A Layered Approach to Lightweight
Toolchaining in Visual Analytics

Hans-Jorg Schulz! [0000-0001-9974=535X] "N[artin Rohlig?, Lars
Nonnemann2[0000-0002-4156-2179] \farjug Hogréifer! [0000-0002-3649-9339] \[ari
Aehnelt?, Bodo Urban?[0000-0003—4968—4506] ' 51 q Heidrun Schumann?

! Department of Computer Science, Aarhus University, Denmark
2 Institute of Visual and Analytic Computing, University of Rostock, Germany
3 Fraunhofer Institute for Computer Graphics Research, Rostock, Germany

Abstract. The ongoing proliferation and differentiation of Visual An-
alytics to various application domains and usage scenarios has also re-
sulted in a fragmentation of the software landscape for data analysis.
Highly specialized tools are available that focus on one particular analysis
task in one particular application domain. The interoperability of these
tools, which are often research prototypes without support or proper
documentation, is hardly ever considered outside of the toolset they were
originally intended to work with. To nevertheless use and reuse them in
other settings and together with other tools, so as to realize novel analysis
procedures by using them in concert, we propose an approach for loosely
coupling individual visual analytics tools together into toolchains. Our
approach differs from existing such mechanisms by being lightweight in
realizing a pairwise coupling between tools without a central broker, and
by being layered into different aspects of such a coupling: the usage flow,
the data flow, and the control flow. We present a model of this approach
and showcase its usefulness with three different usage examples, each
focusing on one of the layers.

Keywords: Visual Analytics - Software Integration - View Coordina-
tion.

1 Introduction

Visual Analytics (VA) encompasses the frequent and fluent back and forth be-
tween computational analyses and interactive visual exploration. This process
can get quite involved, with many specialized analysis steps from data wran-
gling [16], data preprocessing [18] and data exploration [6], all the way to model
building [10] and investigating uncertainties [36]. Each of these specialized anal-
ysis steps comes with its own methods and tools that may or may not be used,
depending on the analysis objectives known up front and on the findings made
during an analysis. Such a flexible orchestration and use of VA tools at the
analyst’s direction is hard to capture with preconfigured analysis pipelines as
they are commonly employed in data science. This observation has led so far as

2 H.-J. Schulz et al.

some researchers suggesting to recoin the common phrase of “the human in the
loop” into “the human is the loop” [5]. Yet in order to put the analyst at the
helm of the analysis process and to be able to reconfigure and reparametrize the
concerted use of multiple VA tools, a mechanism is needed to accomplish that.

We follow this line of thought and propose the concept of layered VA toolchains
that, unlike fixed pipelines realized within an integrated VA framework, allow
for a more flexible coupling of independent VA tools. Through this coupling,
the otherwise autonomous tools form loose multi-tool ensembles that coordinate
aspects of their joint use. This is achieved by differentiating VA tool coupling
into three separate concerns:

— Carrying out one tool after another: The most fundamental characteristic
of a concerted use of VA tools is the selection of suitable tools, as well the
possible sequences in which they can be used. Capturing this first essential
aspect allows guiding a user through a toolchain by automatically providing
the user the right tool at the right time.

— Funneling data from one tool into the next: VA tools require an input to pro-
duce an output. If one tool’s input is the resulting output from a preceding
tool, this needs to be passed and possibly transformed between them. Cap-
turing this aspect allows the toolchain to handle this process, automatically
providing the user with the right data at the right time.

— Coordinating functional aspects between tools: Beyond the data, VA tools
may require to set parameters or adjust the methods employed to pro-
duce their outcome. Capturing these functional characteristics allows keeping
them consistent between tools, automatically providing the right parameters
and presets at the right time to the user.

In this paper, which constitutes an extension of our previous work [35], we
detail, discuss, and exemplify this threefold separation of concerns into layers
for VA toolchaining. After looking briefly at related work for coordinating tools
and views in Sec. 2, we present our conceptual model that captures these three
layers in Sec. 3. We then discuss the benefits for the user that each individual
layer yields and give concrete examples for them in Sec. 4 through Sec. 6.

2 Related Work

Prior research on tool coordination has resulted in a variety of frameworks such
as OBVIOUS [7] or VisMashup [31]. They provide an interoperability layer on
code level, which offers the necessary functionality to programmers and devel-
opers for coupling their VA tool with other tools utilizing the same framework.
Coordination without code access relies usually on the exchange of data, views,
or both, as they are produced by the VA tools.

Coordination among visualization tools through data exchange dates back
to 1997 (cf. Visage [17]). Most approaches for data level coordination rely on a
centralized mechanism. On the one hand, this can be a central database that

A Layered Approach to Lightweight Toolchaining in Visual Analytics 3

acts as model in a model-view-controller (MVC) mechanism. Examples are Snap-
together [22] and EdiFlow [2] that both use a relational database as underlying
central data storage for a set of tools. On the other hand, coordination can
employ a communication bus or service bus to broker messages among tools,
as for example done by the Metadata Mapper [28]. In case no centralized data
exchange mechanism is provided, tools use custom connectors to pass data. For
closed source tools, this may rely on screen poking and screen scraping [8,14].

Coordination among visualization tools based on the views they produce can
be achieved by exchanging and combining user interface (UI) components and
graphical outputs from different systems, as it is proposed by approaches, such
as ManyVis [30]. As the coordination of applications through the exchange of
data or views are independent, they can be combined as necessary to achieve the
required flexibility for a given analysis. One of the few examples for coordination
using both, data and views, is Webcharts [9]. To make the interoperability of
the tools available to the user, standard visualization frameworks usually display
such an interlinked setup in multiple coordinated views [4, 27] or fused visualiza-
tions [21]. In some cases, the toolchain itself is visually encoded in a (directed)
graph layout that shows its connections [40,11]. When arranging Uls side-by-
side is not sufficient, a common interface may be glued together from individual
interface parts. WinCuts [39] and Facades [38] enable users to do so by cutting
out pieces of multiple Uls and interactively composing them into one tailored
UL For web-based ensembles, existing UIs are combined in mashups [23].

In most application domains from climatology to biomedicine, the current
practice in data analysis is to simply use independent VA tools one after the
other. And as these domains also feature a diverse set of file formats and data
conventions, it is often already considered a high level of interoperability when
the different tools can work on the same data files, effectively easing the relay
of results from one tool into the next. This current data analysis practice forms
the basis of our coordination approach, which is described in the following.

3 A Layered Approach to Lightweight Toolchaining

As exemplified by the previous section, prior work on coordinating and linking
visualization and analysis tools has focused mainly on the implementation and
software engineering aspects of such mechanisms — i.e., the algorithmic level in
terms of Munzner’s four levels of visualization design [20, ch.4.3]. Our toolchain-
ing approach puts its focus on the remaining three levels in the nested visual-
ization design model that remain so far mostly undiscussed and unexplored:

— The situational level that aims to understand the domain situation — i.e.,
the application domain, the application data and questions, as well as the
analytical processes that derive from them. In the context of toolchaining,
the information captured on this level is about the used toolset in a domain,
as well as common orders of use for domain-specific analyses. From this
perspective, the situational level defines the usage flow among tools.

4 H.-J. Schulz et al.

— The abstraction level that aims to understand the data and what is done
with it in a domain-independent way. In the context of toolchaining, this
captures the exchange of data between tools — i.e., which data in which data
format as a result of which data transformation carried out by a VA tool.
Consequently, this level defines foremost the data flow among tools.

— The encoding and interaction level that aims to understand how the data is
visually displayed and how this display can be adapted. In the context of VA
tools, this translates into parameter settings that govern the display, that can
be changed to adapt the display, and that can be passed along for consistency
of displays among tools. Hence, from the perspective of toolchains, this level
defines the control flow.

