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The Design Space of Implicit Hierarchy
Visualization: A Survey

Hans-Jörg Schulz, Steffen Hadlak, and Heidrun Schumann

Abstract—Apart from explicit node-link representations, implicit visualizations and especially the Treemap as their frontrunner have
acquired a solid position among the available techniques to visualize hierarchies. Their advantage is a highly space-efficient graphical
representation that does not require explicit drawing of edges. In this paper, we survey the design space for this class of visualization
techniques. We establish the design space along the four axes of dimensionality, edge representation, node representation, and layout
by examining existing implicit hierarchy visualization techniques. The survey is completed by casting some light into regions of the
design space that have not yet been explored. Our design space is not a mere theoretical construct, but a practically usable tool for
rapid visualization development. To that end, we discuss a software implementation of the introduced design space.

Index Terms—information visualization, hierarchy visualization, treemaps, visualization design space, rapid visualization prototyping.
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1 INTRODUCTION

IN times where typical data sizes grow much faster
than the available screen sizes, space-efficient visual-

ization techniques are receiving increased attention [1].
For hierarchical data, the parent-child relations of nodes
in the hierarchy are an important aspect to be visualized.
We call techniques that explicitly show these relations as
straight lines, arcs, or curves explicit tree visualizations
[2]. In contrast to that, implicit tree visualizations are
potentially more space efficient because they resort to an
implicit representation of parent-child relations by posi-
tional encoding of nodes: for instance by node overlap
or containment [2]. In the last 25+ years, a wealth of
implicit visualization techniques have been proposed. In
fact, there are so many that it is impossible to include
all of them in this survey. Therefore, instead of giving an
overview of all existing implicit hierarchy visualizations,
this survey establishes a systematic design space that
includes all possible techniques – existing ones as well
as (yet) non-existing ones.

A design space describes the universe of all possible
design choices. The most prevalent strategy to define
a design space is to extract common design principles
from a set of existing visualization techniques. Once
identified, these common principles can be used as axes
to span the design space. Despite not being a space
in the strict mathematical sense of a vector space, it
serves as an established analogy in many fields. An
extensive example is given by Bugajska’s framework [3].
This approach addresses first and foremost the need for
a theoretical classification of existing techniques. Beyond
that, visualization design spaces enable us to capture
some of the tacit knowledge of visualization designers.
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Once made explicit, design spaces can be used to access
an otherwise diffuse and large set of visualization tech-
niques:

• individual visualization techniques can be pin-
pointed to a distinct position, whereas classes of
visualizations can be understood as regions or sub-
spaces within the design space,

• subspaces can be mapped to problem/data do-
mains [4], and design guidelines leading to expres-
sive, effective, and aesthetically pleasing regions of
the design space can be identified (as done by Bertin
and Tufte [5], [6]),

• the design process can be seen as directed “navi-
gation” or undirected “exploration” of the design
space, where each displacement in the design space
corresponds to a change of the visualization.

In this paper, we strive for a less theoretical defini-
tion, one that allows us to practically realize the entire
design space, making it possible to actually browse the
design space and providing rapid visualization prototyping
for implicit hierarchy visualization. The ideas for this
design space stem from a design space for 3-dimensional
Treemap visualizations [7]. Treemaps are widely used
in many application domains today. In fact, this vi-
sualization approach seems to be so convincing that
people have even started to utilize it for non-hierarchical,
multivariate data by applying an OLAP-like hierarchical
structuring of the data, as discussed in [8], [9]. As
Treemaps are a specific instance of implicit hierarchy
visualizations, the Treemap design space is merely a
subspace of the one presented here.

To establish the broader design space for implicit
techniques, we examined implicit techniques from more
than 25 years of visualization research. We extracted
common visualization principles that span the design
space covered in Section 2. To show that our proposed
design space can be utilized not only for placing exist-
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ing techniques, but also to explore new techniques, we
give a few examples of novel implicit visualizations in
Section 3. Our software toolkit implementing the design
space is briefly presented in Section 4. Finally, Section 5
concludes the paper and points out future research direc-
tions. An appendix chronologically assembles examples
of all implicit hierarchy visualizations considered in this
paper as Figures 12 and 13.

