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ABSTRACT
Regenerative systems are able to overcome significant perturba-
tions, and maintain autonomously their functionality in dynamic
and uncertain environments. More and more this ability of biologi-
cal systems plays a role in designing technical systems, e.g., in sen-
sor networks, as well. Important properties of regenerative systems
are their dynamic structures and their operation on different spatial
and temporal scales. Those propel the development of new model-
ing, simulation, and visualization methods. Among them, variants
of the π-calculus formalism, a portfolio of Gillespie related spatial
simulation algorithms, means for automatically configuring simu-
lators, and the integrated visualization methods, that make use of
innovative layouts and linked and coordinated views target chal-
lenges in analyzing biological regenerative systems. They provide
a basis for analyzing regenerative systems in general by means of
simulation.

1. INTRODUCTION
More and more computer systems are required to act independently,
flexibly, and autonomously [18]. The agent metaphor has helped
nurturing systems that work in a distributed and decentralized man-
ner and adapt themselves to changes in their environment [54].
This ability of systems is often subsumed under the term self-X,
e.g., self-organizing, self-optimizing, or self-healing. Self-healing
or the ability to regenerate refers to the ability of a system to main-
tain its functionality in spite of significant perturbations from its
environment and faults in its components. In the ideal case regen-
eration implies not only compensation but restoring functionalities.
In contrast to other self-X concepts, it also bears in itself its goal
and with it a measure of success. However, up to now it is still not
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clear how to achieve this ability and it appears natural to turn to bi-
ological systems for inspiration as regeneration appears as a salient
feature of those.

Biologically inspired computing seeks to adopt specific mecha-
nisms of biological systems to instill flexibility and autonomy, or
the ability to regenerate, into the designed systems. It appears natu-
ral to use an experimental technique like computer simulation for a
better understanding and evaluation of these approaches. Computer
simulation, as dry-lab experimentation, is also on its way toward es-
tablishing itself as a method of scientific investigation in molecular
and cell biology, which becomes particularly apparent in the field of
systems biology [27]. As a highly dynamic field, systems biology
is fast in adopting concepts from other fields, including computer
science and engineering [46].

In traditional computer science, simulation is an established method
for evaluating the performance, and gaining insight into the scala-
bility and robustness of systems. However, despite its wide use,
there is strong evidence that computer scientists should not only do
more experiments but also do better ones, e.g., [51, 39]. Unlike
biology, computer science does not see itself as an experimental
branch of science, and most experiments constitute rather proofs of
concept than thorough experimental evaluation studies. However,
the more autonomous computer science systems become the more
a shift in perception appears overdue.

Modeling and simulation forms a common and uniting ground ad-
vancing research on both technical and biological regenerative sys-
tems and facilitating the transfer of concepts between both. Impor-
tant properties of regenerative systems are their variable structures
and their operation on different temporal and spatial scales. Due
to these properties, off-the-shelf modeling and simulation tools and
methods will hardly suffice. This leads to new modeling and simu-
lation methods, among which, due to the complexity of this type of
systems, visualization methods play a central role [37].

In the following we will explore some of the challenges that regen-
erative systems provide for modeling, simulation, and visualization
methods, and hopefully also scratch the potential these methods
bear as a common platform for advancing work on regenerative sys-
tems in general. We will use methods developed for regenerative
biological systems to illuminate the challenges and opportunities
that regenerative systems offer. First let us shortly discuss aspects
of regeneration by examples taken from biology and computer sci-
ence respectively.



2. REGENERATIVE SYSTEMS
As already mentioned regeneration is a salient feature of biological
systems. Variable structures and the operation on different tempo-
ral and spatial scales are central properties of these systems. Over
the last decades these properties also gained importance in techni-
cal systems. The agent metaphor permeates many current software
designs, and with this the need for variable structure modeling in
realizing self-X systems. Distributed ad-hoc computing and sensor
networks are examples, where also the second property of regener-
ative systems, i.e., the operation at different spatial and temporal
scales, plays a major role. To achieve regeneration, whether in
terms of restoring functionality or in terms of “simple” compen-
sation, requires further features.

Technical systems are increasingly required to manage themselves
fully autonomously, following high level objectives. This implies
distributed computational environments that shall work with often
limited resources of bandwidth, energy, and processing capability
and shall be able to overcome perturbations and faults in their com-
ponents. Biological systems have demonstrated to be efficient in
dealing with many of these problems. Therefore, significant inter-
est in identifying and applying suitable biological concepts exist,
particularly in the area of sensor networks.