3.1 The Principal Ideas behind the Approach

Our approach is different from established coordination approaches in two ways:
its layered structure for better separation of concerns among different notions
of tool coordination, and its lightweight bottom-up realization for introducing
automation to preexisting manual toolchains in an incremental and minimally
invasive manner.

Our approach for toolchaining is layered in the sense that each of the indi-
vidual levels of usage flow, data flow, and control flow can be used to affect a
coordination among tools — either by themselves and with respect to the partic-
ular aspect of toolchaining they capture, or in combination with each other. For
example, two tools may only be coordinated with regard to their data flow. This
means that users still have to invoke one tool after the other and parametrize
them manually, but that the data exchange between them is aided by a toolchain-
ing mechanism, which can range from injecting a tool for handling format con-
version to fully automated, bidirectional live data exchange. It is also possible
that two tools are coordinated with regard to more than one level — e.g., their
usage flow and their control flow. This could mean that after closing one tool,
the next tool in the usage flow is automatically started together with a properly
parametrized view that reflects any manual fine-tuning done in previously used
tools, but that the data output and input still needs to be carried out manually.

Our approach for toolchaining is lightweight in the sense that we consider
its realization to be pairwise between tools. This means, instead of having to
provide an all-encompassing framework that coordinates between all possible
VA tools and anticipates all possible combinations in a top-down manner, we
instead use a bottom-up approach that works by coordinating only between those
tools and on those levels, where this makes most sense. This approach allows us
to utilize different coordination mechanisms between tools, depending on which
interfaces they offer. As a result, coordination between tools in a toolchain can
be introduced in a step-wise manner bridging the most tedious gaps that incur
the most manual labor first, thus adding coordination and automation where it
is needed most.

These ideas are directly reflected in the following coordination model that
captures this vision of a layered, pairwise toolchaining.

A Layered Approach to Lightweight Toolchaining in Visual Analytics 5

Started/Stopped o Start/Stop
N N Coo(;drlclj'\eartlon) N
VA | Dstoo A Datan | VA
7 Tool 1 ’ | Channel] Tool 2
. Paramqyy \/W Paramy .
Rules

Coordination Mechanisms

Fig. 1. Conceptual abstraction of lightweight coordination between two VA tools. The
coordination order models any temporal dependency between two tools (i.e., their
subsequent or concurrent use). The coordination channels capture ways to exchange
data between tools, including any necessary data transformations along the way. The
coordination rules describe automated syncing of interactive controls between tools by
means of exchanging their associated parameters.

3.2 A Model for Layered Lightweight Toolchaining

To characterize coordination among VA tools on the three levels of usage flow,
data flow, and control flow, we need adequate means to describe coordination
in such a faceted way. In line with common view coordination models from the
literature — e.g., [43] and [3], we propose to model VA tool coordination as a
graph. In this graph, VA tools constitute the nodes and directed edges capture
the usage flow, data flow, and control flow between pairs of VA tools. We outline
these parts of our coordination model, as well as how to establish and utilize
them in the following.

Modeling the VA Tools. VA tools form the natural basis of our coordination
model, in the same way as they form the basis of the analytic toolchain. As
these tools can come in any shape or form — from closed source to open source
software, from simple command line tools to full-fledged VA frameworks — we
follow the principle of making no prior assumptions about these tools and con-
sider them as black boxes that are characterized by their inputs and outputs on
the three levels introduced above. Fig. 1 shows two tools modeled in this way,
capturing the following I/O possibilities as ports of a VA tool:

Start(ed)/Stop(ped): Starting and stopping a tool, as well as being notified
when it has started or stopped is the most fundamental of all tool capabilities.
We model the invocation and termination of a tool via the port Start/Stop and
the respective notifications via the port Started/Stopped.

Data (in/out): A VA tool requires input data on which to perform the analysis.
The passed input may yield results that the tools passes back in return. It is
common for most VA tools to have some ways of loading data, which we model
as a port Datary and saving results via the port Dataoyr. Note that the term
data subsumes numerical data as well as image data.

6 H.-J. Schulz et al.

Parameters (in/out): A VA tool’s behavior is usually parametrizable. If pa-
rameters can be passed to the tool — e.g., as command line options when invoking
it — this is modeled via the port Paramjy. If parameter settings can also be
stored away for later re-use — e.g., as a config-file — this can be captured through
the port Paramoyr

Note that these ports are abstractions that we use to model the respective
possibility to manage an independent VA tool, regardless of whether these are
indeed provided by the tool itself or by some other entity, like the operating
system. For example, invoking a tool and observing its state is on a technical
level rarely done via the tool itself, but instead utilizes the operating system’s
process and window managers.

It is further noteworthy, that a VA tool does not necessarily possess all of
these I/O possibilities. In some cases, we may be able to work around them —
for example, when inferring otherwise inaccessible parameters from a tool (i.e.,
Paramoyr) from the updated results (i.e., Datapyr), e.g. by extracting color
scales from visualizations [24]. In other cases, we might need the user to step in
— for example, by manually setting parameters or choosing among presets.

Modeling the Usage Flow. At the lowest level of coordination, there is the
temporal order of VA tools — i.e., the usage flow determined by the analysis
scenario and its domain. The usage flow captures the toolchain as a succession
of VA tools, as these are used by the user in pursuit of a particular analysis goal.
It can include subsequently used tools, as well as concurrently used tools. Tool
coordination modeled and realized at this level is able to bring up the right tools
at the right time, as it is foreseen by the usage flow.

In our model, this type of coordination is achieved through a bilateral con-
nection among two tools indicating their coordination order — shown at the top
in Fig. 1. This order basically starts one VA tool subsequently or concurrently,
depending on another VA tool having been Started/Stopped:

— Subsequently: (T'ooly.Stopped) = (Tools.Start)
— Concurrently: (Tooly.Started) = (Tools.Start)

Coordination on this level already provides as much as an automated guid-
ance of the user along a predefined path of analysis, in the spirit of approaches
such as Stack’n’Flip [37]. While the users still have to do everything else them-
selves — such as moving data back and forth between the tools, or parametrizing
their visualizations to match up — the coordination order between tools allows
to automatically move the VA toolchain forward as the interactive analysis pro-
gresses. Besides providing convenience for the user, this also ensures compara-
bility between different analysis runs as VA tools are always invoked in line with
the predefined usage flow. This is important in cases where carrying out analysis
steps in different orders yields different results — e.g., when performing dimen-
sion reduction and clustering. But it is also useful to ensure that no VA tool is
left out by mistake — e.g., forgetting to normalize the data before processing it.

A Layered Approach to Lightweight Toolchaining in Visual Analytics 7

Modeling the Data Flow. The next level of coordination is about getting data
in and out of a VA tool. Besides starting and stopping a tool, this is arguably the
most important aspect of a VA tool: without data, there is nothing to work with.
The data flow captures how input data is passed into VA tools, transformed into
analysis results and passed on to the next VA tool as input again. At this level,
VA tool coordination automatically hands off data from tool to tool as the user
proceeds with the analysis along the toolchain — i.e., the flow of data tends to
follow the usage flow. Depending on where in the visualization pipeline a VA
tool operates, data can refer to raw data, prepared data, focus data, geometric
data, or image data [32,41].

This coordination is achieved via coordination channels —shown in the middle
of Fig. 1. These capture the data exchange from a VA tool’s output to another’s
input, as well as any data transformations fp along the way:

Tooly.Dataoyr :—f—D:> Tooly.Datayn

Coordination on this level automatically delivers the right data to the right
tools at the right time, very much like data flow-oriented visualization frame-
works do. While the user still has to manage what is to happen with that data
in a currently used VA tool — i.e., interactively parametrizing computations and
visualizations — having input data and results from previously used VA tools de-
livered automatically to the current VA tool takes care of any tedious conversion
between different data formats, competing standards, or sometimes just differ-
ent versions or interpretations of the same standard [34]. This automation also
ensures that the user is not working on stale data, as the coordination channels
always deliver the most current data and manually loading an old dataset can
only happen on purpose, not by accident. Coordination channels can further be
used to store a snapshot of the last data passed by them, so that when revisiting
a previously used VA tool its last input data is still available, thus providing a
coherent analysis experience forward and backward along the toolchain.

