingly. Besides defining new presets, this interface can also
be used to explore the parameter space of the parametric visu-
alization configuration directly, for example, to investigate the
parameters’ influence on the quality metrics.

6.2. Further Design Dimensions

In the examples given in the previous sections, we have cho-
sen five design dimensions to capture a design space of 32 vi-
sualization designs, between which we then interpolated. Yet
this number is not a constant and there can be design spaces
with more or less than five dimensions, as long as they remain
independent of each other, which can be challenging to insure.
In this section, we show how to extend the tree visualization
parameter space by including additional design dimensions for
dimensionality and aspect ratio, which broaden the number of
possible designs significantly.

Dimensionality is a common design dimension [44] that
we fixed to 2-dimensional representations only for keeping the
previous discussions brief and the static printed figures easily
understandable. If one wanted to add dimensionality as another
dimension, one would also have to break up the binary 2D vs.

Figure 16: Two examples of additional parameters that can be used to further
customize tree visualizations: dimensionality (top) and aspect ratio (bottom).

3D distinction and find a smooth transition between them. We
can do this by gradually extruding a 2-dimensional visualiza-
tion into the 3rd dimension, effectively generating 2.5D visu-
alizations as intermediate designs. An example transforming
a 2D treemap into a steptree [72] with 2.5D treemaps in be-
tween is shown in Figure 16 (top). Note that such an extrusion
into the third dimension may require additional constraints to
be met, such as maintaining a possible mapping of a numeri-
cal attribute onto the volume of a node – even though such a
mapping may not be advisable from a perception point of view.

Aspect ratio has so far been neglected in the treemap lay-
outs generated by our parameter space, which effectively only
slice the space horizontally and thus generate areas of unfavor-
ably low aspect ratios approaching 0 as the number of leaves in-
creases. The other extreme would be to only slice the space ver-
tically and thus to generate areas of equally unfavorable aspect
ratios approaching +∞ with an increasing number of leaves.
Most treemap layouts aim to achieve an aspect ratio of around
1 as an optimum in between these two extremes [73]. By adding
the desired aspect ratio as an additional design dimension, we
would be able to steer the area subdivision of the layout algo-
rithm. This can be achieved by mapping the different design
choices (i.e., aspect ratios) to the so called chunk score [43]
of the layout, which would then become another parameter of
the visualization. An example transforming a vertically sliced
treemap via a strip treemap layout [74] with aspect ratios close
to 1 into a horizontally sliced treemap is given in Figure 16 (bot-
tom). This effectively varies the number of horizontal strips in
the strip treemap layout shown in the figure from 1 to 2, 4, 8,
and 16 – the latter then forming a single vertical strip.

6.3. Parametric Configuration Combinations

Particular data characteristics require particular visualiza-
tions. Specifically when a dataset exhibits traits of two (or
more) data classes that are usually visualized separately and
differently, it is not uncommon that multiple kinds of visual-
izations are merged. One way of merging visualizations is by
embedding them into each other [9]. For our two examples of
distributions and hierarchies, this approach has been published
for embedding product plots (column charts) into tree visual-
izations (treemaps) [75, 76, 77] and vice versa [78]. Figure 17
shows one example of each, as well as our rendition of both
that we obtained by combining the two parametric configura-
tions introduced in Section 3.

16

Figure 17: Examples of the two principal ways of combining product
plots and tree visualizations via embedding: integrating column charts into a
treemap [77] and treemaps into a column chart [78].

7. Conclusion

In conclusion, we can state that the use of continuous pa-
rameter spaces to describe entire classes of visualizations is a
powerful, extendable, and combinable model to unify existing
visualizations under a common hood and to develop new vi-
sualization blends by example. Together with appropriate user
interfaces, such as the palette and the mixer, it enables rapid
prototyping of custom visualization designs. It is this combina-
tion of continuously deformable visualization designs and user
interfaces that give direct access to them, which gives our ap-
proach a unique position among existing approaches. These
focus either on creating visualizations through continuous de-
formation (e.g., transmogrification [61] or visualization morph-
ing [70]) or on interfaces that allow to choose visualizations
in a WYSIWYG manner (e.g., visualization spreadsheets [51]
or palette-style visualization [49]). By filling the gap in be-
tween the two, we gain additional flexibility in the visualization
design. This flexibility allows for freely exploring the design
space beyond the confines of a few commonly used, distinct
design choices. To balance the additional flexibility provided
by our approach, we provide feedback on the quality of the cre-
ated visualization design in the form of starglyphs.

The responses from the participants of the user study were
highly encouraging. It motivates us on the one hand to extend
our approach to other kinds of visualizations and to further in-
tegrate them with each other. Among possible candidates that
can be recreated in this way, we see visualizations of flexible
linked axes [79] and data-linear visualizations [80], which have
already been formally described, so that a design space can be
derived and subsequently be utilized for their parametric de-

scription. On the other hand, we strive to open up additional ap-
plication scenarios that can benefit from our approach. Recently
published research on using animations between different view
configuration for data exploration [81] and deformable visual-
ization designs for teaching purposes [70] point in promising
directions for such scenarios.

