Lightweight Coordination of
Multiple Independent Visual Analytics Tools

Hans-Jorg Schulz!, Martin Rdhligz, Lars Nonnemann?,

Mario Aehnelt?, Holger Diener?, Bodo Urban?, and Heidrun Schumann
' Department of Computer Science, Aarhus University, Abogade 34, 8200 Aarhus N, Denmark

2

2 Institute of Computer Science, University of Rostock, Albert-Einstein-Strafe 22, 18059 Rostock, Germany

3 Fraunhofer Institute of Computer Graphics Research, Joachim-Jungius-Strafe 11, 18059 Rostock, Germany

hjschulz @cs.au.dk, martin.roehlig @uni-rostock.de, lars.nonnemann @vcric.igd-r.fraunhofer.de,
{mario.aehnelt, holger.diener, bodo.urban} @igd-r.fraunhofer.de, heidrun.schumann@uni-rostock.de

Keywords:

Abstract:

Visual Analytics, Software Integration, View Coordination, Unified Interface

With the advancement of Visual Analytics (VA) and its spread into various application fields comes along a
specialization of methods and tools. This adds complexity and requires extra effort when devising domain-
dependent VA solutions, as for every new domain question a new specialized tool or framework must be
developed. In this paper, we investigate the possibility of using and re-using existing tools — domain-dependent
and general-purpose — by loosely coupling them into specialized VA tool ensembles as needed. We call
such coupling among independent tools lightweight coordination, as it is minimally-invasive, pair-wise, and
opportunistic in utilizing whichever interface a VA tool offers. We propose the use of lightweight coordination
for managing the workflow, the data flow, and the control flow among VA tools, and we show how it can be
supported with suitable setups of the multiple tool Uls involved. This concept of lightweight coordination is
exemplified with a health care scenario, where an ensemble of independent VA tools is used in a concerted

way to pursue the visual analysis of a patient’s troublesome vital data.

1 INTRODUCTION

The current tool landscape of Visual Analytics
(VA) is a scattered one. Most VA tools are spe-
cialized, domain-dependent, and scenario-driven so-
lutions, that are tailored to serve their intended ana-
Iytical purpose in a given application field as best as
possible. While this approach caters well to the re-
spective domain experts, it comes at a cost for the VA
researcher. Not only does it take a lot of resources and
efforts to create, adapt, and fine-tune matching VA
tools for every domain problem we encounter. This
approach also locks-in algorithms and techniques in
highly domain-specific tools, even though they would
be useful in other contexts as well.

Looking back at the wealth of VA tools produced
by his students over the years, Jarke van Wijk cap-
tured these two points as challenges in his VISI-
GRAPP 2017 keynote! by asking “How to develop

1http://www.visiqrapp.org/KeynoteSpeakers.
aspx?y=2017

such kind of custom solutions efficiently?” and “How
to scale? How to generalize?” And in fact, these
questions are tied to each other: A generalization of
domain specific solutions into a generic one can also
serve as a formidable basis to jump start the develop-
ment of a custom solution, which is much more effi-
cient than building it from scratch.

There are two common ways to answer these
questions. On one hand, individual VA techniques
and functionalities are combined into integrated VA
platforms in which to pursue a wide range of visual
analyses by utilizing the standard views and compu-
tations they incorporate. On the other hand, individ-
ual VA tools are simply invoked and used as is in se-
quence or in parallel. Data and intermediary results
are exported from one tool and manually imported
into the next via the file system or the clipboard, with
multiple tools often being arranged side by side in-
stead of using coordinated views.

In between these two options, there is a third and
less traveled road of lightweight coordination of in-
dependent VA tools, to form loose multi-tool ensem-

bles. These ensembles offer a compromise realizing
some of the features of integrated VA platforms with
minimal effort on top of independent VA tools. These
features can range from lightweight brushing & link-
ing to blending of different VA tools and techniques
into one virtual application.

In the spirit of v.Wijk’s questions, this paper
asks what we can do to provide and facilitate such
lightweight coordination between VA tools? To an-
swer this question, this paper introduces, discusses,
and exemplifies a novel process model to realize coor-
dination among multiple tools within and across VA
systems. This contribution consist of the following
four aspects:

e a 3-stage approach for defining lightweight coor-
dination among multiple VA tools by means of
augmenting existing analysis workflows in Sec. 3;

e a decentralized model based on this process
that captures coordination in VA tool ensembles
through pairwise linkage of tools in Sec. 4;

e a collection of prototypical Ul setups that permit
a central, unified access to such a loosely coupled,
decentralized tool ensemble in Sec. 5;

e an application example from health analytics
showcasing the proposed design process, coordi-
nation model, and UI setups in Sec. 6.

2 RELATED WORK

Prior research on tool coordination has resulted in
a variety of frameworks such as OBVIOUS (Fekete
et al., 2011) or VisMashup (Santos et al., 2009), as
well as in application-specific interoperability stan-
dards like BioJS (Gomez et al., 2013) for the life sci-
ences or SAMP (Taylor et al., 2015) for astronomy.
They provide an interoperability layer on code level,
which offers the necessary functionality to software
developers for coupling their VA tool with other tools
using the same framework. Lightweight coordination
among tools tries to keep code changes to a mini-
mum and instead relies on tool synchronization on
data level and on tool integration on view level.

Data level coordination in visualization — i. e.,
the synchronization of visualization tools through
data exchange — dates back to 1997 (cf. Visage (Kolo-
jejchick et al., 1997)). The traditional approach
to data level coordination is based on a central
database, that acts as a model in the model-view-
controller mechanism. Examples are systems like
Snap-together (North and Shneiderman, 2000) and
EdiFlow (Benzaken et al., 2011), that both use an
underlying relational database as central storage for

the information exchange. Other applications such as
the Metadata Mapper (Rogowitz and Matasci, 2011)
use services and communication protocols to share in-
formation among different tools. Besides these of-
ten centralized systems, there are also decentralized
systems such as federated databases or mashup tools,
such as Mashroom+ (Liu et al., 2014). Some tools
even use custom connectors to pass data from and
to otherwise closed tools with mere screen poking
and screen scraping (Fernandez-Villamor et al., 2011;
Hartmann et al., 2008) mechanisms.