Note that “passing data” can be a complex problem and research on data
integration and scientific workflows has established various approaches to do
so [19]. For modeling the coordination on data level, it is enough to know that
one of these approaches underlies a channel and realizes the data transport.

Modeling the Control Flow. The last level of coordination is about having
interactively set or changed controls in one VA tool also reflected in other tools
by exchanging their associated parameters. This is probably the most common
understanding of coordination, where for example, filter operations, selections,
or adaptations of a color scale in one tool will also affect other tools. Though,
how exactly these will affect subsequently or concurrently used tools is subject
to the concrete nature of the coordination. Our model captures the settings and
interactive choices made within tools as expressed through their parameters —
e.g., numerical filter criteria, color scales, or transformation functions that can
be tuned in one tool and reused in another. At this level, VA tool coordination
automates the synchronization of interactive changes made across tools, which

8 H.-J. Schulz et al.

mostly relates to the visualization or UI of these tools as these are the common
means with which the user interacts.

In our model, this coordination is achieved via coordination rules — shown at
the bottom in Fig. 1. These rules capture not only the mere passing of parameters
between tools, but also the “coordination logic” behind the linking they realize.
For example, in cases where this linking is supposed to have changes made in one
tool being reflected likewise in another tool — e.g., a selection — the coordination
rule relays the corresponding parameters as they are. Yet in cases, were this
linking is supposed to have a complementing effect — e.g., the other tool not
showing the selection, but everything that was not selected — the coordination
rule relays the inverse of the corresponding parameters. Coordination rules are
modeled as functions fp with the identity fp = id as a default:

Tooly.Paramoyr % Tooly. Paramyn

Coordination on this level can be used to provide any of the common co-
ordination patterns, such as linking & brushing, navigational slaving, or visual
linking [42] — provided that the corresponding view and data parameters are
captured and accessible to be passed between tools. As it was the case for co-
ordination channels, the user still has to manage and steer the currently used
VA tool, but where applicable, this steering is picked up on and automatically
mirrored or complemented in other VA tools. This includes not only tools that
are used concurrently, but also those used subsequently, as interactive selections
or carefully tuned color scales can be passed on as parameters to the next tool
in the toolchain as well. This relieves the users from having to make the same
interactive adjustments multiple times for each VA tool they are working with,
and it guarantees consistent settings across tools. This is helpful when trying to
compare results or for tracking certain data items across the toolchain.

3.3 Combining Tools and Flows

Taken together, we yield a 3-tiered model of lightweight coordination among VA
tools comprised of the VA tools, as well as of the three coordination levels to
realize different aspects of coupling among those tools. It can thus be expressed
as a 4-tuple CM = (Tools, UsageFlow, DataFlow, ControlFlow) consisting of the
following sets:

— The set of Tools as it is given by the analysis setup.

— The UsageFlow, defined as the set of all coordination orders (Source, [Started]
Stopped), Target, [Start|Stop]) capturing the execution sequence between a
source and a target tool.

— The DataFlow, defined as the set of all coordination channels (Source, Target,
fp : Dataoyr — Datayn) capturing data transfer and transformation (fp)
between a source and a target tool.

— The ControlFlow, defined as the set of all coordination rules (Source, Target,
fp : Paramoyr — Parampy) capturing parameter exchange and modifi-
cation (fp) between a source and a target tool.

A Layered Approach to Lightweight Toolchaining in Visual Analytics 9

All three sets of UsageFlow, DataFlow, and ControlFlow model the pair-
wise coordination between VA tools: The UsageFlow contains the answer to the
question of which parts of the toolchain to automate tool-wise and in which
order. The DataFlow comprises the answer to the question along which parts
of the toolchain to transmit data using which data transformation. And the
ControlFlow captures the answer to the question of which coordination logic is
realized between tools of the chain. The three sets have in common that they
describe the coupling between pairs of tools, so that each of these couplings can
likewise be understood as sets of directed edges that taken together define a
graph topology over the set of VA tools. They thus capture coordination in a
bottom-up fashion by coupling two tools at a time and then combining these
pairwise couplings into larger coordination mechanisms. This combination is for
example done by adding reciprocity (combining the unidirectional coupling be-
tween two tools A and B, and between B and A) or by employing transitivity
(coupling two tools A and B through an intermediary tool C).

The strength of this model is its decentralized, pairwise structure that re-
quires neither a central broker or mediator, nor does it force any architectural
changes on the used VA tools. Instead of trying to lift a whole toolchain up
to conform to a state-of-the-art coordination framework, we coordinate directly
between two VA tools. This way, we can capture the full variety of different
modes, degrees, and directions of coordination between different tools, instead
of boiling the coordination down to the least common denominator among all
involved tools. This directly benefits:

— the VA experts, who can introduce coordination incrementally — adding one
level of coordination among one pair of tools at a time — and thus adaptively
expand and refine coordination as it becomes necessary,

— the software experts, who can leverage whichever features a tool already
provides to connect to it,

— and the end users, who can bring in additional tools, which may or may not
already have couplings to the tools from a current toolchain.

The decentralized model is mainly targeted at the VA and software experts.
While the end users are also thought to benefit from the provided flexibility,
overlooking and taming such a “zoo of tools” can also become quite a challenge.
To aid in doing so, our approach complements the decentralized coordination
mechanism with interface arrangements that provide structure on top of the tool
ensemble. These interface arrangements are described in the following section.

3.4 Interface Ensembles

When handling multiple VA tools, the mere orchestration of their application
windows becomes a management task by itself that requires attention, effort, and
time which would be better spent on the visual analysis itself. In order to reduce
this overhead, we propose the notion of interface ensembles. These provide an
organized view on the otherwise often overwhelming mesh of any number of

10 H.-J. Schulz et al.

invisible pairwise coordination mechanisms springing to life depending on the
currently used tools and the user’s actions.

Interface ensembles consist first and foremost of a centralized panel for global
views and interaction elements that concern the toolchain as a whole. We call
this centralized panel the Control Interface and it serves at its core as a place
in which to display information that cuts across tools and where to affect global
changes and adjustments. In this function, the control interface can be utilized
by all three levels of coordination:

— for the Usage Flow, we can use the control interface for example to dis-
play progress information and to invoke additional tools or choose between
alternative analysis paths;

— for the Data Flow, we can use the control interface for example to archive
snapshots of interesting intermediate results for later in-depth investigation
along the lines of a bookmarking or multi clipboard system;

— for the Control Flow, we can use the control interface for example to display
global information like legends and to set global parameters like color scales
or which data field to use for labeling data items.

In addition to the control interface, interface ensembles employ structured
ways of displaying Uls, so that they appear in a predictable manner that suits
the current usage flow. Common ways of doing so are outlined in the following.