Acknowledgements

The authors wish to thank the participants of the user study
for their time and effort, as well as the anonymous review-
ers for their constructive feedback on earlier versions of this
manuscript. This research has been funded by the German Re-
search Foundation (DFG) and the federal state of Mecklenburg-
Vorpommern and EFRE within the project “Basic and Applied
Research in Interactive Document Engineering and Maritime
Graphics”.

Bibliography

[1] McKenna S, Mazur D, Agutter J, Meyer M. Design activity framework for
visualization design. IEEE Transactions on Visualization and Computer
Graphics 2014;20(12):2191–200. doi:10.1109/TVCG.2014.2346331.

[2] Liu B, Wünsche B, Ropinski T. Visualization by example – a con-
structive visual component-based interface for direct volume render-
ing. In: Richard P, Braz J, Hilton A, editors. GRAPP’10: Proceed-
ings of the International Conference on Computer Graphics Theory and
Applications. INSTICC Press. ISBN 9789896740269; 2010, p. 254–
9. URL: http://viscg.uni-muenster.de/publications/2010/
LWR10/grapp10-tf.pdf.

[3] Scheidegger CE, Vo HT, Koop D, Freire J, Silva CT. Querying and
creating visualizations by analogy. IEEE Transactions on Visualization
and Computer Graphics 2007;13(6):1560–7. doi:10.1109/TVCG.2007.
70584.

[4] Heer J, Shneiderman B. Interactive dynamics for visual analysis. Com-
munications of the ACM 2012;55(4):45–54. doi:10.1145/2133806.
2133821.

[5] Groth P, Shamma DA. Spinning data: Remixing live data like a music
DJ. In: CHI’13: Extended abstracts of the SIGCHI conference on Hu-
man Factors in Computing Systems. ACM Press. ISBN 9781450319522;
2013, p. 3063–6. doi:10.1145/2468356.2479611.

[6] Crider M, Bergner S, Smyth TN, Möller T, Tory MK, Kirkpatrick AE,
et al. A mixing board interface for graphics and visualization applica-
tions. In: Healey CG, Lank E, editors. GI’07: Proceedings of the Graphics
Interface Conference. Canadian Information Processing Society. ISBN
9781568813370; 2007, p. 87–94. doi:10.1145/1268517.1268534.

[7] Hartmann B, Yu L, Allison A, Yang Y, Klemmer SR. Design as ex-
ploration: creating interface alternatives through parallel authoring and
runtime tuning. In: UIST’08: Proceedings of the Annual ACM Sym-
posium on User Interface Software and Technology. ACM Press. ISBN
9781595939753; 2008, p. 91–100. doi:10.1145/1449715.1449732.

[8] Santos E, Lins L, Ahrens JP, Freire J, Silva CT. VisMashup: Stream-
lining the creation of custom visualization applications. IEEE Trans-
actions on Visualization and Computer Graphics 2009;15(6):1539–46.
doi:10.1109/tvcg.2009.195.

[9] Hadlak S, Schulz HJ, Schumann H. In situ exploration of large dynamic
networks. IEEE Transactions on Visualization and Computer Graphics
2011;17(12):2334–43. doi:10.1109/TVCG.2011.213.

[10] van Wijk JJ, Overveld CWAM. Preset based interaction with high dimen-
sional parameter spaces. In: Post FH, Nielson GM, Bonneau GP, editors.
Data Visualization: The State of the Art. Springer; 2003, p. 391–406.
doi:10.1007/978-1-4615-1177-9_27.

[11] Schulz HJ. Treevis.net: A tree visualization reference. IEEE Computer
Graphics and Applications 2011;31(6):11–5. doi:10.1109/MCG.2011.
103.

17

http://dx.doi.org/10.1109/TVCG.2014.2346331
http://viscg.uni-muenster.de/publications/2010/LWR10/grapp10-tf.pdf
http://viscg.uni-muenster.de/publications/2010/LWR10/grapp10-tf.pdf
http://dx.doi.org/10.1109/TVCG.2007.70584
http://dx.doi.org/10.1109/TVCG.2007.70584
http://dx.doi.org/10.1145/2133806.2133821
http://dx.doi.org/10.1145/2133806.2133821
http://dx.doi.org/10.1145/2468356.2479611
http://dx.doi.org/10.1145/1268517.1268534
http://dx.doi.org/10.1145/1449715.1449732
http://dx.doi.org/10.1109/tvcg.2009.195
http://dx.doi.org/10.1109/TVCG.2011.213
http://dx.doi.org/10.1007/978-1-4615-1177-9_27
http://dx.doi.org/10.1109/MCG.2011.103
http://dx.doi.org/10.1109/MCG.2011.103

[12] Wickham H, Hofmann H. Product plots. IEEE Transactions on Visualiza-
tion and Computer Graphics 2011;17(12):2223–30. doi:10.1109/TVCG.
2011.227.