View level coordination can be achieved by ex-
changing and combining user interface (UI) compo-
nents and visualizations from different systems, as it
is proposed by approaches, such as ManyVis (Rungta
et al., 2013). As the coordination of applications on
data and view level is independent, they can be com-
bined as necessary to achieve the required flexibility
for a given analysis. One of the few examples for co-
ordination on both levels is Webcharts (Fisher et al.,
2010). To make the interoperability of the tools avail-
able to the user, standard visualization frameworks
usually display such an interlinked setup in multiple
coordinated views (Dork et al., 2008; Roberts, 2007)
or fused visualizations (North et al., 2003). In some
cases, the tool chain itself is visually encoded in a (di-
rected) graph layout that shows their connections (To-
biasz et al., 2009; Giirdiir et al., 2016). Yet in some
cases, arranging Uls side-by-side is not sufficient and
a common interface may be glued together from in-
dividual interface parts. WinCuts (Tan et al., 2004)
and Facades (Stuerzlinger et al., 2006) enable users
to interactively compose their own Ul by cutting out
pieces of existing applications and re-arranging them.
For web-based ensembles, existing Uls are combined
in mashups (Pietschmann et al., 2010).

In most application domains from climatology to
biomedicine, the current practice in data analysis is
the “tool chain” of independent VA tools simply being
used independently one after the other. And as these
domains also feature a diverse set of file formats and
data conventions, it is often already considered a high
level of interoperability when the different tools can
work on the same data files, effectively easing the re-
lay of results from one tool into the next. This current
data analysis practice forms the basis for our coordi-
nation approach, which is described in the following.

3 BASIC APPROACH

Our basic idea is to couple multiple VA tools
according to existing analysis workflows. To this
end, we introduce a 3-stage coordination procedure.

The first stage takes the temporal order of VA tools
into account, the second stage enables data exchange,
and the third stage aims at synchronizing the VA
tools. Defining such a tool coordination requires the
combined efforts of a VA expert and a domain expert
with knowledge about the workflow in question.
Together, they do not only decide where to coordinate
a tool chain — i.e., among which tools — but also to
which extent to coordinate them.

Coordinating the workflow. The workflow deter-
mines which VA tools are used in which combination
— i.e., their subsequent or concurrent operation.
The first step for a VA expert is to understand this
workflow with the help of an application expert in
order to identify tool dependencies that should be
automated via tool coordination. This step deals
with the situational level in the nested visualization
design model (Munzner, 2014, ch.4.3) that aims
to understand the domain situation. Together, VA
expert and application expert determine which parts
of the tool chain shall be coordinated in the sense of
automatically bringing tools up as they are needed
according to the workflow.

Coordinating the Data Flow. The data flow deter-
mines what the VA tools are working on and what
they produce — i.e., their inputs and outputs. Where
the workflow is determined by the chain of tools used
during an analysis, the data flow is determined by the
data funneled through this tool chain from the “raw”
data input to the first tool of the chain, all the way
to the refined result output by the final tool in the
chain. This second step can thus be seen as a special
case of the abstraction level in the nested model that
aims to understand the data and what is done with
it in a domain-independent way. At this step, VA
expert and application expert need to determine for
which parts of the tool chain can and should data be
transmitted as the analysis switches between VA tools.

Coordinating the Control Flow. The control flow
determines how the tools are used — i.e., the steering
of their inner workings. Where the data flow is
determined by the inputs and outputs of VA tools,
the control flow is determined by which interactions
are performed on them, which methods are selected
and which parameters are tuned. To understand these
interactive practices, the VA and application experts
might need to bring in actual domain users to observe
exactly how the different VA tools are used. This
third step relates to the encoding and interaction
level of the nested visualization design model aiming
to find out how the general workflow is specifically
carried out among tools, beyond the mere passing of

data. At this step, VA and application experts must
specify if any of these interactively invoked actions
in one tool shall be synchronized in another tool
—and if so, how this synchronization should look like.

The last level of the nested visualization design
model, the algorithmic level, strongly depends on the
concrete VA tools being used. That is why this level is
usually the responsibility of a software engineer who
implements and thus realizes the concrete mode of co-
ordination to be used. To do so, any suitable technical
realization can be employed — from custom applica-
tion scripting to the utilization of coordination frame-
works, such as OBVIOUS or Many Vis.

With our 3-stage approach for tool coordination,
we contribute a procedure to model the top three lev-
els of the nested framework. Such a coordination al-
lows to provide a centralized, workflow driven access
to VA tools via a unified interface. The details of our
model are provided in the following Section 4 and the
unified access is described in Section 5.

4 A PROCEDURE FOR
MODELING LIGHTWEIGHT
COORDINATION

To characterize coordination among VA tools on
the three levels of workflow, data flow, and control
flow, we need adequate means to describe coordi-
nation in such a faceted way. In line with com-
mon view coordination models from the literature —
e.g., (Weaver, 2005) and (Collins and Carpendale,
2007), we propose to model VA tool coordination as
a graph. In this graph, VA tools constitute the nodes
and directed edges capture the workflow, data flow,
and control flow between pairs of VA tools. We out-
line these parts of our coordination model, as well as
how to establish and utilize them in the following.