Individual VA Tool Use: The Tabbed UI. The usage flow among VA tools
is a path: first a tool A is used, then a tool B, followed by a tool C, and so forth.
This individual, subsequential use of VA tools as predefined by the coordination
orders that connect the tools in a temporal sense, results in an exclusive use
of a single UT at each point in time as shown in Fig. 2(a). What reads like an
oversimplification at first is actually the most prevalent usage pattern in practice,
as visual analysis is for the most part conducted as a linear series of very specific
analysis steps, each carried out with a highly specialized analysis tool or view.
To the user, these tool sequences can be offered in a variety of ways. One
way of displaying such sequential procedures is through a tabbed interface that
opens each tool in a dedicated tab, with the tabs being ordered according to the
tool sequence. This way, by clicking on the tabs, the user is always able to go
back in the toolchain and to readjust some property in an earlier used tool — for
example, manually moving a data item from one cluster into another one. Given
that all other parameters and choices along the toolchain stay the same, these
changes can be passed automatically through the appropriate channels and be
processed by the appropriate rules to auto-update the current tool and its view.
The tabbed interface can further be augmented by a wizard-like guidance that
leads the user tab by tab along the path defined by the coordination orders.

Combined VA Tool Use: The Tiled Display. Sometimes, it makes sense
to use VA tools not just one tool at a time, but to have access to subsequent
tools of the toolchain at once. This can be the case, for example, when a data

A Layered Approach to Lightweight Toolchaining in Visual Analytics 11

Tool Ul
i

Tool UI Tool UI =L

\ 4

v

t .
g
[ENNSR
=
g
[NI=X
<

(a) Tabbed Ul

Tool Ul

Tool Ul Tool Ul Tool Ul
i i+1

L ! -
v
g
s 2
c i
= K
®
g
w2
c

t .

(b) Tiled UI (c) Nested Ul

Fig. 2. Common UI layouts when dealing with multiple VA tools.

selection from one tool will serve as an input to the next tool and one needs to
go back and forth between the two tools to try out and observe the effects of
different selections. The topology is still a path topology, as shown in Fig. 2(b),
but with two Uls being displayed at once to facilitate such combined use.

To the user, such setups are usually offered by tiling the display and showing
the tools side by side, or by distributing them among multiple monitors. In this
way, the tools are present on the screen at the same time to work with them
without having to switch — i.e., sending one to the background and bringing
another one to the front, as it would be the case in the tabbed interface. Syn-
chronization features, such as linking & brushing and displaying visual links are
desirable to make the back and forth between the tools more fluent.

Flexible VA Tool Use: The Nested UI. If VA tools are used more flexi-
bly than a mere back and forth along a path of sequential tools, the resulting
topology also gets more involved. A powerful example for this case is the star-
shaped topology that is shown in Fig. 2(c) where all analysis steps start from
a hub application or central VA tool. Such topologies support more complex
usage flows that meander between multiple tools until their combined use yields
an analysis result. This is often the case in comparative analyses where multiple
windows and tools are needed to process, show, and relate different data subsets
or different analytical procedures to each other.

To the user, the central tool is usually offered as an omnipresent overview
of the data that is shown in a fashion similar to a background image. In this
overview, users can select regions of interest into which to dive deeper by opening
them up in other VA tools. The opened tools are shown as nested or superim-
posed views right in place where the selection was made. Making multiple selec-
tions opens multiple tools, effectively realizing the star-shaped topology. For this
to work even with a dozen tools all scattered across the overview of the central
VA tool, the overview/background needs a map-like appearance that serves well
as a context for all the other Uls and makes their spatial relation meaningful.

12 H.-J. Schulz et al.

The following sections will give a few first impressions of how this model for
lightweight tool coordination can be employed in real-world analysis scenarios.
To do so, each of the three sections focuses on the coordination of one particular
layer and for one particular use case, capturing and utilizing the usage flow in
Sec. 4, the data flow in Sec. 5, and the control flow in Sec. 6.

4 Providing the Right Tool at the Right Time

At the first layer of VA tool coupling, we define a temporal toolchain according
to existing analysis procedures in a domain. This includes selecting suitable tools
for the given tasks, determining sequences in which they should be used, and
guiding a user through these sequences by automatically activating the right
tool at the right time. We demonstrate the benefits of this layer with an editor
to specify temporal chains of VA tools and its application in ophthalmology.

4.1 An Editor for Building a Temporal Toolchain

The first step of coupling independent tools is to put them in the right order.
In many cases, numerous possible orders of tools are available. For example,
in a larger analysis procedure, the order between two or more tools may be
predefined, e.g., due to semantic constraints, while at the same time alterna-
tive execution sequences for the remaining tools exist. Thus, the first important
question is: who defines the order of tools?

We argue that an appropriate answer to this question is to let the domain
experts create the order of tools. That is because domain experts generally have
the necessary context knowledge about which individual tool needs to be used
when in their analysis procedure. However, this requires a simple interface for
modeling a temporal toolchain that can be understood by non-technical users.
This brings us to the second important question: how can we support domain
experts in defining orders of tools?

As with every other temporal sequence, there is some ordering implied by an
analytical toolchain. We choose to represent the orders of independent tools as
directed acyclic graphs that contain multiple time steps with at least a single
tool and optional data inputs necessary for carrying out the tools. In addition,
we provide an editor with a simple user interface in order to support domain
experts in creating such graphs. This requires us to 1) allow access to all tools
that are needed, 2) allow access to all data that are needed to run these tools,
and 3) allow to define connections between tools and data sources in the ordering
process.

The main idea of our editor is to build a metaphorical bridge between the
domain expert and the internal tool coupling processes. Hence, we choose an
interface design that is similar to common presentation software, where a user
can configure a sequence of slides to be shown in a later talk.

The display of our editor’s user interface is divided into three containers that
hold different types of information for the ordering process (Fig. 3):

A Layered Approach to Lightweight Toolchaining in Visual Analytics 13

File Edit Help

S e S
e | &= | &=
&= | & | &

ClinicalData.csv | OctDatacsv | AnalyticalData.csv

Fig. 3. Analytical process editor with temporal order of multiple tools used in an
ophthalmic analysis process. The three panels in the editor’s user interface represent the
tool container (top), the graph container (middle), and the source container (bottom).

1. The Tool Container holds a collection of all executable tools. Imported
tools can be dragged from this container and dropped into the graph con-
tainer to either create new time steps or add tools to existing time steps.

2. The Source Container holds a collection of data sources. These data
sources can be included in the graph to supply tools at a certain time step
with input or supplementary data.

3. The Graph Container is the main part of the editor’s user interface. It pro-
vides a space for the creation and modification of directed acyclic graphs.
Each tool or data source can be dragged & dropped from the other containers
into the graph container to order the analytical process. The resulting tem-
poral toolchain can then be executed or saved as a JSON file by interacting
with the main menu at the top of the user interface.

All necessary tools and data sources are imported into the editor by dragging
them onto the two respective containers in the user interface. In fact, all of our
import and export mechanisms are based on drag & drop interactions to facilitate
an intuitive user experience. This is to enable non-technical users to adapt more
easily and quickly to the temporal ordering process of independent tools.

All in all, our editor provides an easy-to-use interface that abstracts the
temporal coupling of tools similar to common presentation software. At the
same time, the editor is highly flexible with respect to the number of imported
tools or data sources as well as to the size and complexity of created toolchains.

4.2 A Temporal Toolchain in Retinal Data Analysis

We applied our editor to build a tool sequence on top of a scientific analysis
procedure for retinal data in ophthalmic research. For this purpose, we collabo-
rated with a group of ophthalmic experts. We explained our objectives, discussed
suitable analysis scenarios, and jointly identified challenges with their current

14 H.-J. Schulz et al.

use of independent software tools without any kind of automated support for
activating tools as needed.

Together, we defined the content of the tool container, data source container,
and graph container of the editor for our use case in three steps. First, we
learned which tools and data are required by taking a closer look at the retinal
data analysis. Second, we temporally connected the tools by tracing the order in
which they were applied in the experts’ analysis procedure. Third, we assessed
the benefits of this first layer of tool coupling by gathering informal feedback
and reflecting on results.