2.1 Biological cellular systems
Differentiation of cells is the process by which cells specialize.
This implies that a cell’s pattern of behavior, composition, and in-
teraction typically changes. Signal transduction pathways are es-
sential processes for converting a signal or stimulus into another,
and for initiating and controlling the differentiation. Among those
the canonical Wnt pathway is assumed to play a key role in differ-
entiation of neural progenitor cells and thus for the regeneration of
the brain (see 2.2).

The main outcome of the Wnt/β-catenin signaling pathway is an
increase of the amount of β-catenin in response to Wnt molecules
binding to receptors at the outside of the plasma membrane. In
the absence of Wnt, a degradation complex efficiently reduces the
amount of β-catenin. In the presence of Wnt, the degradation com-
plex gets deactivated and consequently, due to its constant produc-
tion, the amount of β-catenin increases. This affects the regulation
and transcription of genes and accompanies the cells in their spe-
cialization (differentiation) process. Although formal models of the
Wnt pathway exist, e.g., [30], many details of the Wnt signaling
pathway are still not well understood. They motivate further work,
e.g., analyzing the impact of cell-specificity, compartment specific
dynamics, and cell cycle on the Wnt signaling pathway [33].

2.2 Biological neuronal networks
Biological neural networks are a prime example of systems with
variable structure. Neurons, which are cells already undergone a
cell differentiation process, communicate with each other via elec-
trical discharges, so-called action potentials or ’spikes’ (all-or-none
binary signals). The connectivity between neurons depends on the
history of these spikes. The communication between two neurons
is realized via a synapse, and in terms of propagating the electrical
signals the communication is uni-directional. One can distinguish
between a presynaptic (’sending’) and a postsynaptic (’receiving’)
neuron (Figure 1a). In the neocortex of mammals, a single neu-
ron may make connections to approx. 10000 presynaptic neurons,
where the signals integrated from the presynaptic neurons deter-
mine as to whether a spike is generated in the postsynaptic neuron.
It has been hypothesized by Hebb [16] that the strength of a synapse
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Figure 1: Illustration of neuronal communication and synap-
tic plasticity. a) A single postsynaptic neuron in the neocortex
may integrate signals (all-or-none spikes, thick lines) from up
to 10000 presynaptic neurons. b) The strength of a synaptic
connection is increased if the presynaptic neuron sends a spike
before a postsynaptic spike (upper row), whereas it is decreased
if the presynaptic spike comes after the postsynaptic spike (bot-
tom row).

between two neurons is increased, if the presynaptic neuron repeat-
edly contributes (in terms of sending spikes to it) in having the post-
synaptic neuron emitting a spike. This way of altering the connec-
tions between neurons is referred to as activity-dependent synaptic
plasticity.

Recently, it has been found experimentally [3] that the timing of
spikes emitted by the pre- and postsynaptic neurons is crucial in
shaping the connections between them (Figure 1b). In particular, it
has been found that only when the presynaptic neuron sends a spike
before a postsynaptic spike, the synapse is strengthened, whereas it
is weakened when the presynaptic neuron sends a spike after a post-
synaptic spike. Here, ’before’ and ’after’ refers to time-windows on
the order of a few tens of milliseconds. This form of plasticity is
referred to as spike-time dependent plasticity (see [36] for a review
on models).

Activity-dependent synaptic plasticity in general, and spike-time
dependent plasticity in particular, are believed to be the underly-
ing mechanisms of learning, memory and the ontogenetic devel-
opment of the nervous system. In the context of regenerative sys-
tems the latter is of primary interest. Biological neuronal systems
are not regenerative in the sense of self-healing. Instead of gen-
erating new neurons to recover lost functions (like after a stroke),
the remaining neurons dynamically reorganize by the mechanism
of activity-dependent plasticity in order to compensate lost func-
tions (like the motor control of limbs). During development, the
nervous system establishes connections based on the spike activity
of neurons, because not the detailed connectivity between neurons,
but presumably only the corresponding algorithms to set it up are
stored in the genome. In other words, the activity of biological
neuronal networks, which is often driven by sensory stimulations
from the environment, shapes the network connectivity, and the
network connectivity shapes the network activity. During develop-
ment these activity-dependent processes lead to a ’self-assembly’
of the nervous system, and after perturbation they help to restore
lost functions.

From a therapeutic perspective it is of interest to generate new neu-
rons by controlling the process of cell differentiation and to make
use of activity-dependent synaptic plasticity in order to integrate
them into damaged parts of the nervous system, thereby helping
the nervous system to become regenerative also in terms of self-



Figure 2: Prolongation of network lifetime by bio-inspired role changing [42]; (A) Example network cluster with different net-
work roles, (B) Cluster energy consumption using reactive, centralized role change protocol, (C) Cluster energy consumption using
proactive, bio-inspired and energy-aware role change protocol.

healing. However, given that spike-time dependent plasticity and
the recovery of lost functions occur on vastly different spatial and
temporal scales, new modeling and simulation concepts and tech-
niques are needed, which can handle variable structures and differ-
ent spatial and temporal scales.