4.1 Modeling the VA Tools

VA tools form the natural basis of our coordination
model, in the same way as they form the basis of the
analytic tool chain. As these tools can come in any
shape or form — from closed source to open source
software, from simple command line tools to full-
fledged VA frameworks — we follow the principle of
making no prior assumptions about these tools and
consider them as black boxes that are characterized
by their inputs and outputs. Fig. 1 shows two tools
modeled in this way, capturing the following I/O pos-
sibilities as ports of a VA tool:

Start/Stop

Started/Stopped
L > Coordination > 4
Order
Parameters L A\~ . Parameters
P T AT AT AT AT
Coordination
—) > —1
VA Datagyy Channel Datayy VA
N AT AT
Tool 1 |Eventsoyr Coordination Eventsy | Too| 2
Rules
Visualization Interaction Visualization Interaction

Coordination

- %

- %

Figure 1: Conceptual abstraction of lightweight coordination between two VA tools. The coordination order models any
temporal dependency between two tools (i.e., their subsequent or concurrent use). The coordination channels capture ways
to exchange data between tools, including any necessary data transformations along the way. The coordination rules describe
automated syncing features between tools as action/reaction pairs.

Start(ed)/Stop(ped): Starting and stopping a tool, as
well as being notified when it has started or stopped
is the most fundamental of all tool capabilities. We
model the invocation and termination of a tool via the
port Start/Stop and the respective notifications via
the port Started /Stopped.

Parameters: A VA tool’s behavior is usually
parametrizable. If parameters can be passed to the
tool — e.g., as command line options when invoking
it — this is modeled via the port Parameters.

Data (in/out): A VA tool requires input data on
which to perform the analysis. The passed input may
yield results, that the tools passes back in return. It
is common for most VA tools to have some ways of
loading data, which we model as a port Data;y and
saving results via the port Dataopyr.

Events (in/out): VA tools may allow a certain degree
of steering and observing its inner workings. Com-
mands may be passed to a VA tool through the port
Events;y — e.g., to run a certain computation — and
the progress and success of carrying them out may
be passed to the outside world via the port Eventsoyr.

Visualization & Interaction: In most cases, VA
tools generate visualizations of the input data and
display them to the user, who can then make interac-
tive adjustments to them. These aspects are captured
by the ports Visualization and Interaction.

Note that these ports are abstractions that we use
to model the respective possibility to manage an in-
dependent VA tool, regardless of whether these are
indeed provided by the tool itself or by some other
entity, like the operating system. For example, invok-
ing a tool and observing its state is on a technical level
rarely done via the tool itself, but instead utilizes the
operating system’s process and window managers.

It is further noteworthy, that a VA tool does not
necessarily possess all of these I/O possibilities. In
some cases, we may be able to work around them
— for example, when inferring otherwise inaccessible
progress and success of an analytic computation (i.e.,
Eventsoyr) from the updated results (i.e., Dataoyr).
In other cases, we might need the user to step in — for
example, by explicitly signaling the completion of a
task by closing the corresponding tool.

4.2 Modeling the Pairwise Flow

Between VA tools, coordination is possible on any of
the three levels of workflow, data flow, and control
flow. This leads to three different edge types that can
connect two VA tools —i.e., nodes of the model:

e the coordination order describing any automa-
tion of the workflow between two VA tools —i.e.,
showing them subsequently or concurrently;

e a coordination channel describing any transmis-
sion of the data flow between two VA tools —i.e.,
passing data between them, including any neces-
sary data transformation along the way;

e and a coordination rule describing the synchro-
nization of the control flow between two VA tools
—1i.e., an (inter)action in one tool generating a re-
action in the other tool.

These are schematically depicted in Fig. 1. In the fol-
lowing, we describe each of the three edge types and
the aspects of tool coordination they facilitate.

4.2.1 Modeling the workflow

At the lowest level of coordination, there is the tempo-
ral order of VA tools — i.e., the workflow determined
by the analysis scenario and its domain. The work-
flow captures the tool chain, that is the succession of

VA tools as they are used by the user in pursuance of
a particular analysis goal. It can include subsequently
used tools, as well as concurrently used tools. At this
level, VA tool coordination brings up the right tools at
the right time, as it is foreseen by the workflow.

In our model, this type of coordination is achieved
through a bilateral connection among two tools indi-
cating their coordination order — shown at the top in
Fig. 1. This order basically starts one VA tool sub-
sequently or concurrently, depending on another VA
tool having been Started/Stopped:

o Subsequently: (Tool;.Stopped) = (Tool,.Start)
e Concurrently: (Tool;.Started) = (Tool,.Start)

Coordination on this level already provides as
much as an automated guidance of the user along the
predefined workflow, in the spirit of approaches such
as Stack’n’Flip (Streit et al., 2012). While the users
still have to do everything else themselves — such as
moving data back and forth between the tools, or ad-
justing their visualizations to match up — the coor-
dination order between tools allows to automatically
move the VA tool chain forward as the interactive
analysis progresses. Besides providing convenience
for the user, this also ensures comparability between
different analysis runs as VA tools are always invoked
in line with the workflow. This is important in cases
where carrying out analysis steps in different orders
yields different results — e.g., when performing a com-
bination of dimension reduction and clustering (Wen-
skovitch et al., 2018). But it is also useful to ensure
that no VA tool is left out by mistake — e.g., forgetting
to normalize the data before processing it.

4.2.2 Modeling the Data Flow

The next level of coordination is about getting data
in and out of a VA tool. Besides starting and stop-
ping a tool, this is arguably the most important aspect
of a VA tool: without data, there is nothing to ana-
lyze. The data flow captures how input data is passed
into VA tools, transformed into analysis results and
passed on to the next VA tool as input again. At this
level, VA tool coordination automatically hands off
data from tool to tool as the user proceeds with the
analysis along the tool chain — i.e., the flow of data
tends to follow the workflow.

In our model, this coordination is achieved via co-
ordination channels — shown in the middle of Fig. 1.
These capture the possibility to pass data from a VA
tool’s output to another’s input, as well as performing
any data transformations fp along the way:

Tooly.Dataoyr % Tool,.Datapy

Coordination on this level automatically delivers
the right data to the right tools at the right time, very
much like any data flow-oriented visualization frame-
work does. While the user still has to manage what is
to happen with that data in a currently used VA tool
—1i.e., starting computations and generating visualiza-
tions — having input data and results from previously
used VA tools delivered automatically to the current
VA tool takes care of any tedious conversion between
different data formats and competing standards. This
automation also ensures that the user is not working
on stale data, as the coordination channels always de-
liver the most current data and manually loading an
old dataset can only happen on purpose, not by ac-
cident. Coordination channels can further be used to
cache a snapshot of the last data passed by them, so
that when revisiting a previously used VA tool its last
input data is still available from the corresponding
channels, thus providing a coherent analysis experi-
ence forward and backward along the tool chain.