Determining tools and data: The ophthalmic experts were interested in studying
retinal changes of patients in relation to healthy controls. They started by gath-
ering retinal 3D image data acquired via optical coherence tomography (OCT)
and other clinical parameters of the two study groups from a clinical data man-
agement system. The data analysis was then carried out in three main steps:

1. Data preparation: Compilation of study groups and data quality checks.

2. Data exploration: Discovering differences between study groups and investi-
gating relationships with clinical parameters.

3. Data presentation: Summarizing findings and reporting study results.

In this process, a set of eight diverse tools was applied. This included com-
mercial software, e.g., device-specific OCT software and spreadsheet software, as
well as statistics software and VA software, e.g., the R software environment [26]
and a custom VA framework for retinal OCT data [29,25]. The data required
to carry out the tools comprised OCT scans and electronic health records for
both patients and controls. All tools and datasets were imported into the tool
container and the data source container of the editor, respectively.

Temporally connecting tools: Next, we focused on making the tools available
when needed by automating their activation. We utilized our editor to model
the temporal order of the tools as a directed graph according to an established
analysis procedure currently in use in ophthalmic research. We started by sketch-
ing an initial tool sequence in the editor together with the experts. The visual
presentation of temporal connections in the editor’s user interface helped us to
get an idea of when which tool was applied. Using the editor’s direct drag & drop
manipulation support, we were able to refine the initial sequence based on the
experts’ feedback and devise alternatives. Figure 3 shows the resulting sequence
of applied tools in the user interface of the editor. With the editor’s graph con-
tainer at hand, the experts were able to create, refine, and store modeled tool
sequences. They were also able to perform test runs via the editor to make sure
the modeled tool sequences exactly matched their requirements.

Benefits of temporal tool coupling: Our observations and the ophthalmic experts’
feedback are summarized with respect to the utility of the editor and supporting
a temporal coupling of tools in general. Regarding the editor, we were able to

A Layered Approach to Lightweight Toolchaining in Visual Analytics 15

successfully model a tool sequence on top of the analysis procedure explained
by the ophthalmic experts. In this regard, the editor proved to be a useful aid
for this kind of work. In fact, other ophthalmic analysis procedures similar to
the described use case were identified, including studying specific diseases or
investigating corneal study data. While the general analysis approach and in-
volved tasks are comparable, the required tools and the order in which they are
applied may differ. In this context, our editor supports defining new temporal
tool sequences and helps to revisit and adapt existing ones. The latter becomes
necessary if medical devices and respective software are changed in a clinic or if
additional steps are added in the analysis procedure. By serializing and storing
a modeled tool sequence, it is even possible to go back to previous versions and
to recreate a specific analysis result.

Regarding the temporal coupling of tools in general, the experts were relieved
from having to search for each required tool and starting it independently. Al-
though, all data funneling and parameter synchronization still had to be done by
hand, the modeled tool sequence and automated tool activation already helped
them to focus on the actual data processing and analysis. Especially, moving
back and forth between certain analysis tasks and thus frequently switching be-
tween heterogeneous tools had previously required considerable manual effort.
The basic guidance through the analysis procedure provided by this first layer of
tool coupling ensured that no tool or analysis step was left out by mistake, e.g.,
forgetting data quality checks and applying respective repairs. In addition, it
enabled comparability between different analysis runs by activating tools always
in line with the experts’ analysis procedure.

5 Providing the Right Data at the Right Time

At the second layer of VA tool coupling, we provide the means for VA tools to
exchange data, which is probably most directly associated with the joint use of
multiple tools. It should foremost make available the analysis results from one
tool in a form that can be read-in by the next tool in the chain — and possibly
vice-versa, depending on how the tools are used in conjunction. To provide this
functionality, we introduce a library for web-based analysis tools to enable data
input and output. We illustrate the usefulness of this functionality by showing
how it can be used to create and augment VA tools with this functionality, and
how this helped toolchaining in an astronomy use case.

5.1 A Library for Data Exchange between VA Tools

Data exchange between multiple VA tools is not as straightforward as it may
seem due to the different types of data being generated: while some tools produce
numerical outputs, others produce visual outputs, as it lies in the nature of VA.
The challenge is that while numerical output can at any time be transformed
into visual output, if another tool requires its input in view-form — the other
way around is hardly possible. This leads to the situation where if at a later,

16 H.-J. Schulz et al.

EE r
. : =

Pt =,

Fig. 4. Screenshots of ReVis (left) and our Vega-Lite enabled ColorBrewer (right).

visual-interactive step of the toolchain it becomes apparent that changes need
to be made to analysis steps carried out on the numerical data — e.g., the data
should have first been normalized or some aggregation parameter needs to be
adjusted — the whole toolchain needs to be rolled back to that point to enact
the desired change and then be carried out anew from this point onward.

This challenge is usually countered with a linking between any shown graph-
ical object and its underlying data item — e.g., by employing centralized, MVC-
like architectures — so that any interaction and manipulation in the view space
can be directly reflected in the underlying data space. This approach works very
well, but requires deep integration with the coordinated tools that goes far be-
yond the mere input and output of files. To instead realize a lightweight data
exchange that follows the idea of pairwise connections between tools through
passing of files, we propose a different approach: we use the visualization gram-
mar Vega-Lite [33] to describe data, data transformations, visual mapping, and
view transformations — i.e., the full visualization pipeline — all at once in one
file. Consequently, VA tools that are able to read and write such grammars can
adjust any aspect of a visualization, from the underlying dataset all the way to
color scales and axis labels in any order.

We support the realization of “Vega-Lite enabled” VA tools by providing
the open source library ReVize that equips web-based tools with Vega-Lite im-
port/export functionality [15]. ReVize provides an abstraction of Vega-Lite en-
coded visualizations by making the contained view hierarchy and data transfor-
mation graph accessible. To do so, it uses Vega-Lite’s view composition structure
and decomposes it into independent layers for individual modification. ReVize’s
import module resolves structural dependencies (e.g., inline datasets or inher-
ited visual encodings) that usually prevent the reuse of sub-views in Vega-Lite
specifications by inferring default values from parent and child nodes. A VA tool
using ReVize can thus import a Vega-Lite formatted visualization description,
further process its contained data or interactively adjust the view on the data it
describes, and export it as a Vega-Lite specification again.

ReVize can on one hand be used to build dedicated VA tools that are tai-
lored to processing or adjusting individual aspects captured by the Vega-Lite
format. For example, we utilized ReVize for building a data editor called Re-

A Layered Approach to Lightweight Toolchaining in Visual Analytics 17

Data to insert/remove data transformations and a visualization editor called
ReVis to create/adapt the visual mapping and thus the display of the data —
cf. Fig. 4(left). On the other hand, ReVize can also be used to add Vega-Lite
input/output functionality to pre-existing tools, thus enabling us to use them
as part of a Vega-Lite based VA toolchain. We have used ReVize for instance to
augment the well-known ColorBrewer web application [13] with Vega-Lite im-
port and export functionality, so that it can be used to adjust color scales in
Vega-Lite formatted visualization data. This is shown in Fig. 4(right), and all
mentioned tools are furthermore also available for download from https://vis-
au.github.io/toolchaining/. Together with all the tools that already feature Vega-
Lite input and/or output, these VA tools form the toolset from which analysts
can freely pick the most appropriate one to carry out their next analysis step.
This is illustrated in the following with an analysis scenario from astronomy.

5.2 A Cross-Tool Analysis Scenario for Astronomical Data

In this use case, we worked with a dataset on extrasolar planets publicly available
through the Exoplanet Data Explorer at http://exoplanets.org [12]. It contains
data on more than 3,000 confirmed planets that were discovered by international
research groups before 2018. For each entry, the dataset includes information on
the first peer-reviewed publication for a planet, its position as well as physi-
cal attributes such as the planet’s mass. The dataset is a popular reference in
exoplanetary research projects.