2.3 Sensor networks
Wireless Sensor Networks (WSN) are composed of sensor nodes,
which measure physical parameters in regions of interest, such as
temperature, brightness, presence of objects etc., and send mea-
sured data to a data sink where the information is processed. As
sensor nodes are left unattended after deployment, they are usually
battery powered. Therefore, energy and corresponding computa-
tional power are most critical resources. One of the main com-
ponents of energy consumption is wireless communication that is
usually carried out by on-board radio transceivers. During radio
signal propagation, the transmission power decreases proportion-
ally to the square of distance or worse. For nodes with limited
transmission power, transmission range as well as bandwidth and,
hence, communication capabilities are also highly constrained. Im-
plementation goals of large wireless sensor networks are quality of
service, i.e., functionality and coverage of all relevant parameters,
maximized lifetime despite limited batteries, and a well-balanced
compromise between accuracy and effort. On the other hand, lim-
ited resources increase the probability of failures due to node errors,
wireless communication perturbations, or directed attacks. Failures
may yield wrong information about local physical values or may
lead to completely unreachable and paralyzed network regions.
Therefore, biologically and socially inspired principles have been
thoroughly researched since some time to improve WSN behavior
even under critical circumstances. Some principles with their tech-
nical applications impact will be briefly described.

After deployment and for reorganizing after faults, WSN benefit
from self-organization by setting up a proper wireless interconnec-
tion structure, for example a flat mesh or a hierarchically layered
network. In [45] the authors present a simple and energy effi-
cient, fully decentralized procedure using just local rules to set up
a clustered network from scratch. The resulting clustered network
is called scale-free and obeys a Power law known from biology
and sociology (small world phenomenon) [29, 1], yielding inher-
ent favorable properties like robustness and energy efficiency. Self-
adaptation allows WSN to perform even under dynamically varying
environment conditions as well as in case of node and communica-

tion faults. A flock of birds typically rotates the most strenuous
leading position under the strongest birds. In case of WSN, clus-
ter heads receive sensor data from all cluster members and route
aggregated data to the central gateway using neighboring cluster
heads. Cluster heads thus dissipate their energy quite fast. Role
changing between nodes depending on remaining energy level as
proposed in X-Leach [15] and in [42] balances the energy burden
among all cluster members and prolongs network lifetime consider-
ably as depicted in Figure 2, which shows the results of simulation
experiments.

Error resilience in biological systems is often based on mechanisms
of self-healing or compensation. In case of severe faults most of-
ten not the whole organism fails, but just a functional degradation
is experienced. The term graceful degradation has been coined for
this behavior. In our technical context, a network must be able to
identify and dismiss failing nodes. Neighboring or hibernating re-
dundant nodes adopt their roles. Algorithms like XGAF [45] and
MASCLE [44, 43] are able to determine the minimum number of
active nodes to assure coverage and dynamically activate hibernat-
ing nodes or route around network holes. Thereby, the induced
reduction of a network’s functionality is kept as small as possible.

3. CHALLENGES AND APPROACHES
The above mentioned properties of regenerative systems provide
ample challenges for all areas in modeling and simulation. In the
following we will focus on modeling, simulation (i.e., the execution
of models), and visualization methods. The work we are reporting
has been driven by requirements of systems biology and constitute
parts of the modeling and simulation framework JAMES II [17].

3.1 Modeling
One of the characteristics of regenerative systems is their variability
when it comes to structure. Structure refers to components, inter-
actions, behavior, and interface equally. A central question is how
these dynamic structures can be modeled in an appropriate manner,
e.g., in the context of molecular or cell biology [4].

Most modeling formalisms assume a rigid model structure, e.g.,
DEVS [57]. DEVS supports a modular hierarchical construction
of models by distinguishing between atomic and coupled models.
Atomic models are equipped with input and output ports, a state,
transition functions, a time advance function that determines the
next time-triggered event, and an output function. Coupled models



comprise other models as components and define the coupling be-
tween those, they do not have a behavior of their own. As atomic
models do, coupled models interact with the environment by re-
ceiving and sending events via their input and output ports. Due
to the requirements of application areas like regenerative systems,
extensions have been developed to support variable structures mod-
els. E.g. the variant dynDEVS supports variable composition,
interaction, and behavior, ρ-DEVS extends dynDEVS by adding
variable ports and with them dynamic interfaces, ml-DEVS builds
on ρ-DEVS introducing different levels of abstraction to support
multi-level modeling [53]. Thus, successively part of the rigidness
of the original formalism DEVS has been overcome.