Note that “passing data” can be a complex prob-
lem and research on data integration and scientific
workflows has established various approaches to do
so (Ludascher et al., 2006). For modeling the coordi-
nation on data level, it is enough to know that one of
these approaches underlies each channel to realize the
necessary data transport and transformation.

4.2.3 Modeling the Control Flow

The last level of coordination is about having changes
in one VA tool also reflected in other tools. This is
probably the most common understanding of coordi-
nation, where for example, selecting data items in one
tool will also highlight them in other tools. The con-
trol flow captures such use of VA tools by observing
events that occur in one tool and then triggering corre-
sponding events in another tool. At this level, VA tool
coordination automates the synchronization of inter-
active changes made across tools, which mostly re-
lates to the visualization or UI of these tools as these
are the common means with which the user interacts.
In our model, this coordination is achieved via
coordination rules — shown at the bottom in Fig. 1.
These rules capture the desired synchronization be-
tween two tools as an action/reaction pair that waits
for certain events (action) in one tool, and triggers
corresponding events (reaction) in another tool:

(Tooly .Eventsoyr = selected) =
(Tooly.Events;y = highlight)
Coordination rules can either rely on coordination

channels to transmit any datasets or results that go
along with the observed or triggered event, or they can

use direct parameter changes on the VA tools. Coor-
dination on this functional level can be used to pro-
vide any of the common coordination patterns, such
as linking & brushing, navigational slaving, or visual
linking (Waldner et al., 2010). As it was the case
for coordination channels, the user still has to man-
age and steer the currently used VA tool, but where
applicable, this steering is picked up on and auto-
matically mirrored in other VA tools. This includes
not only tools that are used concurrently, but also
those used subsequently, as interactive selections or
carefully tuned color-scales can be passed on to the
next tool in the tool chain as well. This relieves the
users from having to make the same interactive adjust-
ments multiple times for each VA tool they are work-
ing with, and it guarantees consistent settings across
tools. This is helpful when trying to compare results
or for tracking certain data items across the tool chain.

4.3 Combining Tools and Flows

Taken together, we yield a 3-tiered model of
lightweight coordination among VA tools. The model
inherently captures the lightweightedness of our co-
ordination approach, as any coordination is added on
top of the VA tools without making changes to them,
but by utilizing the inputs and outputs they offer.

The proposed model is thus comprised of the
VA tools, as well as of the three coordination
levels building on top of each other to realize
different degrees of coupling among those tools.
It can thus be expressed as a 4-tuple CM =
(Tools, WorkFlow, DataFlow, ControlFlow) consist-
ing of the following sets:

e The set of Tools as it is given by the analysis setup.

e The WorkFlow, defined as the set of all
coordination orders (Source,[Started|Stopped|,
Target, [Start|Stop]) capturing the execution se-
quence between a source and a target tool.

e The DataFlow, defined as the set of all coordi-
nation channels (Source, Target, fp : Datapyt
Datayy) capturing data transfer and transforma-
tion (fp) between a source and a target tool.

e The ControlFlow, defined as the set of
all coordination rules (Source,Eventsoyr,
Target,Events;y) capturing an event in a source
tool that triggers another event in a target tool.

All three sets of WorkFlow, DataFlow, and Con-
trolFlow model the pairwise coordination between
VA tools: The WorkFlow contains the answer to the
question of which parts of the tool chain to automate
tool-wise and in which order. The DataFlow com-
prises the answer to the question along which parts of

the tool chain to transmit data using which data trans-
formation. And the ControlFlow captures the answer
to the question of which actions (in particular inter-
actions) to pass as events along the tool chain to syn-
chronize tools through reactions.

The three sets have in common that they describe
the coupling between pairs of tools, so that each of
these couplings can likewise be understood as sets
of directed edges that taken together define a graph
topology over the set of VA tools. They thus cap-
ture coordination in a bottom-up fashion by coupling
two tools at a time and then combining these pair-
wise couplings into even larger coordination mech-
anisms. This combination is for example done by
adding reciprocity (combining the unidirectional cou-
pling between two tools A and B, and between B and
A) or by employing transitivity (coupling two tools A
and B through an intermediary tool C).

The strength of this model is its decentralized,
pairwise structure that requires neither a central bro-
ker or mediator, nor does it force any architectural
changes on the used VA tools. Note that this ap-
proach is very different from the common central-
ized approaches. Instead of trying to lift a whole tool
chain up to conform to a state-of-the-art coordination
framework, we seek to coordinate directly between
two VA tools. This way, we can capture the full vari-
ety of different modes, degrees, and directions of co-
ordination between different tools, instead of boiling
the coordination down to the least common denomi-
nator among all involved tools. This directly benefits:

e the domain experts, who have a lower hurdle to
adopt coordination as partial automation of their
tried-and-true tool chains,

e the VA experts, who can introduce coordination
incrementally — adding one level of coordination
among one pair of tools at a time — and thus adap-
tively expand and refine coordination as it be-
comes necessary,

e the software experts, who can leverage whichever
features a tool already provides to connect to it,

e and the users, who can bring in additional tools,
which may or may not already have couplings to
the tools from a current tool chain.

The decentralized model is mainly targeted at the
first three groups of domain, VA, and software ex-
perts. While the end users are also thought to benefit
from the provided flexibility, overlooking and taming
such a “chattering zoo of tools” can also become quite
a challenge. To aid in doing so, our approach com-
plements the decentralized coordination mechanism
with a centralized interface that provides the neces-
sary structure on top of the tool ensemble. This inter-
face is described in the following section.