2 DESIGN SPACE DEFINITION

The design space will mainly be discussed along the
lines of the two most prevalent implicit visualization
techniques: Treemaps (Figure 12c) and Icicle Plots (Fig-
ure 12b) [10]–[12]. Most of the implicit visualization
techniques relate to one, if not both of them, other
implicit visualizations are extremely rare. They are more
of theoretical interest and can represent only certain
types of trees, as it is the case, e.g., for unit rectangle-
visibility representations [13]. Because of that, they are only
of limited interest for the visualization community and
we do not discuss them in detail.

Treemaps originate from the Euler-Venn-Diagrams that
have been known and used for a long time – actually
even before Euler [14]. They were used as graphical
representations in formal logic and later in set theory.
Since any hierarchy can be represented by nested sets,
using and deriving these diagrams for hierarchy visual-
ization seems just logical in retrospect. The parent-child
relationship between two nodes is represented through
nesting the child inside the parent. The first concrete
ideas on how to do that (e.g., the Slice-and-Dice layout)
were brought up by Shneiderman and Johnson in 1991.
As early as 1993, Johnson outlines many fundamental
ideas that were not followed up until much later [15]:
elliptical Treemaps (Figures 12f and 13k), 3-dimensional
Treemaps using nested cuboids (Figures 12h and 13c)
and cylinders (Figures 12g and 13i), and hierarchical
pie charts called polar Treemaps (Figures 12e and 12p).
Since then, Treemaps have become the most prevalent
implicit hierarchy visualization technique. Today, many
commercial tools provide a Treemap view as a matter
of course: Spotfire R©, IBM ILOG Elixir, Hive Group’s
Honeycomb, and others [16, ch.4.7].

Icicle Plots allude to the Castle Diagrams (Figure 12a)
from the early 1980’s, yet similar representations have
already been known before them [14], [17]. They are
common in the statistical sciences – mainly to depict
cluster dendrograms. Icicle Plots represent the parent-
child relationship by vertical adjacency: the child nodes
are placed right on top of their parent. A 3-dimensional
variant using stacked boxes (Figure 12b) was also pro-
posed in 1983 [12]. The 2D visualization is included in
some commercial statistics software, such as SPSS.

Hence, Treemaps and Icicle Plots are prominent ex-
amples of implicit visualization and therefore uses to
illustrate the following discussion of the design space.

2.1 Design Space Dimensions

A design space definition tries to identify independent
design dimensions that subdivide and span the de-
sign space. Building upon the basic design space for
Treemaps [7], we identified the following four axes of
the design space for implicit tree visualization. Each axis
encodes one degree of freedom in the design process:

• Dimensionality: 2D or 3D
• Node Representation: graphics primitives
• Edge Representation: inclusion, overlap, adjacency
• Layout: subdivision, packing
The latter three axes can have additional parameters

that govern the actual realization in detail. These addi-
tional parameters are used to fine-tune a visualization.
Examples are the surface properties of the primitives
(e.g., color, texture, or transparency), edge representation
details (e.g., amount of overlap), and layout constraints
(e.g., ordering, or desired aspect ratio).

To understand how the four design dimensions control
the visualization outcome, one has to realize the basic
conflict that underlies the design of implicit hierarchy
visualizations. They try to convey two things at the
same time: their hierarchical relation as well as numer-
ical and categorical node attributes. In principle, this
can be done by mapping both onto independent visual
attributes – the characteristics of the graphical primitives
(size, shape, color,...) are used for node attributes, and
the relative position of nodes encodes the parent-child
relationship. Yet, it is often difficult to show attributes
and structure at the same time. Some implicit tree visu-
alizations are better suited for showing node attributes,
while others emphasize more on structure.