[13] Kruskal JB, Landwehr JM. Icicle plot: Better displays for hierarchical
clustering. The American Statistician 1983;37(2):162–8. doi:10.2307/
2685881.

[14] O’Donnell R, Dix A, Ball LJ. Exploring the PieTree for representing
numerical hierarchical data. In: Bryan-Kinns N, Blandford A, Curzon P,
Nigay L, editors. People and Computers XX – Engage: Proceedings of
the Human Computer Interaction 2006. Springer. ISBN 9781846285882;
2006, p. 239–54. doi:10.1007/978-1-84628-664-3_18.

[15] Lü HR, Fogarty J. Cascaded Treemaps: Examining the visibility
and stability of structure in Treemaps. In: Bartram L, Shaw C, edi-
tors. GI’08: Proceedings of the Graphics Interface Conference. Cana-
dian Information Processing Society. ISBN 9781568814230; 2008,
p. 259–66. URL: http://portal.acm.org/citation.cfm?doid=
1375714.1375758.

[16] Stasko J, Zhang E. Focus+context display and navigation techniques for
enhancing radial, space-filling hierarchy visualizations. In: Mackinlay
JD, Roth SF, Keim DA, editors. InfoVis’00: Proceedings of the IEEE
Symposium on Information Visualization. IEEE Computer Society. ISBN
0769508049; 2000, p. 57–65. doi:10.1109/INFVIS.2000.885091.

[17] Grammel L, Bennett C, Tory M, Storey MA. A survey of visual-
ization construction user interfaces. In: Hlawitschka M, Weinkauf
T, editors. EuroVis’13: Short Paper Proceedings of the Eurograph-
ics/IEEE Symposium on Visualization. Eurographics Association. ISBN
9783905673999; 2013, p. 19–23. doi:10.2312/PE.EuroVisShort.
EuroVisShort2013.019-023.

[18] Harris RL. Information Graphics: A Comprehensive Illustrated Refer-
ence. Oxford University Press; 1996. ISBN 0964692503.

[19] Keller PR, Keller MM. Visual Cues: Practical Data Visualization. IEEE
Computer Society; 1993. ISBN 0818631023.

[20] Aigner W, Miksch S, Schumann H, Tominski C. Visualization of Time-
Oriented Data. Springer; 2011. ISBN 0857290789. doi:10.1007/
978-0-85729-079-3.

[21] Figueiras A. A typology for data visualization on the web. In: Banissi E,
Azzag H, Bannatyne MWM, Bertschi S, Bouali F, Burkhard R, et al., ed-
itors. IV’13: Proceedings of the International Conference on Information
Visualisation. IEEE Computer Society. ISBN 9780769550497; 2013, p.
351–8. doi:10.1109/IV.2013.45.

[22] Smith KB. Typologies, taxonomies, and the benefits of policy classi-
fication. Policy Studies Journal 2002;30(3):379–95. doi:10.1111/j.
1541-0072.2002.tb02153.x.

[23] Wilkinson L. The Grammar of Graphics. Statistics and Computing; 2nd
ed.; Springer; 2005. ISBN 0387245448. doi:10.1007/0-387-28695-0.

[24] Mackinlay J. Automating the design of graphical presentations of rela-
tional information. ACM Transactions on Graphics 1986;5(2):110–41.
doi:10.1145/22949.22950.

[25] Heer J, Bostock M. Declarative language design for interactive visu-
alization. IEEE Transactions on Visualization and Computer Graphics
2010;16(6):1149–56. doi:10.1109/TVCG.2010.144.

[26] Bostock M, Ogievetsky V, Heer J. D3: Data-driven docu-
ments. IEEE Transactions on Visualization and Computer Graphics
2011;17(12):2301–9. doi:10.1109/TVCG.2011.185.

[27] Stolte C, Tang D, Hanrahan P. Polaris: A system for query, analysis,
and visualization of multidimensional databases. Communications of the
ACM 2008;51(11):75–84. doi:10.1145/1400214.1400234.

[28] Mackinlay J, Hanrahan P, Stolte C. Show me: Automatic presentation
for visual analysis. IEEE Transactions on Visualization and Computer
Graphics 2007;13(6):1137–44. doi:10.1109/TVCG.2007.70594.

[29] Slingsby A, Dykes J, Wood J. Configuring hierarchical layouts to address
research questions. IEEE Transactions on Visualization and Computer
Graphics 2009;15(6):977–84. doi:10.1109/TVCG.2009.128.