In contrast to DEVS, other modeling formalisms support variable
structures from the outset. To those belongs the π-calculus [35].
The π-calculus is a model of concurrent computation and is based
on the notion of naming. Names represent both interconnection
links between active entities, called processes, and the data that
these entities exchange through communication. Two concurrent
processes can interact using a name they share the knowledge of:
one process acts as a sender, the other as receiver. The message
being transmitted is again a name, which the receiver henceforth
knows and may use in further interactions. Thereby, networks with
evolving connectivity can be described.

During the last decade, the π-calculus has seen quite a number of
variants emerging. Many of those have been proposed for biologi-
cal applications since the seminal work of Regev and Shapiro [41].

Space-π is a spatial extension of π-calculus supporting the repre-
sentation of continuous space and molecular motions [23]. Con-
current processes are equipped with global positions and velocity
vectors. The ability to communicate depends on the closeness of
processes. The advantage of the Space-π approach is that intra-
cellular structures and spatial effects can be represented in a very
detailed manner. It is possible to build membranes, to introduce
compartments, and active transportation processes. Even the im-
pact of molecule sizes and shapes can be modeled. This makes
the approach applicable to scenarios that are difficult to model with
implicit representations of space, only. The operational semantics
of Space-π is hybrid, i.e., combining continuous movement and
discrete communication [47].

The idea that the ability to communicate depends on the current
position of the processes and processes are equipped with further
attributes, is generalized in Attributed π. Attributed π extends the
π-calculus by attributed processes and attribute dependent synchro-
nization. To ensure extendability, the calculus is parametrized with
the language L which defines possible values of attributes [25]. At-
tributes subsume possible reaction rates and constraints as in higher
order logic. The introduction of the language L avoids inventing
completely independent calculi for the many reasonable choices of
attribute values and constraints. Thus, depending on the language
L Attributed π can express diverse compartment organizations. A
non-deterministic and a stochastic semantics have been defined for
Attributed π, where rates may depend on attribute values. Unlike
Space-π which is hybrid, Attributed π is a discrete formalism.

Imperative π-Calculus is based on Attributed π and introduces im-
perative assignment operations to a global store. This forms a step
toward multi-level modeling and simulation as information can be
maintained and accessed at different levels. The extension allows
for wide range of kinetics, e.g., including Michaelis Menten [33]

and dynamic compartments with mutable configurations and vari-
able volumes [24].

Developments as those from dynDEVS, over ρ-DEVS to ml-
DEVS, and from the stochastic π-calculus, over Space-π, At-
tributed π to Imperative π-Calculus illuminate the driving force
of cell biological applications in the field of modeling formalisms.
Although these extensions have been designed for cell biological
applications, they are applicable to the modeling of technical sys-
tems as well. In particular regenerative systems that exhibit simi-
lar characteristics, will benefit from these extensions. E.g., Space-
π is currently being adapted for self-organizing sensor networks.
DEVS variants that support variable structures have been applied
to simulate ad-hoc networks evaluating decentralized strategies that
utilize context information to assess the cooperativeness of other
nodes [28].

3.2 Simulation
Operating on different scales in space and time is one of the charac-
teristics of regenerative systems in general and biological systems
in particular. Many intra-cellular dynamics, incl. the functioning
of signaling pathways, depend on space, e.g., protein localization,
cellular compartments, and molecular crowding. Thus, as already
mentioned in the modeling section, spatial aspects, whether in a
hybrid (Space-π) or a discrete manner (Attributed π or Imperative
π-Calculus), are becoming of increasing relevance in systems biol-
ogy. As the significance of stochasticity in intra and inter-cellular
information processing is widely accepted, approaches that support
both, i.e., stochasticity and space, are particularly promising, but
also computationally expensive [49], which spurs on the develop-
ment of new simulation algorithms and methods.

Algorithms commonly known under the term stochastic simula-
tion algorithms (SSA) are based on sampling the Chemical Mas-
ter Equation (CME): a partial differential equation describing the
time evolution of the system’s state probability distribution [14].
To address the problem of efficiency different strategies have been
pursued: by introducing improved scheduling algorithms or data
structures, [13], by trading accuracy for efficiency [6], by combin-
ing numerical integration and stochastic discrete event approaches
[50], or by parallel and distributed simulation [5, 32].