Using this dataset, we want to investigate the planets’ masses and their semi
major axis, which is a positional parameter that expresses the greatest distance
a planet has on its orbit around the star of its solar system. In addition to those,
we are also interested in the influence of the so-called argument of periastron,
i.e. the angle between the semi major axis and the direction, from which a
telescope observed the planet. Looking at these values is helpful in determining
characteristics of the types of measurement used to observe these planets.

For investigating this data, we rely on our Vega-Lite based toolset of Re-
Vis, ReData, the Vega-Lite enabled ColorBrewer, and the Vega online editor at
https://vega.github.io/editor/. One possible exploration path across these tools
is depicted in Fig. 5.

Benefits of coupling tools through data exchange: Besides the advantages that
we have already taken into account at design time, such as the expressiveness of
Vega-Lite for numerical and image data alike, there are more benefits from data
exchange that emerged when working with this use case. First, by using a generic
data exchange format that is not tailored to a particular application domain, we
were able to bring domain-specific tools like ColorBrewer into the toolchain, even
though it is originally intended for use in cartographic applications. Second, by
capturing all aspects of an intermediate result from the toolchain in one file,
we could simply email these files back and forth with our collaborator from
the physics and astronomy department to clarify questions or have him make
adjustments to the data part of the file with his specialized tools — mostly IDL

18 H.-J. Schulz et al.

(a) ReVis is used to create a scatterplot of
the exoplanets dataset, but outliers at 0°

(b) Filtering these outliers using ReData
reveals that many of the planets concen-

compress the view of the data vertically. trate hardly discernable at 0° and 90°.

H
'Y P

(d) Only zooming into these spots using
the Vega online editor finally allows to
investigate those planets individually.

(c) Using ColorBrewer to color-code each
planet’s mass, does not help to better dis-
cern individual planets in these spots.

Fig. 5. A possible path through a toolset of four independent tools that are coupled
by Vega-Lite based data exchange.

scripts. And finally, a simple form of cross-tool undo/redo functionality comes
for free with this type of coupling, as snapshots of files can easily be archived
every time they are passed into the next tool.

6 Providing the Right Parameters at the Right Time

At the last layer of tool coupling, we define presets for parameters or func-
tions that are used within the analysis toolchain of our application domain. This
includes the identification of tasks and their translation into modular execu-
tion steps. The Fraunhofer IGD in Rostock has already worked on multiple use
case scenarios in the fields of industry, healthcare, and administrative manage-
ment. One of the most popular commercial projects is the Plant@Hand frame-
work [1]. This product is the fundamental structure for multiple descendants
such as Health@Hand or Ship@Hand (see Fig. 6). All of these products are using
presets in order to assist users in their daily task. We explain this concept with
an example of a healthcare use case in Health@Hand.

6.1 A Comprehensive Application for the Visualization of Different
Presets

The digitization in the health care sector has led to a growing quantity and
quality of individual systems such as the clinical information system (CIS), the

A Layered Approach to Lightweight Toolchaining in Visual Analytics 19

Fig. 6. Examples of visual data analysis use cases with Plant@Hand: factory visual-
ization (left) and ship condition analysis (right).

picture archiving and communication system (PACS), the radiological or labo-
ratory information systems (RIS/LIS), or the electronic health record systems
(EHR). Additionally, there are specific third-party tools for the analysis and
visualization of real-time sensor data as well as customized information dash-
boards. As a result, the medical staff needs to take on the role of data scientists
in order to understand the correlations between multiple tools, observe changes
in the data, and assure the well-being of multiple patients at the same time.

Our Health@Hand interface assists this cause by providing a 3D model of an
intensive care unit (ICU) in order to emphasize the changes of real-time vital
data. This digital twin of the hospital ward contains different types of informa-
tion about patients, rooms, staff, or inventory. We define these categories as data
sources that each hold a set of elements to be handled by the data manager. An
example of this would be the data source patient that holds elements such as
pulse, heart rate variability, or respiration rate.

The visual interface is based on the nested UI model by providing a general
overview on the 3D scene with relevant short information about each element.
The user can interact with this UI by selecting a single short information panel
to open up more detailed information. The detail information panel can contain
text, images, or entire tools to further examine selected instances of a data
source. The individual tools can be used independently to handle the data from
typical healthcare management systems.

— The Vital Data (VD) Dashboard shows a patient’s vital data parameters
such as pulse, heart rate variability, or respiration rate.

— The eHealth Record Browser gives the medical staff access to the medical
EHR system. This record contains context information about the patient’s
personal data such as name, age, and prior diagnosis.

— The Image Viewer uses the PACS suite to import images of medical findings.

— The Shimmer Monitor is used to access readings from an activity sensor.
This sensor captures real-time data of the patient’s vital parameters and
determines the estimated activity.

20 H.-J. Schulz et al.

— The Cardio Anomaly (CA) Detector uses artificial intelligence for the anal-
ysis of heart rate data. Medical experts can interact with this tool by in-
specting and annotating automatically identified anomalous spots in order
to point out reasons for a patient’s irregular blood circulation.

6.2 Toolchain and Presets for the Detection of Cardio-Vascular
Anomalies

Our Health@Hand system uses different sorts of parameters in the data manager
to control for example 1) which information are shown in the 3D model, 2) how
colors are adjusted to avoid visual clutter, 3) how screen space is allocated and
organized for the parallel usage of multiple tools, and 4) which tools are linked
in order to identify correlations in the visual representation.

The previously mentioned data manager can be used to switch between differ-
ent data sources. However, there is also a possibility to select or deselect different
parameters as every element of a data source is passed as a parameter to create
the short information panels. The user can thereby interact with a side menu in
order to avoid visual clutter.

< e

.. O
Jotzor Signg
4/11/2019

soL
16:11h

Aktiitatsuntersuchung - Marko
o auorstotsat
o
o
Pus 3 chart by amchars

s
Bt 2
oz TSt H
27% 5:29h H
Aomitoquonz T8 i,
22/min 23:13h g
Blutzucker WIDS N |
42mmoll 2:35h

‘ 10116 10:57 138

son

Fig. 7. Toolchain view of Health@Hand with the toolchain window (bottom right), the
history window (bottom left) and the currently used tools (center).

In the following part, we consider the toolchain module that is used for the
execution of our specific use case scenario (see Fig. 7). The module itself is a
part of the data manager and consists of three different components:

A Layered Approach to Lightweight Toolchaining in Visual Analytics 21

The Toolchain Window provides information about the current progress of
the user by showing an overview of the analytical toolchain graph. The graph
can be explored by interacting with the buttons below in order to switch back
and forth in the analytical process. The user can also find useful information
about upcoming tools by hovering over the related step.

The History Window holds a record of all performed operations whether it is
inside of a tool or by interacting with the toolchain window. These operations
can then be reverted or repeated on demand.

The Workspace Area allows users to interact with the corresponding tools of
each toolchain step. It adapts the size of each tool according to the screen
space and organizes them next to each other to avoid overlap. The referred
data for the scaling and positioning of each tool is thereby passed as a
parameter at the initiation of the next toolchain step.

We use this module to represent the analytical process for the detection of
cardio-vascular anomalies. The resulting toolchain is based on a specific temporal
order of the previously mentioned tools. In the following, we describe our use
case in six different steps:

1. Situational assessment using the three-dimensional digital twin:
The medical expert observes and examines the general condition of multiple
patients based on their incoming sensor data. If the vital data parameters
change to an unusual state, the expert can switch to the toolchain module
and select the specific patient. Thereby the patient’s ID is recorded and
passed through the toolchain in the following process, so that each tool
opens up with the right medical data.

2. Vital data overview using the VD Dashboard: At the first step of the
toolchain, a backlog of a patient’s vital signs is examined through diagrams
and gauges in the VD Dashboard.