[30] Stolper CD, Kahng M, Lin Z, Foerster F, Goel A, Stasko J, et al. GLO-
STIX: Graph-Level Operations for Specifying Techniques and Interactive
eXploration. IEEE Transactions on Visualization and Computer Graphics
2014;20(12):2320–8. doi:10.1109/TVCG.2014.2346444.

[31] Schulz HJ, Akbar Z, Maurer F. A generative layout approach for
rooted tree drawings. In: Carpendale S, Chen W, Hong S, editors.
PacificVis’13: Proceedings of the IEEE Pacific Visualization Sympo-
sium. IEEE Computer Society. ISBN 9781467347983; 2013, p. 225–32.

doi:10.1109/PacificVis.2013.6596149.
[32] Smeltzer K. A language for visualization variation and transformation. In:

Fleming SD, Fish A, Scaffidi C, editors. VL/HCC’14: Proceedings of the
IEEE Symposium on Visual Languages and Human-Centric Computing.
IEEE Computer Society. ISBN 9781479940356; 2014, p. 195–6. doi:10.
1109/VLHCC.2014.6883052.

[33] Myers BA, Goldstein J, Goldberg MA. Creating charts by demonstra-
tion. In: Adelson B, Dumais ST, Olson JS, editors. CHI’94: Proceed-
ings of the SIGCHI Conference on Human Factors in Computing Sys-
tems. ACM Press. ISBN 0897916506; 1994, p. 106–11. doi:10.1145/
191666.191715.

[34] Roth SF, Kolojejchick J, Mattis J, Goldstein J. Interactive graphic design
using automatic presentation knowledge. In: Adelson B, Dumais ST,
Olson JS, editors. CHI’94: Proceedings of the SIGCHI Conference on
Human Factors in Computing Systems. ACM Press. ISBN 0897916506;
1994, p. 112–7. doi:10.1145/191666.191719.

[35] Satyanarayan A, Heer J. Lyra: An interactive visualization design envi-
ronment. Computer Graphics Forum 2014;33(3):351–60. doi:10.1111/
cgf.12391.

[36] Satyanarayan A, Wongsuphasawat K, Heer J. Declarative interaction de-
sign for data visualization. In: UIST’14: Proceedings of the Annual
ACM Symposium on User Interface Software and Technology. ACM
Press. ISBN 9781450330695; 2014, p. 669–78. doi:10.1145/2642918.
2647360.

[37] Chao WO, Munzner T, van de Panne M. Rapid pen-centric authoring of
improvisational visualizations with NapkinVis. In: InfoVis’10: Poster
at the IEEE Conference on Information Visualization. 2010,URL: http:
//www.cs.ubc.ca/~wochao/napkinvis/.

[38] Bostock M, Heer J. Protovis: A graphical toolkit for visualization. IEEE
Transactions on Visualization and Computer Graphics 2009;15(6):1121–
8. doi:10.1109/TVCG.2009.174.

[39] Kazman R, Carriére J. Rapid prototyping of information visualizations
using VANISH. In: Gershon ND, Card S, Eick SG, editors. InfoVis’96:
Proceedings of the IEEE Symposium on Information Visualization. IEEE
Computer Society. ISBN 081867668X; 1996, p. 21–8. doi:10.1109/
INFVIS.1996.559212.

[40] Fujishiro I, Furuhata R, Ichikawa Y, Takeshima Y. GADGET/IV: A tax-
onomic approach to semi-automatic design of information visualization
applications using modular visualization environment. In: Mackinlay
JD, Roth SF, Keim DA, editors. InfoVis’00: Proceedings of the IEEE
Symposium on Information Visualization. IEEE Computer Society. ISBN
0769508049; 2000, p. 77–83. doi:10.1109/INFVIS.2000.885093.

[41] Ren D, Höllerer T, Yuan X. iVisDesigner: Expressive interactive design
of information visualizations. IEEE Transactions on Visualization and
Computer Graphics 2014;20(12):2092–101. doi:10.1109/TVCG.2014.
2346291.

[42] Koop D, Scheidegger CE, Callahan SP, Vo HT, Freire J, Silva CT. Vis-
Complete: Automating suggestions for visualization pipelines. IEEE
Transactions on Visualization and Computer Graphics 2008;14(6):1691–
8. doi:10.1109/TVCG.2008.174.

[43] Baudel T, Broeksema B. Capturing the design space of sequential space-
filling layouts. IEEE Transactions on Visualization and Computer Graph-
ics 2012;18(12):2593–602. doi:10.1109/TVCG.2012.205.

[44] Schulz HJ, Hadlak S, Schumann H. The design space of implicit hi-
erarchy visualization: A survey. IEEE Transactions on Visualization and
Computer Graphics 2011;17(4):393–411. doi:10.1109/TVCG.2010.79.

[45] Viau C, McGuffin MJ. ConnectedCharts: Explicit visualization
of relationships between data graphics. Computer Graphics Forum
2012;31(3pt4):1285–94. doi:10.1111/j.1467-8659.2012.03121.x.