One way of considering space within simulation is partitioning
space into sub-volumes and extending the master equation with a
diffusion term, which leads to the reaction-diffusion master equa-
tion (RDME). For sampling the RDME, several methods exist, to
those belongs the Next Sub-volume Method (NSM) [8]. To in-
crease their efficiency, parallel approaches have been developed as
well [7].

The simulation costs increase further if one moves from the meso-
scopic to the microscopic level. Microscopic algorithms operate
with single particle detail, tracing the position of every particle and
considering its individual features. While molecular and Brown-
ian dynamics provide high accuracy, the effort required for position
update and collision detection prevents simulating longer time peri-
ods or simulating models with many particles. Multi-resolution ap-
proaches offer a solution as they balance between accuracy and ef-
ficiency. E.g., by combining Brownian dynamics and the NSM [22]
two different spatial levels are supported within a lattice. Macro el-
ements are simulated at individual level. They affect the available
space for reactions and diffusions at population level. Thus, phe-
nomena like molecular crowding can be studied. According to our



Figure 3: Impact of macro molecules on population propensi-
ties [21]

results [22], a decrease in the available volume can have a signifi-
cant local effect on reaction propensities. The maximum propensity
for single lattice cells was observed to be up to five times higher
than the maximum in the dilute case (Figure 3).

Another impediment for a thorough evaluation of models lies in
gaining access to sufficient computational resources. Whereas it
is rather difficult to achieve a speedup in a grid-inspired environ-
ment with fine-grained parallel simulation [20], grid-inspired en-
vironments are very suitable for simulation replication and model
parameter optimization, as those exhibit little or no data dependen-
cies between portions of work [31].

The described methods give only a glimpse on recent activities in
the area of simulation methods in systems biology. Similar prob-
lems imply similar solutions, thus solutions are quickly adapted in
simulating biological and technical systems. The concept of multi-
resolution simulation can also be found in network simulations,
e.g., where network flows represented by fluids and packet-oriented
flows are switched on demand [38]. As in systems biology, the goal
is to cope with the calculation effort required and to balance effi-
ciency and required detail in simulating those networks.

However, adopting concepts and cross fertilization between the ap-
plication areas apply also in a broader manner. E.g., a new empha-
sis is being put on the necessity to equip formalisms with a clear
operational semantics and relating this semantics to the simulation
algorithm. How the simulator works is no longer guess work but
subject to an unambiguous description related to the semantics of
the formalism. Therefore, Phillips and Cardelli adopt the idea of
Zeigler [57], to describe their SPIM simulator in terms of an ab-
stract simulator [40]. One step further, the Attributed π simulator
is directly rooted in the stochastic semantics and based on contin-
uous time Markov chains, thereby forming a close bound between
simulator and the formalism’s operational semantics.

The insight that the performance of different simulation algorithms
is influenced by a variety of factors, such as the model, sub-algo-
rithms, and data structures, like event queues, is not new [11], how-
ever is newly fueled by the variety and quantity of recently devel-
oped simulation algorithms. In this context also the question of
how performance evaluation of simulation algorithms can be done

in an as little as possible biased manner, receives new attention.

Based on more than 40.000 simulation runs, the performance for
a variety of SSA configurations for two models, i.e., the linear
chain system and the cyclic chain system model, is tested [19].
According to the results, the execution speed of the direct reac-
tion method (DRM) [14] and the next reaction method (NRM) [13]
differs greatly between both models. The overhead of generating
random numbers had less impact on SSA execution time than first
assumed when the NRM was proposed [13]. However, not sur-
prisingly the choice of the type of event queue influenced the per-
formance of NRM significantly. This underlines that for efficiently
simulating different models, different simulators, sub-algorithms,
and data structures should be offered to be selected and configured
on demand.

However, even if a simulation framework supports to plug in dif-
ferent simulators, sub-algorithms, and data structures, often simply
too many possibilities exist for their combination, e.g., when eval-
uating exact and approximative SSA algorithms, 170 different sub-
algorithm configurations were tested for one model instance [19].
In addition, performance might refer not only to speed, but to ac-
curacy, memory consumption, or a combination thereof. Even for
a simulation expert it is difficult to assess which of the many eligi-
ble simulation configurations, i.e., algorithmic set-ups, will deliver
best performance in a concrete case. There are numerous ways to
tackle this problem, e.g., by theoretically analyzing each simula-
tion configuration, or by gathering performance data and applying
data analysis and machine learning methods [9].