S INTERFACE ENSEMBLES

When handling multiple VA tools the mere or-
chestration of their application windows becomes a
management task by itself that requires attention, ef-
fort, and time which would be better spent on the vi-
sual analysis itself. In order to reduce this overhead,
we propose the notion of interface ensembles. These
provide a structured and organized view on the other-
wise often overwhelming network of any number of
invisible pairwise coordination mechanisms springing
to life depending on the currently used tools and the
user’s actions.

5.1 Individual VA Tool Use: The
Wizard or Tabbed Ul

The simplest graph topology induced by the tool
chain among VA tools is a path: first a tool A is used,
then a tool B, followed by a tool C, and so forth. This
individual, subsequential use of VA tools as prede-
fined by the coordination orders that connect the tools
in a temporal sense, results in an exclusive use of a
single UI as shown in Fig. 2. What reads like an over-
simplification at first is actually the most prevalent us-
age pattern in practice. From raw data to insight and
from overview to detail — visual analysis is for the
most part conducted as a linear series of very specific
analysis steps, each carried out with a highly special-
ized analysis tool or view.

To the user, these tool sequences can be offered
in a variety of ways. One way of displaying such se-
quential procedures is through a wizard interface that
leads the user step by step along the path defined by
the coordination model. Another variant is a tabbed
interface that opens each tool in a dedicated tab, with
the tabs being ordered according to the tool sequence.
Whether a wizard or a tabbed interface is used, the
user is always able to go back in the tool chain and
to readjust some property in an earlier used tool — for
example, manually moving a data item from one clus-
ter into another one. Given that all other parameters
and choices along the tool chain stay the same, these
changes can be passed automatically through the ap-
propriate channels and be processed by the appropri-
ate rules to auto-update the current tool and its view.

Tool Ul Tool Ul Tool Ul
1 i n

Figure 2: The path topology of sequential tool use with one
tool being shown at a time.

5.2 Combined VA Tool Use: The Tiled
Display

Sometimes, it makes sense to use VA tools not just
one tool at a time, but to have access to subsequent
tools of the tool chain at once. This can be the case,
for example, when a data selection from one tool will
serve as an input to the next tool and one needs to
go back and forth between the two tools to try out
and observe the effects of different selections. The
topology would still be a path topology, as shown in
Fig. 3, but this time with two Uls being displayed at
once to facilitate such combined use.

To the user, such setups are usually offered by
tiling the display and showing the tools side by side,
or by distributing them among multiple monitors. In
this way, the tools are present on the screen at the
same time to work with them as necessary and with-
out having to switch — i.e., sending one to the back-
ground and bringing another one to the front, as it
would be the case for the tabbed interface. Synchro-
nization features, such as linking & brushing and dis-
playing visual links are desirable to make the back
and forth between the two tools even more fluent.
These can be captured as coordination rules.

Tool UI Tool Ul Tool UI Tool Ul
1 i i+1 n

Figure 3: The path topology of sequential tool use with two
tools (Ul i and Ul i+1) being shown simultaneously.

5.3 Flexible VA Tool Use: The Ul
Mash-up

If VA tools are used more flexibly than a mere back
and forth along a path of sequential tools, the result-
ing topology also gets more involved. A powerful ex-
ample for this case is the star-shaped topology that is
shown in Fig. 4 where all analysis steps start from a
hub application or central VA tool. Such topologies
support more complex workflows that meander be-
tween multiple tools until their combined use yields
an analysis result. This is often the case in compar-
ative analyses where multiple windows and tools are
needed to process, show, and relate different data sub-
sets or different analytical procedures to each other.
To the user, the central tool is usually offered as
an omnipresent overview of the data that is shown
in a fashion similar to a background image. In this
overview, users can select regions of interest into
which to dive deeper by opening them up in other VA
tools. The opened tools are shown as embedded or su-
perimposed views right in place where the selection

was made. Making multiple selections opens multi-
ple tools, effectively realizing the star-shaped topol-
ogy. For this to work even with a dozen opened tools
all scattered across the overview of the central VA
tool, the overview/background needs a map-like ap-
pearance that serves well as a context for all the other
Uls and makes their spatial relation meaningful. This
map-like appearance can be provided, for example, by
a spatial visualization (Butkiewicz et al., 2008).

Tool Ul Tool Ul
2 I

—ax

Central
Tool Ul
Tool Ul Tool Ul
3 I

Figure 4: The star topology of multiple tools being used in
combination with a central tool UI as mediator.

HgE

5.4 The Control Interface

VA tool use in practice can actually combine all of
the above patterns, just as they may be needed dur-
ing a particular stage of an analysis. As illustrated in
Fig. 5, it is not uncommon that the same tool may be
instantiated multiple times for different parts of the
data, or that starting a tool will lead to findings that
trigger a whole new sequential analysis workflow. For
these cases, there is no principal way of how to best
combine all the Uls involved that would be applicable
to all possible such topologies, and it has to be ne-
gotiated with the domain expert. The more complex
this ensemble gets, the more important it becomes to
maintain an overview of the analysis and to be able
to parametrize and steer it. This is where the control
interface comes into play.

Tool UI ToolUl ||} Tool Ul
1 2 3

—ax

Central
Tool Ul

Tool Ul =8 Tool Ul Tool UI
2 4 5

CONTROL INTERFACE

Figure 5: The control interface that serves as a global
parametrization facility and for displaying process informa-
tion. In this context VA tools can be utilized as a combina-
tion of single (UI 1 and UI 3), pair-wise (UI 4 and UI 5),
and multiple (UI 2) references from a central hub applica-
tion (Central UI).

A control interface can offer a global display of
the analysis workflow and the user’s progress in pur-
suing it (Streit et al., 2012). Yet it can also be used for
global parameter settings affecting all opened tools
without having to adjust each of them individually.
In the following, we give an example of how such an
interface ensemble can look like.

6 DEMONSTRATING EXAMPLE

In this section, we demonstrate the conceptual
ideas presented in the previous sections by instanti-
ating a tool ensemble — called Health@Hand — for an-
alyzing health data.