[46] Card SK, Mackinlay J. The structure of the information visualization de-
sign space. In: Dill J, Gershon ND, editors. InfoVis’97: Proceedings of
the IEEE Symposium on Information Visualization. IEEE Computer So-
ciety. ISBN 0818681896; 1997, p. 92–9. doi:10.1109/INFVIS.1997.
636792.

[47] Marks J, Andalman B, Beardsley P, Freeman W, Gibson S, Hodgins J,
et al. Design galleries: A general approach to setting parameters for
computer graphics and animation. In: Whitted T, editor. ACM SIG-
GRAPH’97: Proceedings of the International Conference on Computer
Graphics and Interactive Techniques. ACM Press/Addison-Wesley. ISBN
0897918967; 1997, p. 389–400. doi:10.1145/258734.258887.

[48] Andalman B, Ryall K, Ruml W, Marks J, Shieber S. Design gallery

18

http://dx.doi.org/10.1109/TVCG.2011.227
http://dx.doi.org/10.1109/TVCG.2011.227
http://dx.doi.org/10.2307/2685881
http://dx.doi.org/10.2307/2685881
http://dx.doi.org/10.1007/978-1-84628-664-3_18
http://portal.acm.org/citation.cfm?doid=1375714.1375758
http://portal.acm.org/citation.cfm?doid=1375714.1375758
http://dx.doi.org/10.1109/INFVIS.2000.885091
http://dx.doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
http://dx.doi.org/10.2312/PE.EuroVisShort.EuroVisShort2013.019-023
http://dx.doi.org/10.1007/978-0-85729-079-3
http://dx.doi.org/10.1007/978-0-85729-079-3
http://dx.doi.org/10.1109/IV.2013.45
http://dx.doi.org/10.1111/j.1541-0072.2002.tb02153.x
http://dx.doi.org/10.1111/j.1541-0072.2002.tb02153.x
http://dx.doi.org/10.1007/0-387-28695-0
http://dx.doi.org/10.1145/22949.22950
http://dx.doi.org/10.1109/TVCG.2010.144
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1145/1400214.1400234
http://dx.doi.org/10.1109/TVCG.2007.70594
http://dx.doi.org/10.1109/TVCG.2009.128
http://dx.doi.org/10.1109/TVCG.2014.2346444
http://dx.doi.org/10.1109/PacificVis.2013.6596149
http://dx.doi.org/10.1109/VLHCC.2014.6883052
http://dx.doi.org/10.1109/VLHCC.2014.6883052
http://dx.doi.org/10.1145/191666.191715
http://dx.doi.org/10.1145/191666.191715
http://dx.doi.org/10.1145/191666.191719
http://dx.doi.org/10.1111/cgf.12391
http://dx.doi.org/10.1111/cgf.12391
http://dx.doi.org/10.1145/2642918.2647360
http://dx.doi.org/10.1145/2642918.2647360
http://www.cs.ubc.ca/~wochao/napkinvis/
http://www.cs.ubc.ca/~wochao/napkinvis/
http://dx.doi.org/10.1109/TVCG.2009.174
http://dx.doi.org/10.1109/INFVIS.1996.559212
http://dx.doi.org/10.1109/INFVIS.1996.559212
http://dx.doi.org/10.1109/INFVIS.2000.885093
http://dx.doi.org/10.1109/TVCG.2014.2346291
http://dx.doi.org/10.1109/TVCG.2014.2346291
http://dx.doi.org/10.1109/TVCG.2008.174
http://dx.doi.org/10.1109/TVCG.2012.205
http://dx.doi.org/10.1109/TVCG.2010.79
http://dx.doi.org/10.1111/j.1467-8659.2012.03121.x
http://dx.doi.org/10.1109/INFVIS.1997.636792
http://dx.doi.org/10.1109/INFVIS.1997.636792
http://dx.doi.org/10.1145/258734.258887

browsers based on 2D and 3D graph drawing. In: DiBattista G, editor.
GD’97: Proceedings of the International Symposium on Graph Draw-
ing; vol. 1353 of Lecture Notes in Computer Science. Springer. ISBN
3540639381; 1997, p. 322–9. doi:10.1007/3-540-63938-1_76.

[49] Wu Y, Xu A, Chan MY, Qu H, Guo P. Palette-style volume visualiza-
tion. In: Hege HC, Machiraju R, editors. VG’07: Proceedings of the
Conference on Visualization and Data Analysis. Eurographics Associa-
tion. ISBN 9783905674033; 2007, p. 33–40. doi:10.2312/VG/VG07/
033-040.