As already stated stochasticity plays an important role in biological
systems and simulation replication is a necessity for all stochastic
simulations. One way to improve replication efficiency is to en-
sure that the best configuration of the simulation system is used
for execution. Even without any prior knowledge on simulator per-
formance or problem instance, a highly efficient simulator can be
configured online, e.g., by an adaptive replication mechanism that
combines portfolio theory with simple policies from reinforcement
learning. Preconditions are that the simulation system supports an
on-the-fly configuration of simulation algorithms and that the num-
ber of required replications is sufficiently high. Figure 4 shows the
consumed CPU time per policy and experiment. The experiments
are executed by different SSA and stochastic π-calculus simula-
tors that have been implemented in JAMES II. The stochastic π-
calculus simulators rely again on SSA sub-algorithms to determine
the next event. 25 and 24 parameter set-ups of SSA and stochastic
π-calculus models have been tested, respectively. Each set-up was
replicated 1000 times by each of the five policies, so that 125.000
(SSA) and 120.000 (stochastic π-calculus) simulation runs were
executed for each experiment. Among the different reinforcement
learning policies, epsilon-greedy performed best and achieved a
good speed-up (up to 3.2) in comparison to the average case that
has been produced by the random policy. However, please note
that even before the learning algorithms are applied, one can restrict
the space of possible configurations to the most promising ones by
exploiting portfolio theory [10]. Without such supportive mech-
anisms for algorithm selection, the performance effect of choos-
ing a suitable configuration can be dramatical, e.g., we observed a
speed-up of over 1000 times when choosing the best instead of the
worst configuration. By automatically configuring suitable simula-
tors and reducing the time needed for experiments, experimentation
is facilitated, be it for the purpose of model validation and analy-
sis or the evaluation of newly developed simulation algorithms in
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Figure 4: Adapting the simulator configuration online, using
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impact on the performance (for more detail see [10]). The num-
bers of available simulation configurations are given in square
brackets for each experiment.

comparison to existing ones.

3.3 Visualization
Each of the different phases of modeling and simulation, i.e., model
design, simulation experiment design, simulation, and interpreta-
tion of results, can be supported by visualization methods. Model-
ing and simulating regenerative systems provide some challenges
for visualization. The main challenge visualization faces refers
to the data as those have a spatial and temporal context, are het-
erogeneous and multi-variate. Classic visualization methods focus
typically on only one of these dimensions or integrate multiple-
dimensions only for a specific application context, e.g., for the field
of terrestrial biogeochemistry in [48]. Yet, in the simulation of re-
generative systems all of those play an equally important role, no
matter if the simulation is conducted for the biology domain, the
network sciences, or any other application area.

A tried and tested solution to this challenge is the use of so-called
linked views – separate but tightly coupled, interactive views that
each target a different aspect of the data. The benefits are obvi-
ous: no complicated all-round visualization techniques for hetero-
geneous, spatio-temporal, and multidimensional data need to be in-
vented, but instead a number of simpler techniques are grouped and
interlinked in a way that their combination fulfills the needed prop-
erties. This approach has been known for a while and the reader
is referred to [2] for a concise overview of the issues involved. In
combination with new visualization techniques, it is indeed a valu-
able approach to gain insight in models, experiments, and multi-run
simulations alike.

Focusing on the visualization of large hierarchical models, the point-
based hierarchy layout utilizes a very space-efficient node place-
ment. It is shown in Figure 5 (left side), depicting a large dyn-
DEVS model of the halobacterium in the context of the JAMES
II framework which also provides additional views on the hierar-
chy. Other visualizations like the Coordinated Graph Visualization
toolkit [52] focusing on networked instead of hierarchical model
structures similarly allow a modeler to easily navigate through large
models (Figure 5, right side).

For the visualization of spatio-temporal simulation data, Figure 6
shows multiple linked 3D-views, visualizing a small next sub-

not continuous in space, meaningful iso surfaces cannot
be extracted from the volume data. Thus, we make use
of the latter variant [8, 10] to analyze the value distri-
bution in space. To achieve interactive frame rates, we
apply texture slicing with object aligned slices [8], as it
is one of the fastest approaches for volume rendering.

To visualize an event in its spatial context, the 3D
location has to be communicated by the visualization.
To this end, we make use of 3D icons that are placed
at the corresponding position. The two event types, re-
actions and diffusions, are discerned by the icon shape.
As a reaction induces changes within one sub-volume,
it is encoded by a cube covering the volume element.
Diffusion describes the movement of a particle between
two neighboring sub-volumes. To convey the direction,
the icon is shaped as an arrow pointing from the source
sub-volume to the destination.

Thus, the visualization of events and states in their
spatial context requires different concepts.