3. Evaluation of the personal health state using the eHealth Record
Browser: In the next step, the patient record entries such as age, data of
admission, and diagnosis are considered in order to put the vital signs in the
context of the patient’s personal health state. Therefore, the workspace is
reduced to show the vital data parameters next to the personal health data.

4. Checking diagnostic findings using the I'mage Viewer: The Image Viewer
provides further context information for the medical expert to check avail-
able imaging data for related cardiovascular findings. Therefore, each tool
window in the workspace is further reduced to an acceptable size.

5. Activity analysis using the Shimmer Monitor: As both, pulse and
respiration rate, correlate with the physical activity being performed, the
patient’s activity data (including any therapeutic stressing situations) is
brought up from the Shimmer Monitor. At this step, Linking & Brushing is
established in order to find correlated information based on the selected time
interval in the Shimmer Monitor. The interval is then passed as a parameter
to the VD Dashboard and highlighted accordingly.

22 H.-J. Schulz et al.

6. Automated anomaly detection using CA-detect: If the expert finds
no natural cause for the current irregularities, he can use the cardiologi-
cal anomaly detection to calculate anomaly scores based on the vital data
streams of the patient. After some minor configuration time, the results are
automatically opened in a D3.js line chart to show the statistical outliers.

The use case shows that there are multiple possibilities for using preset pa-
rameters in our Health@Hand system. We received positive feedback from differ-
ent visitors at the Medica World Forum for Medicine 2018 and on many following
exhibitions. The received feedback included comments such as “That’s the fu-
ture of clinical data exploration.” (from PAMB) or “The integration of different
data views will improve diagnosis and therapy management.” (from Poly-Projekt
GmbH). Especially, changes in the tools itself such as the Linking & Brushing
between tools proved to be very helpful for the user. There have also been some
minor remarks on the potential of multi-user interaction or the distribution of
information across different devices, and we look forward to include these sug-
gestions in further development.

7 Conclusion

With the proposed layered approach for lightweight toolchaining in VA, we have
captured in a structured manner the stitching together of VA tools via custom
scripts and copy & paste keystrokes that is the current state of affairs in coupling
multiple independent VA tools in many domains. The proposed layered model
that clearly separates the different aspects of working with ensembles of multi-
ple independent tools, as well as its underlying principle of lightweightedness —
i.e., their pairwise, bottom-up coordination — offer a conceptual framework in
which to discuss and design toolchains and their desired and necessary degree
of automation for a scenario at hand. Finally, the concrete realizations and use
cases discussed for each level of coordination show the proposed approach in
action, illustrating what each of them has to offer and providing arguments for
the usefulness of each of them.

What these different use cases do not yet explicitly discuss, is the potential for
the three levels of coordination to play together and to extend into each other’s
domain. For example, given an encompassing data description like a visualization
grammar, adjustments to the control flow can easily be envisioned to reach well
beyond mere reparametrizations by switching out not just individual values but
entire parts of that description — i.e., parts of the dataset or functional building
blocks in the view composition. Or given a planning environment for explicitly
creating and revising the usage flow, not only tools and their order of use, but
also parameters associated with particular analysis steps can be preconfigured as
“temporal presets”. In particular such combinations of the different coordination
levels will be in the focus of future work on our layered approach.

A Layered Approach to Lightweight Toolchaining in Visual Analytics 23

Acknowledgements

We are indebted to the respective domain experts from ophthalmology, astron-
omy, and intensive care who provided their feedback and insights for Sections 4
through 6. We also thank the anonymous reviewers for their guiding comments on
earlier versions of this manuscript. Furthermore, we gratefully acknowledge fund-
ing support by the German Research Foundation through DFG project UniVA.

References

10.

11.

Aehnelt, M., Schulz, H.J., Urban, B.: Towards a contextualized visual analysis of
heterogeneous manufacturing data. In: Advances in Visual Computing: Proc. of
the Intl. Symposium on Visual Computing (ISVC). pp. 76-85. Springer (2013).
https://doi.org/10.1007/978-3-642-41939-3_8

. Benzaken, V., Fekete, J.D., Hémery, P.L., Khemiri, W., Manolescu, I.: Ed-

iFlow: Data-intensive interactive workflows for visual analytics. In: Proc. of
the IEEE Intl. Conf. on Data Engineering (ICDE). pp. 780-791 (2011).
https://doi.org/10.1109/ICDE.2011.5767914

Collins, C., Carpendale, S.: VisLink: revealing relationships amongst visualizations.
IEEE TVCG 13(6), 1192-1199 (2007). https://doi.org/10.1109/TVCG.2007.70521
Dork, M., Carpendale, S., Collins, C., Williamson, C.: VisGets: Coordinated vi-
sualizations for web-based information exploration and discovery. IEEE TVCG
14(6), 1205-1212 (2008). https://doi.org/10.1109/TVCG.2008.175

Endert, A., Hossain, M.S., Ramakrishnan, N., North, C., Fiaux, P., Andrews, C.:
The human is the loop: new directions for visual analytics. Journal of Intelligent
Information Systems 43(3), 411-435 (2014). https://doi.org/10.1007/s10844-014-
0304-9

Fekete, J.D.: Visual analytics infrastructures: From data management to explo-
ration. Computer 46(7), 22-29 (2013). https://doi.org/10.1109/MC.2013.120
Fekete, J.D., Hémery, P.L., Baudel, T., Wood, J.: Obvious: A meta-toolkit to en-
capsulate information visualization toolkits — one toolkit to bind them all. In:
Proc. of the IEEE Conf. on Visual Analytics Science and Technology (VAST). pp.
91-100. IEEE (2011). https://doi.org/10.1109/VAST.2011.6102446
Fernandez-Villamor, J.I., Blasco-Garcia, J., Iglesias, C.A., Garijo, M.: A semantic
scraping model for web resources — applying linked data to web page screen scrap-
ing. In: Proc. of Intl. Conf. on Agents and Artificial Intelligence (ICAART). pp.
451-456. SciTePress (2011). https://doi.org/10.5220/0003185704510456

Fisher, D., Drucker, S., Fernandez, R., Ruble, S.: Visualizations everywhere: A
multiplatform infrastructure for linked visualizations. IEEE TVCG 16(6), 1157
1163 (2010). https://doi.org/10.1109/TVCG.2010.222

Garg, S., Nam, J.E., Ramakrishnan, I.V., Mueller, K.: Model-driven visual analyt-
ics. In: Proc. of the IEEE Symposium on Visual Analytics Science and Technology
(VAST). pp. 19-26. IEEE (2008). https://doi.org/10.1109/VAST.2008.4677352
Giirdiir, D., Asplund, F., El-khoury, J., Loiret, F.: Visual analytics towards tool
interoperabilty: A position paper. In: Proc. of the Intl. Conf. on Information Vi-
sualization Theory and Applications (IVAPP). pp. 139-145. SciTePress (2016).
https://doi.org/10.5220/0005751401390145

24

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

H.-J. Schulz et al.