6.1 The Analysis Scenario

In today’s health care domain, the ongoing digitaliza-
tion leads to a growing quantity and quality of indi-
vidual health data. This results in a situation where
medical staff turn more and more into data analysts. It
is not uncommon anymore that entire hospital wards
and in particular the intensive care units (ICUs) are
centrally monitored by a head nurse or doctor, who is
thus able to keep tabs on the well-being of multiple
patients at the same time.

In the scenario we use to illustrate our concept
of lightweight coordination, this monitoring is done
on a 55 inch multi-touch table in a single-user, non-
collaborative setting. A medical professional ob-
serves and examines the state of multiple patients as
mediated by their incoming vital data. This data ar-
rives in real-time and is guaranteed to be updated in
intervals of < 3 seconds. It includes heart rate, heart
rate variability, blood pressure, breathing rate, and
in some cases also the blood sugar level. In case a
patient’s vital signs show irregularities, the medical
staff needs to cross-check information on that patient
to identify possible causes and call-in the appropriate
specialist if necessary. So, the analysis task we want
to support is two-fold: (1) check for irregularities and
(2) investigate possible causes for them.

6.2 Specifying the Tool Set

To pursue the above tasks, medical professionals have
a number of VA tools at their disposal. In clinical
practice, these are usually part of the clinical informa-
tion management system (CIS), of the picture archiv-
ing and communication system (PACS), of the radio-
logical or laboratory information systems (RIS/LIS),
or of the electronic health record systems (EHR). On
top of those come individual tools provided by sensor

(2]

Image Viewer f

PACS LIS

VD Dashboard
8_’ (?) csv @ JSON |ﬁ

D3-based
Line Charts

CA-detect

\ o
Health@Hand
E j +
ais E

eHealth Record

Browser 8
=0
EHR

LIS

Shimmer

8 Monitor

CONTROL INTERFACE

Figure 6: Combined view of a coordination model and the respective Ul setup for a medical analysis scenario to detect
cardiovascular symptoms and anomalies within a patient’s past and present clinical data utilizing multiple interlinked VA
tools. The workflow is denoted with blue arrows, the data flow with green arrows, and the control flow with orange arrows.

manufacturers, 3rd party analysis and visualization
tools, as well as customized information dashboards
for monitoring scenarios specific to a particular hos-
pital ward. The concrete workflow we describe here
includes the tools:

e ¢Health Record Browser to access the EHR,
e [mage Viewer to access the PACS suite,

o Shimmer Monitor to access readings from an ac-
tivity sensor,

e VD Dashboard that shows a patient’s vital data,
o (CA-detect for analyzing heart rate data,

e acustom D3-based Line Charting tool to visualize
the output from CA-detect, and

e the Health@ Hand framework for visual monitor-
ing of staff and patients.

6.3 Specifying the workflow

In the first stage, the temporal order of using the tools
must be determined. As shown in Fig. 6 their ap-
plication stretches from the monitoring of the entire
ward to the specific analysis of a particular patient.
We identified seven reoccurring steps — with steps 1
through 5 being dedicated to checking for irregulari-
ties, and steps 6 and 7 to investigating possible causes:

1. Situational assessment using Health@Hand:
The medical expert monitors the general condi-
tion and state of assigned patients. From this
overview display, the expert can select patients
with critical vital data for further examination.

2. Vital data overview using VD Dashboard: A
backlog of a patient’s vital signs can be exam-
ined through diagrams and gauges in this dash-
board. For more context, a patients diagnosis
and treatment plan can be opened-up from the
Health@Hand overview.

3. Diagnosis details using eHealth Record
Browser: From the patient records, the entries
age and diagnosis help the medical expert to put
the vital signs in context. An additional display of
the outcome of any procedures can be triggered
from the Health@ Hand overview as well.

4. Checking imaging data wusing the Image
Viewer: The medical expert checks available
imaging data relating to the cardiovascular sys-
tem, as it is the heart rate showing irregulari-
ties. As both, pulse and respiration correlate
with the physical activity being performed, the pa-
tient’s activity data can be brought up from the
Health@Hand overview.

5. Activity analysis using the Shimmer Monitor:
Looking at the patient’s recent activities includ-
ing any therapeutic stressing situations, the expert
finds no natural cause for the current irregulari-
ties. He thus switches back to the VD Dashboard
to run an automated anomaly detection.

6. Automated anomaly detection using CA-
detect: The cardiac anomaly detection calculates
anomaly scores on the vital data streams. Af-
ter some minor configuration, the results are
automatically opened in a line chart.

7. Anomaly analysis using the D3-based Line
charting tool: The medical expert inspects the
identified anomalous spots and annotates sections
that point towards reasons for the patient’s appar-
ent irregular blood circulation.

6.4 Specifying the Data Flow

In the second stage, we must specify the coordination
of the data among the steps of the workflow. The data
to be passed between tools consist of two parts: the
general medical background information about a pa-
tient and the situation-specific data that is currently
observed and requires analysis. While the medical
background information is available from a number
of centralized systems within the hospital and can be
queried via the patient’s identifier (ID), the situation-
specific data is only available locally.

As a result, data is passed between tools in two
ways: On one hand for accessing medical background
information, the patient’s ID is passed as a parame-
ter into the tools, which then query the relevant data
records themselves. This variant of a centralized
data access is employed by tools such as the eHealth
Record Browser, the Image Viewer, and the VD Dash-
board. The situation-specific data on the other hand
is passed directly from tool to tool, requiring a full-
fledged data channel between them. The variant of a
decentralized data access is employed by tools such
as CA-detect and the D3-based Line Charting. The
passing of this data is denoted in Fig. 6 by a second
arrow in green connecting the respective tools.

6.5 Specifying the Control Flow

In the third stage, we specify how the tools are used in
the given workflow. In our example, tools are mainly
applied subsequently as none of the workflow steps
described in Sec. 6.3 requires using multiple tools at
once. Yet that does not mean that multiple tools can-
not be (left) open on the large touch screen for fur-
ther reference (e.g., the Shimmer Monitor providing
the overview of a patient’s activities) or easier adjust-
ment of input data (e.g., the VD Dashboard for select-
ing different time intervals of interest to be processed
by CA-detect and its results being updated in the D3-
based Line Charting tool.