(a) Event view (b) State view

Figure 2. Basic visualization of events (for
multiple time points) and states (for a sin-
gle time point) in their spatial context

4.1.2. Static vs. Dynamic

The analysis of the simulation includes both the explo-
ration of value distributions at a single time point as well
as exploring trends over time. At a single time point,
the visualization needs to include the multivariate state
and event data in spatial context. A visualization of
the dynamic data should convey the changes in the state
over time and the sequence of events that leads to these
changes.

To include temporal context in the visualization of
state data, two concepts have been described in Section
3.3, the mapping of time on time and the mapping of
time on space. In our context, both methods are valu-
able. Animation can reveal the general behavior of the
simulation, while the comparison of discrete time points
supports a detailed analysis.

We implement both concepts for event and state data.
To show event data over time in an animation, visualiz-
ing an event only for the time point where it occurs is vi-
sually hard to follow and reveals little information about
the temporal context. Instead, the sequence of events
from previous time points is visualized by including the
respective events within one volume. The temporal or-
der is conveyed by the transparencies of the event icons.
After the event icon appears opaque in the visualization
of the time point when the event occurs, it slowly fades
out. When visualizing state data in an animation, the
data shown in the univariate volume is altered over time.

Referring to the comparison of discrete time points,
the events at these time points are included within the
event visualization. To visualize state data at different
time points, we use multiple univariate volume, each for
one point in time. As an alternative, two discrete time
points can be compared by the difference image from
the corresponding univariate volumes.

4.1.3. Univariate vs. Multivariate

Due to the different characteristics of state and event
data, we discuss the visualization concepts to consider
univariate and multivariate data separately for two data
types.

Considering the volume rendering of univariate state
data, standard approaches of direct volume rendering
can be applied. To show multivariate state data, the visu-
alization includes one volume for each variable. Other
approaches like the combination of multiple variables
in one volume or the multivariate visualization on 2D
slices are not suited for the data at hand, as different
scales in the data exist and we want to show data in its
spatial context. Multiple univariate volumes allow the
general comparison of value distributions for multiple
variables.

(a) Event view (b) State view

Figure 3. Visualization of multivariate
data. Left: Using colors to encode multi-
variate event data. Right: Combining mul-
tiple univariate state volumes.

Figure 6: Visualization of NSM [55].

volume simulation: reaction events and diffusion events are dis-
tinguished for multiple time points in the left view and the state,
i.e., the concentration, is given for a single time point in the right
view. Both are shown in their spatial context and support coordi-
nated interactions in terms of zooming and turning [55].

The next step, the combination of the model visualization and the
visualization of multiple simulation runs, is achieved by the inte-
grated approach presented in [26]. Here, the model structure and its
evolution in the course of different simulation runs is displayed in
linked overview and detail views. While time-varying graphs occur
frequently in many applications, e.g., social networks, adhoc and
sensor networks, this visualization is targeted towards hypergraphs.
These are a generalization of graphs, as they allow edges with more
than two incident nodes. An example of such a hypergraph is a
biochemical reaction network where an edge representing a reac-
tion usually connects more than one reactant with more than one
product. Figure 7 shows this visualization approach, which makes
use of a novel table-based visualization for bipartite graphs, into
which the hypergraphs are transformed. This enables the simula-
tion expert to inspect and compare individual time steps, as well
as gaining an overview of structural changes over time for a larger
scale investigation. In Figure 7, the two detailed views of differ-
ent time steps are shown in the upper part and the overview at the
bottom. The overview shows the concentration of a few selected
chemicals of our example, as well as the structural complexity as a
green curve. Structural complexity can be measured, e.g., by cal-
culating the amount of structural change between the hypergraph at
time t and at time t+ 1 using graph edit distances. Plotted against
the time, these measures reveal the ups and downs of the overall
structural changes in the reaction network, pointing at possibly in-
teresting time points to explore in detail.

Yet, finally it is the goal to combine visualizations of all three
stages: modeling, experiment setup, and simulation. This is done
in the Mosan visualization framework [56] which covers the whole
process in all its stages. It is shown in Figure 8. The upper left cor-
ner shows the network structure of this model, i.e., the biochemical
reactions of the Wnt pathway as part of the Experiment View. This
view is coordinated with the Multi-Run View (top right) for the se-
lection of one run from all runs, the Node View (bottom left) for the
detailed analysis of single-run data linked to nodes, and the Edge
View (bottom right) that shows the single-run data connected to
edges. Each of the nodes shows in a glyph-like fashion the overall
gradient of a substance’s concentration. Multiple runs and exper-
iment setups can be compared and selected from numerous dia-



Figure 5: Visualization of model structures in JAMES II

Figure 7: Screenshot of a visualization tool for time-varying hypergraphs [26].