Han, E., Wang, S.X., Wright, J.T., Feng, Y.K., Zhao, M., Fakhouri, O., Brown,
J.I., Hancock, C.: Exoplanet orbit database. II. updates to exoplanets.org. Pub-
lications of the Astronomical Society of the Pacific 126(943), 827-837 (2014).
https://doi.org/10.1086 /678447

Harrower, M., Brewer, C.A.: ColorBrewer.org: An online tool for selecting
colour schemes for maps. The Cartographic Journal 40(1), 27-37 (2003).
https://doi.org/10.1179/000870403235002042

Hartmann, B., Doorley, S., Klemmer, S.R.: Hacking, mashing, gluing: Under-
standing opportunistic design. IEEE Pervasive Computing 7(3), 46-54 (2008).
https://doi.org/10.1109/MPRV.2008.54

Hografer, M., Schulz, H.J.: ReVize: A library for visualization toolchain-
ing with Vega-Lite. In: Proc. of the Conf. on Smart Tools and Ap-
plications in Graphics (STAG). pp. 129-139. Eurographics (2019).
https://doi.org/10.2312/stag.20191375

Kandel, S., Heer, J., Plaisant, C., Kennedy, J., van Ham, F., Riche, N.H., Weaver,
C., Lee, B., Brodbeck, D., Buono, P.: Research directions in data wrangling: Vi-
sualizations and transformations for usable and credible data. Information Visual-
ization 10(4), 271-288 (2011). https://doi.org/10.1177/1473871611415994
Kolojejchick, J., Roth, S.F., Lucas, P.: Information appliances and tools
in visage. IEEE Computer Graphics and Applications 17(4), 3-41 (1997).
https://doi.org/10.1109/38.595266

Kriiger, R., Herr, D., Haag, F., Ertl, T.: Inspector Gadget: Integrating data
preprocessing and orchestration in the visual analysis loop. In: EuroVis Work-
shop on Visual Analytics (EuroVA). pp. 7-11. Eurographics Association (2015).
https://doi.org/10.2312/eurova.20151096

Ludéscher, B., Lin, K., Bowers, S., Jaeger-Frank, E., Brodaric, B., Baru, C.:
Managing scientific data: From data integration to scientific workflows. In:
Sinha, A.K. (ed.) Geoinformatics: Data to Knowledge, pp. 109-129. GSA (2006).
https://doi.org/10.1130/2006.2397(08)

Munzner, T.: Visualization Analysis & Design. CRC Press (2014)

North, C., Conklin, N., Indukuri, K., Saini, V., Yu, Q.: Fusion: Inter-
active coordination of diverse data, visualizations, and mining algorithms.
In: Extended Abstracts of ACM SIGCHI'03. pp. 626-627. ACM (2003).
https://doi.org/10.1145/765891.765897

North, C., Shneiderman, B.: Snap-together visualization: A user interface for
coordinating visualizations via relational schemata. In: Proc. of the Work-
ing Conf. on Advanced Visual Interfaces (AVI). pp. 128-135. ACM (2000).
https://doi.org/10.1145/345513.345282

Pietschmann, S., Nestler, T., Daniel, F.: Application composition at the presen-
tation layer: Alternatives and open issues. In: Proc. of Intl. Conf. on Information
Integration and Web-based Applications & Services (iiWAS). pp. 461-468. ACM
(2010). https://doi.org/10.1145/1967486.1967558

Poco, J., Mayhua, A., Heer, J.: Extracting and retargeting color mappings
from bitmap images of visualizations. IEEE TVCG 24(1), 637-646 (2017).
https://doi.org/10.1109/TVCG.2017.2744320

Prakasam, R.K., Rohlig, M., Fischer, D.C., Gotze, A., Jinemann, A., Schumann,
H., Stachs, O.: Deviation maps for understanding thickness changes of inner retinal
layers in children with type 1 diabetes mellitus. Current Eye Research (2019).
https://doi.org/10.1080/02713683.2019.1591463

R Core Team: R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria (2019)

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

A Layered Approach to Lightweight Toolchaining in Visual Analytics 25

Roberts, J.C.: State of the art: Coordinated & multiple views in ex-
ploratory visualization. In: Proc. of the Intl. Conf. on Coordinated and Mul-
tiple Views in Exploratory Visualization (CMV). pp. 61-71. IEEE (2007).
https://doi.org/10.1109/CMV.2007.20

Rogowitz, B.E., Matasci, N.: Metadata Mapper: A web service for mapping data
between independent visual analysis components, guided by perceptual rules. In:
Proc. of the Conf. on Visualization and Data Analysis (VDA). pp. 78650I-1-13.
SPIE (2011). https://doi.org/10.1117/12.881734

Rohlig, M., Schmidt, C., Prakasam, R.K., Schumann, H., Stachs, O.: Visual anal-
ysis of retinal changes with optical coherence tomography. The Visual Computer
34(9), 1209-1224 (2018). https://doi.org/10.1007/s00371-018-1486-x

Rungta, A., Summa, B., Demir, D., Bremer, P.T., Pascucci, V.: ManyVis: Multi-
ple applications in an integrated visualization environment. IEEE TVCG 19(12),
2878-2885 (2013). https://doi.org/10.1109/TVCG.2013.174

Santos, E., Lins, L., Ahrens, J., Freire, J., Silva, C.: VisMashup: Streamlining
the creation of custom visualization applications. IEEE TVCG 15(6), 1539-1546
(2009). https://doi.org/10.1109/TVCG.2009.195

dos Santos, S., Brodlie, K.: Gaining understanding of multivariate and multidimen-
sional data through visualization. Computers & Graphics 8(3), 311-325 (2004).
https://doi.org/10.1016/j.cag.2004.03.013

Satyanarayan, A., Moritz, D., Wongsuphasawat, K., Heer, J.: Vega-Lite:
A grammar of interactive graphics. IEEE TVCG 23(1), 341-350 (2017).
https://doi.org/10.1109/TVCG.2016.2599030

Schulz, H.J., Nocke, T., Heitzler, M., Schumann, H.: A systematic view on data
descriptors for the visual analysis of tabular data. Information Visualization 16(3),
232-256 (2017). https://doi.org/10.1177/1473871616667767

Schulz, H.J., Rohlig, M., Nonnemann, L., Aehnelt, M., Diener, H., Urban,
B., Schumann, H.: Lightweight coordination of multiple independent visual
analytics tools. In: Proc. of the 10th Intl. Conf. on Information Visual-
ization Theory and Applications (IVAPP). pp. 106-117. SciTePress (2019).
https://doi.org/10.5220,/0007571101060117

Seipp, K., Gutiérrez, F., Ochoa, X., Verbert, K.: Towards a visual guide for com-
municating uncertainty in visual analytics. Journal of Computer Languages 50,
1-18 (2019). https://doi.org/10.1016/j jvlc.2018.11.004

Streit, M., Schulz, H.J., Lex, A., Schmalstieg, D., Schumann, H.: Model-driven
design for the visual analysis of heterogeneous data. IEEE TVCG 18(6), 998-1010
(2012). https://doi.org/10.1109/TVCG.2011.108

Stuerzlinger, W., Chapuis, O., Phillips, D., Roussel, N.: User interface fagades:
Towards fully adaptable user interfaces. In: Proc. of the ACM Symposium on
User Interface Software and Technology (UIST). pp. 309-318. ACM (2006).
https://doi.org/10.1145/1166253.1166301

Tan, D.S., Meyers, B., Czerwinski, M.: WinCuts: Manipulating arbitrary window
regions for more effective use of screen space. In: Extended Abstracts of CHI’04.
pp. 1525-1528. ACM (2004). https://doi.org/10.1145/985921.986106

Tobiasz, M., Isenberg, P., Carpendale, S.: Lark: Coordinating co-located collab-
oration with information visualization. IEEE TVCG 15(6), 1065-1072 (2009).
https://doi.org/10.1109/TVCG.2009.162

Tominski, C.: Event-Based Visualization for User-Centered Visual Analysis. Ph.D.
thesis, University of Rostock, Germany (2006)

26 H.-J. Schulz et al.

42. Waldner, M., Puff, W., Lex, A., Streit, M., Schmalstieg, D.: Visual links across ap-

plications. In: Proc. of Graphics Interface (GI). pp. 129-136. Canadian Information
Processing Society (2010)

43. Weaver, C.: Visualizing coordination in situ. In: Proc. of IEEE InfoVis’05. pp.
165-172. IEEE (2005). https://doi.org/10.1109/INFVIS.2005.1532143