As independent as these analysis steps and each
respective tool comes, they nevertheless share param-
eters whose adjustment is worthwhile to coordinate
globally through a control interface. An example of
such a parameter occurs, when the medical expert
switches between hourly, daily, and weekly temporal
resolutions to find prior incidences on a larger time

scale or if the medical expert looks into details of
a found incident on a smaller time scale. To spec-
ify the control flow, we define a set of appropriately
configured rules that synchronize these adjustments
between all time-oriented data displays. The tempo-
ral resolution can also be adapted globally using a
menubar at the bottom of Health@Hand as a control
interface for the entire tool ensemble.

6.6 Designing the Ul for the Modeled
workflow

The UI design for the described scenario mirrors the
workflow in most aspects. This is why we have inte-
grated both, the coordination model and the UI setup,
in a single schematic depiction shown in Fig. 6. Its
overall UI topology we apply is akin to the star topol-
ogy discussed in Sec. 5.4 with Health@Hand in the
role of the central VA tool. This choice was made to
tie-together the Uls of the individual VA tools on top
of an inherently spatial “digital twin” of the medical
facility to provide sense of locality for the Uls, linking
them to the respective patient in question. This can be
seen in the screenshot in Fig. 7, where Health@ Hand
is shown in the background of the UI ensemble and
other tools are opened on top of it.

The control interface was designed to take the
form of an unobtrusive menubar at the bottom of
the screen that is always visible and gives access to
functionality for managing and parametrizing the Uls.
The positioning and appearance of the control inter-
face furthers the impression of the UI ensemble as a
desktop environment where tools are centrally man-
aged through a task- or statusbar. By mimicking the
desktop metaphor, users feel comfortable and knowl-
edgeable about managing the ensemble without much
training. On top of the familiar visual appearance, the
functionality of this environment is carefully adjusted
to support coordination along the workflow. For ex-
ample, workflow sensitive taps open up the next tool
in the workflow with every tap on the same patient —
i.e., the first tap opens the VD Dashboard, another tap
opens the eHealth Record Browser and so on. An in-
teractive walk-through of our UI setup is given in the

video that accompanies this paper?.

6.7 Feedback on the Use of
Health@Hand

Health@Hand and its lightweight coordination capa-
bilities form a commercially available platform that
has been presented to the public at the Medica World

2Video DOI: 10.6084/m9.figshare.7571030.v1

i Vo 1TV ST Ve T 0 B ¥ i

[20 B

rstoffsatig

73kg 95%

Pus letzer Stuhigang
103Hz 3/24/2018
Blutdruck

sol
127/90 16:11h

Herzratenvariabilita

50%

Atemfrequenz

23/min

Blutzucker
42 mmol/l

rowser ivit nomalien

Flgure 7: Screenshot of Health@ Hand with the Shimmer Monitor (left) and VD Dashboard (rlght) opened on top of it.

Forum for Medicine 2018. User feedback so far has
been very encouraging, including comments such as
“That’s the future of clinical data exploration.” (from
PAMB) or “The integration of different data views
from different tools will improve diagnosis and ther-
apy management” (from Poly-Projekt GmbH). In ad-
dition, users and potential customers also pointed out
aspects leaving room for future improvement, such as
multi-user workflows and tool UI templates.

7 CONCLUDING REMARKS

The use case shows that with our approach of
defining and designing lightweight coordination, we
have found one possible answer to the question of
How to efficiently design custom solutions? — given
all experts involved are sharing their knowledge freely
or can be persuaded to do so (Vosough et al., 2017).
The layered, pairwise structure of our approach al-
lows us to incrementally realize new tool ensembles
and to selectively adjust coordination aspects when
customizing an existing tool ensemble. At the same
time, already centralized aspects of a software land-
scape (like the patient records in the example) can
still be leveraged and others (like the temporal reso-
lution) can be given a central look & feel through the
UI as desired. This results in a mixed approach that
utilizes the different coordination channels to achieve
a least-effort integration among tools, data, and UL

This form of coordination can incorporate any already
centralized data coordination and add centralized UI
elements by means of the control flow to provide a
unified access to this strung-together tool ensemble
underneath.

While this approach was a perfect fit for the med-
ical workflow described in the example, it may not be
the most suitable coordination approach for all sce-
narios. In principle, a decentralized coordination can
run into all the problems of distributed systems rang-
ing from deadlocks to race conditions. This again un-
derlines the importance of a well-defined workflow
to begin with, as that workflow constraints the multi-
tude of possible tool combinations to only those that
are actually necessary, thus preventing those issues.
So, in terms of the question of How to generalize?
lightweight coordination, we will have to investigate
means to make these workflows more flexible and al-
low more deviations from them.

ACKNOWLEDGEMENTS

We thank Dieter Schmalstieg and Marc Streit for
their input on early versions of the principal idea of
lightweight coordination. We are also indebted to
Marian Haescher for his work on the accompanying
video. This research was supported by the German
Research Foundation (DFG). The icons in Figure 6
were made by user Freepik and are used under the

Basic License from www.flaticon.com.

REFERENCES

Benzaken, V., Fekete, J., Hémery, P., Khemiri, W., and
Manolescu, 1. (2011). EdiFlow: Data-intensive in-
teractive workflows for visual analytics. In Proc. of
ICDE’11, pages 780-791.

Butkiewicz, T., Dou, W., Wartell, Z., Ribarsky, W., and
Chang, R. (2008). Multi-focused geospatial analysis
using probes. /IEEE TVCG, 14(6):1165-1172.

Collins, C. and Carpendale, S. (2007). VisLink: reveal-
ing relationships amongst visualizations. IEEE TVCG,
13(6):1192-1199.

Dork, M., Carpendale, S., Collins, C., and Williamson, C.
(2008). VisGets: Coordinated visualizations for web-
based information exploration and discovery. [EEE
TVCG, 14(6):1205-1212.