Examples can be found among the Treemap variations:
the Squarified Treemap encodes a node attribute by node
size and facilitates value comparison by aiming for
aspect ratios close to 1 [18]. Furthermore, by it is self-
evident that a non-leaf’s attribute value is the aggregate
of its children’s attribute values, because the children
together occupy the exact same area as the parent. While
here the hierarchical structure of the data can still be
discerned, the focus of this technique lies clearly on rep-
resenting the node attributes. On the other hand, there
are for example Cascaded Treemaps (Figure 13p) that put
more emphasis on the hierarchical structure [19]. This
is achieved by leaving a small unoccupied boundary
between a node and its children, and by using an overlap
relation instead of nesting. This enhances the perception
of the actual tree structure, as it conveys a 2.5D impres-
sion and maintains partial visibility of lower levels of
the visualization (higher levels of the tree). Variations
such as Squarified Treemap that enhance the perception
of the tree structure are shown in Figure 1. Here, the
original visualization (a) was altered along the design
dimensions ((b) dimensionality, (c) edge representation,
(d) node representation, and (e) layout).

The individual axes of the design space and their
parametrizations are discussed in the following sections.
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Fig. 1. (a) Original Squarified layout emphasizing the
attribute values [18], (b) Steptree – emphasizing the struc-
ture by extrusion [20], (c) Cascaded layout – emphasizing
the structure by using overlap [19], (d) Circular Treemap
– emphasizing the structure by using a non-space-filling
primitive [21], (e) Nested layout – emphasizing the struc-
ture by leaving white space around the primitives [10].

2.1.1 Dimensionality
Dimensionality is highly controversial in information vi-
sualization. Most of the published implicit visualization
techniques are 2-dimensional. This is only natural, as
they borrow from the map metaphor (hence Treemap) and
maps are in general 2D representations. This universal
design metaphor allows the visualization user to think of
the data in terms of the metaphor, effectively establishing
a mental map of the hierarchy. 2D visualizations have
several advantages over 3D representations, including:

• they are suitable for static media (e.g., printouts),
as no occlusion can occur in 2D that would require
interactive view manipulation,

• they are useful in time-critical situations, as the
search space for a node/subtree of interest is only 2-
dimensional and no lengthy interactive exploration
is needed,

• they perform better than 3D techniques for compar-
ison tasks on node attributes, as areas can percep-
tually be better compared than volumes.

Hence, many people tend to prefer 2-dimensional rep-
resentations, as they provide higher information avail-
ability than 3D [22]. Commercial visualization tools
and practical implementations on the Internet offer 2-
dimensional views most of the time.

Yet, it can be seen already from the earliest publica-
tions on Icicle Plots and Treemaps that 3-dimensional
representations were often considered, too [12], [15].
Many later examples such as Beamtrees or Circular
Treemaps do not leave their 3D extensions unmentioned,
either [21], [23]. This is again only natural, as 2D rep-

resentations easily extend to 3D by use of the cityscape
metaphor or the container metaphor [24], [25]. They provide
an obvious transition path from the 2-dimensional, basic
technique to its 3-dimensional extension. Hence, the ex-
isting 3-dimensional techniques are usually adaptations
of a 2-dimensional technique.

3D techniques that borrow from the cityscape
metaphor typically extrude a flat 2-dimensional vi-
sualization into the third dimension. This applies to
Treemaps as well as to Icicle Plots. Examples for ex-
truded 2D Treemaps are Information Pyramids (Fig-
ure 12k), 3D Nested Treemaps (Figure 12n), StepTrees
(Figure 13d), and even nested Hemispheres for circular
Treemaps (Figure 13e). Icicle Plots have been adapted
likewise to 3D Icicle Plots (Figure 12b) [12], [20], [26]–
[28]. They have in common that they stack node prim-
itives on top of each other, giving the graphical repre-
sentation a recognizable shape and allowing an intuitive
exploration from a bird’s-eye perspective.