[50] Biedl T, Marks J, Ryall K, Whitesides S. Graph multidrawing: Find-
ing nice drawings without defining nice. In: Whitesides SH, editor.
GD’98: Proceedings of the International Symposium on Graph Draw-
ing; vol. 1547 of Lecture Notes in Computer Science. Springer. ISBN
9783540654735; 1998, p. 347–55. doi:10.1007/3-540-37623-2_26.

[51] Jankun-Kelly T, Ma KL. Visualization exploration and encapsulation
via a spreadsheet-like interface. IEEE Transactions on Visualization and
Computer Graphics 2001;7(3):275–87. doi:10.1109/2945.942695.

[52] Shapira L, Shamir A, Cohen-Or D. Image appearance exploration by
model-based navigation. Computer Graphics Forum 2009;28(2):629–38.
doi:10.1111/j.1467-8659.2009.01403.x.

[53] Ma KL. Image graphs – a novel approach to visual data exploration. In:
Ebert D, Gross M, Hamann B, editors. Visualization’99: Proceedings of
the IEEE Conference on Visualization. IEEE Computer Society. ISBN
078035897X; 1999, p. 81–8. doi:10.1109/visual.1999.809871.

[54] Andrews K, Heidegger H. Information slices: Visualising and exploring
large hierarchies using cascading, semi-circular discs. In: Wills G, Dill
J, editors. InfoVis’98: Proceedings of the IEEE Symposium on Informa-
tion Visualization. IEEE Computer Society. ISBN 0818690933; 1998,
p. 9–12. URL: http://www.iicm.tugraz.at/liberation/iicm_
papers/ivis98.pdf; late Breaking Hot Topic Paper.

[55] Chuah MC. Dynamic aggregation with circular visual designs. In: Wills
G, Dill J, editors. InfoVis’98: Proceedings of the IEEE Symposium on
Information Visualization. IEEE Computer Society. ISBN 0818690933;
1998, p. 35–43. doi:10.1109/INFVIS.1998.729557.

[56] Kerracher N, Kennedy J, Chalmers K. The design space of temporal
graph visualisation. In: Elmqvist N, Hlawitschka M, Kennedy J, ed-
itors. EuroVis’14: Short Paper Proceedings of the Eurographics/IEEE
Symposium on Visualization. Eurographics Association; 2014, p. 7–11.
doi:10.2312/eurovisshort.20141149.

[57] Javed W, Elmqvist N. Exploring the design space of composite visualiza-
tion. In: Hauser H, Kobourov S, Qu H, editors. PacificVis’12: Proceed-
ings of the IEEE Pacific Visualization Symposium. IEEE Computer So-
ciety. ISBN 9781467308649; 2012, p. 1–8. doi:10.1109/PacificVis.
2012.6183556.

[58] Johnson B, Shneiderman B. Tree-Maps: A space-filling approach to the
visualization of hierarchical information structures. In: Nielson GM,
Rosenblum L, editors. Visualization’91: Proceedings of the IEEE Con-
ference on Visualization. IEEE Computer Society. ISBN 0818622458;
1991, p. 284–91. doi:10.1109/VISUAL.1991.175815.

[59] Bruls M, Huizing K, van Wijk J. Squarified Treemaps. In: de Leeuw W,
van Liere R, editors. VisSym’00: Proceedings of the Joint Eurographics
- IEEE TCVG Symposium on Visualization. Eurographics Association.
ISBN 3211835156; 2000, p. 33–42. URL: http://diglib.eg.org/
EG/DL/WS/VisSym/VisSym00/033-042.pdf.

[60] Li S, Crouser RJ, Griffin G, Gramazio C, Schulz HJ, Childs H, et al. Ex-
ploring hierarchical visualization designs using phylogenetic trees. In:
Kao DL, Hao MC, Livingston MA, Wischgoll T, editors. VDA’15: Pro-
ceedings of the Conference on Visualization and Data Analysis. SPIE;
2015, p. 939709:1–14. doi:10.1117/12.2078857.

[61] Brosz J, Nacenta MA, Pusch R, Carpendale S, Hurter C. Transmo-
grification: Casual manipulation of visualizations. In: UIST’13: Pro-
ceedings of the Annual ACM Symposium on User Interface Software
and Technology. ACM Press. ISBN 9781450322683; 2013, p. 97–106.
doi:10.1145/2501988.2502046.

[62] Heer J, Robertson GG. Animated transitions in statistical data graph-
ics. IEEE Transactions on Visualization and Computer Graphics
2007;13(6):1240–7. doi:10.1109/TVCG.2007.70539.

[63] Bhagavatula S, Rheingans P, des Jardins M. Discovering high-level pa-
rameters for visualization design. In: Brodlie K, Duke D, Joy KI, editors.
EuroVis’05: Proceedings of the Joint Eurographics - IEEE VGTC Sym-
posium on Visualization. Eurographics Association. ISBN 3905673193;

2005, p. 255–62. doi:10.2312/VisSym/EuroVis05/255-262.
[64] Lindow N, Baum D, Hege HC. Perceptually linear parameter varia-

tions. Computer Graphics Forum 2012;31(2pt3):535–44. doi:10.1111/
j.1467-8659.2012.03054.x.