Fekete, J. D., Hémery, P. L., Baudel, T., and Wood, J.
(2011). Obvious: A meta-toolkit to encapsulate in-
formation visualization toolkits — one toolkit to bind
them all. In Proc. of IEEE VAST’11, pages 91-100.
IEEE.

Ferndndez-Villamor, J. I., Blasco-Garcfa, J., Iglesias, C. A.,
and Garijo, M. (2011). A semantic scraping model
for web resources — applying linked data to web page
screen scraping. In Proc. of ICAART’11, pages 451—
456. SciTePress.

Fisher, D., Drucker, S., Fernandez, R., and Ruble, S.
(2010). Visualizations everywhere: A multiplatform
infrastructure for linked visualizations. IEEE TVCG,
16(6):1157-1163.

Gomez, J., Garcia, L. J., Salazar, G. A., Villaveces, J., Gore,
S., Garcia, A., Martin, M. J., Launay, G., Alcdntara,
R., del Toro, N., Dumousseau, M., Orchard, S., Ve-
lankar, S., Hermjakob, H., Zong, C., Ping, P., Cor-
pas, M., and Jiménez, R. C. (2013). BioJS: an open
source JavaScript framework for biological data visu-
alization. Bioinformatics, 29(8):1103-1104.

Giirdiir, D., Asplund, F., El-khoury, J., and Loiret, F. (2016).
Visual analytics towards tool interoperabilty: A po-
sition paper. In Proc. of IVAPP’16, pages 141-147.
SciTePress.

Hartmann, B., Doorley, S., and Klemmer, S. R. (2008).
Hacking, mashing, gluing: Understanding opportunis-
tic design. IEEE Pervasive Computing, 7(3):46-54.

Kolojejchick, J., Roth, S. F,, and Lucas, P. (1997). Informa-
tion appliances and tools in visage. IEEE Computer
Graphics & Applications, 17(4):3-41.

Liu, C., Wang, J., and Han, Y. (2014). Mashroom+: An in-

teractive data mashup approach with uncertainty han-
dling. Journal of Grid Computing, 12(2):221-244.

Ludéscher, B., Lin, K., Bowers, S., Jaeger-Frank, E., Bro-
daric, B., and Baru, C. (2006). Managing scientific
data: From data integration to scientific workflows. In
Sinha, A. K., editor, Geoinformatics: Data to Knowl-
edge, pages 109-129. GSA.

Munzner, T. (2014). Visualization Analysis & Design. CRC
Press.

North, C., Conklin, N., Indukuri, K., Saini, V., and Yu, Q.
(2003). Fusion: Interactive coordination of diverse
data, visualizations, and mining algorithms. In Ext.
Abstracts of ACM SIGCHI’03, pages 626-627. ACM.

North, C. and Shneiderman, B. (2000). Snap-together vi-
sualization: A user interface for coordinating visual-
izations via relational schemata. In Proc. of AVI’00,
pages 128-135. ACM.

Pietschmann, S., Nestler, T., and Daniel, F. (2010). Ap-
plication composition at the presentation layer: Alter-
natives and open issues. In Proc. of iiWAS 10, pages
461-468. ACM.

Roberts, J. C. (2007). State of the art: Coordinated & mul-
tiple views in exploratory visualization. In Proc. of
CMV’07, pages 61-71. IEEE.

Rogowitz, B. E. and Matasci, N. (2011). Metadata Map-
per: A web service for mapping data between inde-
pendent visual analysis components, guided by per-
ceptual rules. In Proc. of VDA’11, pages 786501-1—
13. SPIE.

Rungta, A., Summa, B., Demir, D., Bremer, P. T., and Pas-
cucci, V. (2013). ManyVis: Multiple applications in
an integrated visualization environment. /[EEE TVCG,
19(12):2878-2885.

Santos, E., Lins, L., Ahrens, J., Freire, J., and Silva,
C. (2009). VisMashup: Streamlining the creation
of custom visualization applications. [EEE TVCG,
15(6):1539-1546.

Streit, M., Schulz, H.-J., Lex, A., Schmalstieg, D., and
Schumann, H. (2012). Model-driven design for the
visual analysis of heterogeneous data. [EEE TVCG,
18(6):998-1010.

Stuerzlinger, W., Chapuis, O., Phillips, D., and Roussel, N.
(2006). User interface facades: Towards fully adapt-
able user interfaces. In Proc. of ACM UIST’16, pages
309-318. ACM.

Tan, D. S., Meyers, B., and Czerwinski, M. (2004). Win-
Cuts: Manipulating arbitrary window regions for
more effective use of screen space. In Ext. Abstracts
of ACM SIGCHI'04, pages 1525-1528. ACM.

Taylor, M. B., Boch, T., and Taylor, J. (2015). SAMP, the
Simple Application Messaging Protocol: Letting ap-
plications talk to each other. Astronomy and Comput-
ing, 11(B):81-90.

Tobiasz, M., Isenberg, P., and Carpendale, S. (2009). Lark:
Coordinating co-located collaboration with informa-
tion visualization. IEEE TVCG, 15(6):1065-1072.

Vosough, Z., Groh, R., and Schulz, H.-J. (2017). On es-
tablishing visualization requirements: A case study in
product costing. In Short Paper Proc. of EuroVis’17,
pages 97-101. Eurographics Association.

Waldner, M., Puff, W., Lex, A., Streit, M., and Schmalstieg,
D. (2010). Visual links across applications. In Proc.
of GI’10, pages 129-136. Canadian Information Pro-
cessing Society.

Weaver, C. (2005). Visualizing coordination in situ. In Proc.
of IEEE InfoVis’05, pages 165-172. IEEE.

Wenskovitch, J., Crandell, I., Ramakrishnan, N., House, L.,
Leman, S., and North, C. (2018). Towards a system-
atic combination of dimension reduction and cluster-
ing in visual analytics. IEEE TVCG, 24(1):131-141.