Figure 8: An integrated view on modeling and simulation applied to a part of the Wnt pathway [56]

grams displayed in stacked or Rolodex-style.

In summary, it can be said that the modeling and simulation of re-
generative systems is a strong driving force behind many of the
shown visualization techniques. E.g., the shown visualization of
time-varying hypergraphs, which was specifically motivated by the
task of depicting changing biochemical model structures, is the first
of its kind. Yet at the same time, the approach of using multiple
linked views has kept the inevitable complexity of these visualiza-
tions down to a minimum. Also, it has been shown by the selected
visualization techniques presented here, that the evolution of them
is quite similar to the ones described for the modeling formalisms:
step after step the available toolkits have grown, now being up to
the task of visualizing heterogeneous, multi-variate data in spatial
and temporal contexts.

4. SUMMARY
Regenerative systems provide many challenges and thereby, op-
portunities for modeling, simulation, and visualization. The focus
of our exploration has been on methodological approaches devel-
oped for biological applications addressing two important proper-
ties of regenerative systems, i.e., dynamic structures and operating
at multiple spatial and temporal scales. To exemplify approaches
and open challenges, we concentrated on research done in the con-
text of the modeling and simulation framework JAMES II. Although
the presented methods have been developed for biological systems,
central concepts and entire formalisms are applicable for regenera-
tive systems in general.

Whereas variable structures like dynamic interactions come eas-
ily to some modeling formalisms like π-calculus other formalisms

like DEVS require extensions and this at a price of additionally
burdening the formalism. Also the development of numerous π-
calculus variants over the last years document the need for further
improvements to ease the modeling of biological systems. Thus,
although first steps are done to get a feeling what might be needed
to model biological systems, it seems the modeling formalisms are
still a far cry away from offering these features combined with an
ease of use.

As models become more complex, the possibility of exploring and
navigating hierarchical and network model structures is important.
E.g., the adaptation of state of the art space-efficient visualiza-
tion methods and their integration into simulation tools allow an
overview and in-detail inspection of large, complex models on de-
mand. However, as the model’s structure is itself subject to changes,
entirely new challenges arise as now structures are combined with
a temporal dimension. For visualization purposes time is either
mapped to time (animation) or to screen space (multiple time steps
side by side). Visualizing dynamic hypergraphs in JAMES II is
based on the latter and represents a very first step to supporting vi-
sually the analysis of large scale models with dynamic structures.
The representation of meta information, like the amount of struc-
tural changes between events will help identifying interesting re-
gions of simulation traces for further exploration.

Space has a crucial impact on the dynamics of regenerative bi-
ological systems, driving the development of new modeling for-
malisms, e.g., like Space-π, Attributed π, and Imperative π-
Calculus. Whereas Space-π provides a continuous view on space,
Attributed π and Imperative π-Calculus are discrete. These dif-
ferent perceptions of space are also reflected and sometimes even



combined at the simulation level, e.g., when simulating certain
molecules by Brownian dynamics and others at population level
with NSM. Although the representation of space appears at first
glance specific for biological systems, it also gains importance for
technical systems. Sensor networks are only one obvious example
for this. The more computing exploits decentralized and ad-hoc
structures (e.g., when using cars as sensor and computing nodes to
predict traffic congestion in an online manner [12]), the more im-
portant the location and movement of computing nodes becomes in
realizing those systems and in evaluating them by simulation.

Due to operating on different temporal and spatial scales, simu-
lating regenerative systems is computationally expensive. The de-
sire to balance between efficiency of simulation and required detail
drives the development of new simulation algorithms and innova-
tive approaches that combine techniques from diverse fields, like
machine learning, economics, and experimental algorithmics [34]
to configure efficient simulators on demand.

The key to this type of solutions lies in modeling and simulation
frameworks like JAMES II which is based on a “Plug’n simulate”
concept. It facilitates integrating and evaluating modeling and sim-
ulation methods and supports different application areas. Thereby,
re-use and alternatives do not end at the level of model, model-
ing formalisms, simulation algorithms, and tools, but refer to algo-
rithms, sub-algorithms, data structures, and experimental setups as
well. Not unlike the shown linked views in visualization that help
designing and analyzing regenerative systems, its concept avoids
all-around solutions that are difficult to maintain and relies on link-
ing diverse plug-ins so that their combination fulfills the require-
ments.

The above efforts will help to improve the quality of “in-silico”
experimentations referring to biological and technical regenerative
systems alike. Modeling, simulation, and visualization forms a
common ground for a better understanding and analysis of biologi-
cal and technical regenerative systems, thereby also promoting the
migration of concepts from regenerative biological to computer sci-
ence systems and vice versa.
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