[65] Dragicevic P, Bezerianos A, Javed W, Elmqvist N, Fekete JD. Tem-
poral distortion for animated transitions. In: CHI’11: Proceedings of
the International Conference on Human Factors in Computing Systems.
ACM Press. ISBN 9781450302289; 2011, p. 2009–18. doi:10.1145/
1978942.1979233.

[66] Beham M, Herzner W, Gröller E, Kehrer J. Cupid: Cluster-based
exploration of geometry generators with parallel coordinates and ra-
dial trees. IEEE Transactions on Visualization and Computer Graphics
2014;20(12):1693–702. doi:10.1109/TVCG.2014.2346626.

[67] Bruckner S, Möller T. Result-driven exploration of simulation param-
eter spaces for visual effects design. IEEE Transactions on Visualiza-
tion and Computer Graphics 2010;16(6):1468–76. doi:10.1109/TVCG.
2010.190.

[68] Frank AU, Timpf S. Multiple representations for cartographic objects in
a multi-scale tree – an intelligent graphical zoom. Computers & Graphics
1994;18(6):823–9. doi:10.1016/0097-8493(94)90008-6.

[69] Ellis G, Dix A. The plot, the clutter, the sampling and its lens: occlu-
sion measures for automatic clutter reduction. In: Celentano A, Mus-
sio P, editors. AVI’06: Proceedings of the Working Conference on Ad-
vanced Visual Interfaces. ACM Press. ISBN 1595933530; 2006, p. 266–
9. doi:10.1145/1133265.1133318.

[70] Ruchikachorn P, Mueller K. Learning visualizations by analogy: Pro-
moting visual literacy through visualization morphing. IEEE Trans-
actions on Visualization and Computer Graphics 2015;21(9):1028–44.
doi:10.1109/TVCG.2015.2413786.

[71] Lasram A, Lefebvre S, Damez C. Scented sliders for procedural textures.
In: Andujar C, Puppo E, editors. EG’12: Short Paper Proceedings of the
Annual Conference of the European Association for Computer Graphics.
Eurographics Association; 2012, p. 45–8. doi:10.2312/conf/EG2012/
short/045-048.

[72] Bladh T, Carr DA, Scholl J. Extending tree-maps to three dimen-
sions: A comparative study. In: Masoodian M, Jones S, Rogers B, ed-
itors. APCHI’04: Proceedings of the Asia Pacific Conference on Com-
puter Human Interaction; vol. 3101 of Lecture Notes in Computer Sci-
ence. Springer. ISBN 9783540223122; 2004, p. 50–9. doi:10.1007/
978-3-540-27795-8_6.

[73] Kong N, Heer J, Agrawala M. Perceptual guidelines for creating rectangu-
lar treemaps. IEEE Transactions on Visualization and Computer Graphics
2010;16(6):990–8. doi:10.1109/TVCG.2010.186.

[74] Bederson BB, Shneiderman B, Wattenberg M. Ordered and quantum
treemaps: Making effective use of 2D space to display hierarchies. ACM
Transactions on Graphics 2002;21(4):833–54. doi:10.1145/571647.
571649.

[75] Schreck T, Keim D, Mansmann F. Regular treemap layouts
for visual analysis of hierarchical data. In: Slavı́k P, editor.
SCCG’06: Proceedings of the Spring Conference on Computer Graph-
ics. Comenius University, Bratislava. ISBN 8022321753; 2006, p.
184–91. URL: http://www.inf.uni-konstanz.de/gk/pubsys/

publishedFiles/ScKeMa06.pdf.
[76] Telea A. Combining extended table lens and treemap techniques for vi-

sualizing tabular data. In: Santos BS, Ertl T, Joy KI, editors. EuroVis’06:
Proceedings of the Joint Eurographics - IEEE VGTC Symposium on Vi-
sualization. Eurographics Association. ISBN 3905673312; 2006, p. 51–8.
doi:10.2312/VisSym/EuroVis06/051-058.

[77] Kobayashi A, Misue K, Tanaka J. Edge equalized treemaps. In: Banissi
E, Bertschi S, Forsell C, Johansson J, Kenderdine S, Marchese FT, et al.,
editors. IV’12: Proceedings of the International Conference on Informa-
tion Visualisation. IEEE Computer Society. ISBN 9780769547718; 2012,
p. 7–12. doi:10.1109/IV.2012.12.

[78] Huang ML, Huang TH, Zhang J. TreemapBar: Visualizing additional
dimensions of data in bar chart. In: Banissi E, Stuart L, Wyeld TG, Jern
M, Andrienko G, Memon N, et al., editors. IV’09: Proceedings of the
International Conference on Information Visualisation. IEEE Computer
Society. ISBN 9780769537337; 2009, p. 98–103. doi:10.1109/IV.
2009.22.