In the second case, 3D-techniques rely on the container
metaphor. They mostly extend a known 2-dimensional
subdivision or packing algorithm to the third dimen-
sion. Here only Treemap examples are possible, as Icicle
Plots and Sunbursts do not rely on nesting in the first
place. The most prominent 3D Treemap examples of
this kind are probably Information Cubes (Figure 12i)
and Treecubes (Figure 13c) [29], [30]. It is apparent
that this latter approach suffers from heavy occlusion,
and therefore, can only be used with semi-transparent
primitives and for rather shallow hierarchies.

The main argument supporting the use of 3D is that
implicit visualizations rely heavily on spatialization, as
they encode the edges of the hierarchy into relative
positions: the position of one node with respect to an-
other determines their relationship. The additional 3rd
dimension opens up new perspectives for this relative
positioning. A good example is the Beamtree technique
(Figure 13a) [23]. Its 2-dimensional form encodes the
parent-child relationship by overlapping rectangles. This
leads to occlusion of most of the internal tree structure,
whereas the leaves are fully visible. Adding a third
dimension allows one to transform Beamtrees into a
3D technique that uses adjacent cylinders instead of
overlapping rectangles. The orthogonal view from the
front still shows a bottom-up view with the leaves up
front, resembling the original 2D technique. Additionally
the 3D visualization can be rotated and viewed from the
back, yielding a top-down view with the root facing the
user, or from the side, revealing the individual levels of
the hierarchy.

3D extensions of implicit visualizations come into play
when it is required to embed them into 3D applica-
tions (e.g., volume visualization or virtual collaborative
spaces), or when the visualization designer wants to
specifically address the user’s spatial memory. Yet, the
latter is still somewhat disputed, since there are reports
about positive, neutral, as well as negative effects of 2D
vs. 3D visualizations [31]–[33]. But as these studies were
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conducted for visualization techniques in general, it is
arguable whether they are applicable to the concrete case
of implicit hierarchy visualizations.

Yet recently, notable attempts have been made to
make 3-dimensional implicit tree visualizations (usually
Treemaps) available to a wider audience. Examples come
from the field of Software Visualization, e.g., the im-
mersive software visualization “CodeCity”, which uses
a Steptree visualization for program code comprehen-
sion and analysis of code evolution and quality, or the
Fraunhofer IESE Visual Software Analysis Tool, which
likewise uses a 3D Treemap approach for visualizing
code quality [34], [35].

2.1.2 Node Representation
In most practical applications, implicit tree visualizations
use rectangles for 2-dimensional representations and
cuboids for 3-dimensional views. They are easy to stack,
easy to nest, and easy to draw with interactive frame
rates even with 10,000s of nodes. There are a number
of reasons for using alternative shapes of the nodes to
something else than rectangles/cuboids.

The first is to improve the aspect ratio of the overall
visualization. A common approach is to switch to circles
and circle sections, thus achieving an aspect ratio of
1: Treemaps become Circular Treemaps, Pebble Maps
(Figure 13b), or Crop Circles (Figure 13h), and Icicle
Plots become, e.g., PieTrees (Figure 12o), Sunbursts (Fig-
ure 12p), or InterRing visualizations (Figure 12s) [21],
[36]–[42].

The second reason is to give each individual node
a more recognizable shape by using irregular con-
vex polygons. Hence, Treemaps have been altered into
Voronoi Treemaps (Figure 13f) and Circular Partitions
(Figure 13q), and the Sunburst technique into the Radial
Edgeless Trees (Figure 13m) [43]–[47]. These techniques
are not restricted to a certain type of primitive that is
then packed as tightly as possible in the available screen
space. Instead, the focus lies on the layout algorithm
that carves the individual areas of the children out of
the screen space occupied by the parent. This carving
process usually yields odd-shaped, irregular polygons.
The advantage is a distinct shape for each node that
makes the whole visualization less uniform and aids in
memorizing and recognizing parts of the structure. The
obvious disadvantage concerns again the visualization
of node attributes: varying shapes are harder to estimate
and to compare in terms of their area.

Apart from these two shared reasons, Treemaps and
Icicle Plots each have a third reason for switching to
non-rectangular shapes. For Treemaps, it is the fact
that tightly packed rectangles do not leave any of the
underlying structure visible. However, packed circles or
ellipses do, thus enhancing the perception of the tree
structure [15], [21], [36], [48]. This way, lower levels are
visible through gaps in the layout. On the one hand,
this facilitates discerning a tree’s depth, but on the other
hand, less space is available for each level. As trees

tend to grow wider with each level, this aggravates any
spatial constraints.

For Icicle Plots, the third reason is a different one:
as the space on top of the root limits the entire layout
from the beginning, the available space for laying out
a node’s children stays constant, independent of how
wide the hierarchy actually grows. Yet, this problem can
be somewhat reduced by switching to a radial variant
with circle sections as primitives as done for Sunbursts.
Here the available space (in this case the circumference)
grows with increased distance to the root. Different tri-
angular variants follow the same design argument. No-
table examples are the Triangular Aggregated Treemap
(Figure 12l), which is a misnomer as it has little to do
with the Treemap layout, and CheopsTM (Figure 12j) [49],
[50].

Note that a 3D extension of a 2D node represen-
tation can usually not be determined unambiguously.
For example, a circle can be extended into either a
(hemi-)sphere, a cylinder, or a cone, whereas a square
can be extended into either a cuboid or a pyramid.
For the design space axes to be indeed orthogonal and
not to influence one another, it is important to include
the disambiguation in the node representation, e.g., by
defining three different circle primitives: circle/sphere,
circle/cylinder, and circle/cone.

Additional parametrizations may influence the surface
properties or rendering style of nodes. Node surfaces can
be used for coloring and texturing to either enhance the
perception of structure (Cushion Treemaps – Figure 12m,
Cushion Icicle Plots – Figure 13l) or the perception of
attribute values and changes thereof (Contrast Spiral
Treemaps – Figure 13o) [51]–[53]. For 3-dimensional tech-
niques, different rendering styles may be chosen. They
can enhance the visualization by providing additional
insight, e.g., by applying a wire frame rendering to
certain nodes or by adding so-called Ghost Views to
ensure visibility of otherwise occluded nodes [54].

2.1.3 Edge Representation

Implicit tree visualization techniques represent edges by
inclusion, overlap, or adjacency of the graphical objects
that represent the tree’s nodes. Nodes that have a spatial
extent instead of being just points in space may contain
or overlap one another. By doing so, they implicitly
represent the parent-child relation between nodes of a
hierarchy as exemplified in Figure 2. For this relative
positioning of the set of graphical objects O, a spatial
relation R is required that exhibits acyclicity (including
irreflexivity) and non-convergence. These conditions make
sense, as they directly reflect the structural properties of
the tree to be represented:

• acyclicity: a node cannot be its own parent, neither
directly (irreflexivity) nor indirectly (acyclicity)
∀a ∈ O, ∀n ∈ N+ : ¬(aRna)

• non-convergence: a node cannot have two parents,
only one – and accordingly two nodes cannot have
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Fig. 2. (a) Explicit, node-link layout, (b) Implicit layout by
inclusion, (c) Implicit Layout by overlap, (d) Implicit layout
by adjacency.

the same child node
∀a ∈ O@b, c ∈ O : bRa ∧ cRa

In addition to these necessary conditions, in some cases
it may be useful to have asymmetry or transitivity:

• asymmetry: ∀a, b ∈ O : aRb→ ¬(bRa)
• transitivity: ∀a, b, c ∈ O : aRb ∧ bRc→ aRc

Asymmetry is useful for giving an additional hint on
the direction of the edges, pointing from higher levels
towards the leaves. This results from the obvious dis-
tinction between parent and child, e.g., in the case of
a overlapping b it is apparent which one is the parent
and which one is the child. This is useful when one
has zoomed into the visualization and can see only a
portion of it: even though neither root nor leaves might
be visible, it is made obvious by the asymmetry in
which direction both lie and how the visualization has
to be read. Transitivity on top of that enables finding
out quickly whether one node is a (distant) ancestor of
another node, as this becomes a simple look-up task. It
also eases comparison of nodes, as with transitivity they
cannot be located too far away, no matter how deep the
tree is.