[79] Claessen JHT, van Wijk JJ. Flexible linked axes for multivariate data vi-
sualization. IEEE Transactions on Visualization and Computer Graphics

19

http://dx.doi.org/10.1007/3-540-63938-1_76
http://dx.doi.org/10.2312/VG/VG07/033-040
http://dx.doi.org/10.2312/VG/VG07/033-040
http://dx.doi.org/10.1007/3-540-37623-2_26
http://dx.doi.org/10.1109/2945.942695
http://dx.doi.org/10.1111/j.1467-8659.2009.01403.x
http://dx.doi.org/10.1109/visual.1999.809871
http://www.iicm.tugraz.at/liberation/iicm_papers/ivis98.pdf
http://www.iicm.tugraz.at/liberation/iicm_papers/ivis98.pdf
http://dx.doi.org/10.1109/INFVIS.1998.729557
http://dx.doi.org/10.2312/eurovisshort.20141149
http://dx.doi.org/10.1109/PacificVis.2012.6183556
http://dx.doi.org/10.1109/PacificVis.2012.6183556
http://dx.doi.org/10.1109/VISUAL.1991.175815
http://diglib.eg.org/EG/DL/WS/VisSym/VisSym00/033-042.pdf
http://diglib.eg.org/EG/DL/WS/VisSym/VisSym00/033-042.pdf
http://dx.doi.org/10.1117/12.2078857
http://dx.doi.org/10.1145/2501988.2502046
http://dx.doi.org/10.1109/TVCG.2007.70539
http://dx.doi.org/10.2312/VisSym/EuroVis05/255-262
http://dx.doi.org/10.1111/j.1467-8659.2012.03054.x
http://dx.doi.org/10.1111/j.1467-8659.2012.03054.x
http://dx.doi.org/10.1145/1978942.1979233
http://dx.doi.org/10.1145/1978942.1979233
http://dx.doi.org/10.1109/TVCG.2014.2346626
http://dx.doi.org/10.1109/TVCG.2010.190
http://dx.doi.org/10.1109/TVCG.2010.190
http://dx.doi.org/10.1016/0097-8493(94)90008-6
http://dx.doi.org/10.1145/1133265.1133318
http://dx.doi.org/10.1109/TVCG.2015.2413786
http://dx.doi.org/10.2312/conf/EG2012/short/045-048
http://dx.doi.org/10.2312/conf/EG2012/short/045-048
http://dx.doi.org/10.1007/978-3-540-27795-8_6
http://dx.doi.org/10.1007/978-3-540-27795-8_6
http://dx.doi.org/10.1109/TVCG.2010.186
http://dx.doi.org/10.1145/571647.571649
http://dx.doi.org/10.1145/571647.571649
http://www.inf.uni-konstanz.de/gk/pubsys/publishedFiles/ScKeMa06.pdf
http://www.inf.uni-konstanz.de/gk/pubsys/publishedFiles/ScKeMa06.pdf
http://dx.doi.org/10.2312/VisSym/EuroVis06/051-058
http://dx.doi.org/10.1109/IV.2012.12
http://dx.doi.org/10.1109/IV.2009.22
http://dx.doi.org/10.1109/IV.2009.22

2011;17(12):2310–6. doi:10.1109/TVCG.2011.201.
[80] Baudel T. A canonical representation of data-linear visualization algo-

rithms. arXivorg e-print service 2014;1412.4246. URL: http://arxiv.
org/abs/1412.4246.

[81] Hurter C, Taylor R, Carpendale S, Telea A. Color tunneling: Interactive
exploration and selection in volumetric datasets. In: Brandes U, Hagen H,
Takahashi S, editors. PacificVis’14: Proceedings of the IEEE Pacific Vi-
sualization Symposium. IEEE Computer Society. ISBN 9781479928736;
2014, p. 225–32. doi:10.1109/PacificVis.2014.61.

20

http://dx.doi.org/10.1109/TVCG.2011.201
http://arxiv.org/abs/1412.4246
http://arxiv.org/abs/1412.4246
http://dx.doi.org/10.1109/PacificVis.2014.61

	Introduction
	Related Work
	Enumerative Approaches
	Constructive Approaches
	Descriptive Approaches
	The Gap between Choosing and Creating Visualizations

	Defining Parametric Visualization Configurations
	A General Approach to Parametric Visualization Designs
	Visualization Domain: What to capture?
	Visualization Specification: How to capture it?

	Parametric Product Plots
	Parametric Tree Layouts

	Interfaces for Parametric Visualization Configurations
	Usage Examples and User Study
	Usage Examples
	User Study

	Extending Parametric Visualization Configurations
	Additional Presets
	Further Design Dimensions
	Parametric Configuration Combinations

	Conclusion