The three commonly used spatial relations fulfill these
two conditions, though all differently:

• Inclusion guarantees asymmetry and transitivity: if
a is nested in b, it cannot be the other way around.
Also, if a is nested in b and c is nested in b, it is
obvious that c lies within a, too.

• Overlap guarantees only asymmetry: if a overlaps
b, b cannot overlap a. Transitivity does not hold for
overlap.

• Adjacency guarantees neither: if a is adjacent to b,

this relation is symmetrical. Also, it is not transitive.
The only missing combination is a spatial relation

that is transitive and symmetrical at the same time. Yet,
it can easily be shown that this case cannot occur, as
asymmetry is a necessary condition for transitivity. If
it was not ∃a, b ∈ O with aRb, bRa, which (because of
transitivity) leads to aRa, and thus violates the acyclic-
ity/irreflexivity of R.

Adjacency reveals more of the hierarchical structure
than inclusion as each individual level is visible and
depth equals distance. Yet, inclusion has a very useful
property which adjacency does not have: it does not
grow outwards and one can be sure that it only uses the
amount of space dedicated to display the root node. All
other nodes will be placed within this space – and not
attached to it. Overlap tries to find a good compromise
between both by showing more of the structure, while
not growing outwards too much.

As it is mainly the different edge representation
that discerns Treemaps from Icicle Plots, there is not
much diversity to be expected for this design dimen-
sion: Treemap variants use inclusion by default and in
very few cases overlap – 2D Beamtrees and Cascaded
Treemaps [19], [23]. Icicle Plots and related techniques
use adjacency in all cases. Up to now, there seems to
be not a single Icicle Plot variant that uses overlap –
even though this would be a valid option. Overall, it
can be stated that inclusion is the most common among
the implicit techniques in use today.

As an interesting side note: In 2004, IBM has filed
a patent application in the US for providing “an effi-
cient way of presenting hierarchical data or information
based on a container metaphor” [55]. It states further:
“Nodes or information associated with the hierarchy are
represented visually using a geometric shape, such as a
rectangle, square, or circle. The hierarchical relationships
of the data in the hierarchy can then be represented by
displaying the shapes within one another to illustrate
a container relationship or adjacent to each other to
represent a different level of hierarchy.” This would leave
overlap as the only unpatented edge representation.

2.1.4 Layout
In general, one can discern two major layout method-
ologies: subdivision and packing. Subdivision is applied
starting from the root. It takes the space assigned to
a node and subdivides it into regions for the children
of this node. This method is applied recursively to the
next level of the hierarchy. Packing goes the other way
around: starting from the leaves, it determines the shapes
and sizes of the nodes according to their attribute values
and then attempts to pack sibling nodes tightly into
their parent’s space. Even though packing is known
to be NP-complete by reduction to the Bin Packing
Problem [56], this is only valid for the optimal solution.
If a good approximation is enough, as it is usually the
case for visualizations, fast heuristics can be applied
for packing the objects. An example is given in [57]
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which is used by the visualization method Data Jewelry
Box (Figure 12r) [58]. Subdivision uses the space fully,
whereas packing tends to leave gaps in between. The
pros and cons for each are exactly the same as already
discussed for node primitives that cover their ancestors
completely (e.g., rectangles) or do not (e.g., circles): the
latter allows for a glimpse at the structure through the
gaps, but sacrifices at each level some of the available
space.

All known layout methods fall into one of these two
categories, even though it may not always be obvious.
This is sometimes the case for extruded/stacked tech-
niques. In 2D, these are for example Sunburst or Icicle
Plots, which are in fact 1-dimensional subdivision tech-
niques of the perimeter of circle(-segments) or of one side
of a rectangle, respectively. In 3D, this can be observed
for Steptrees (Figure 13d) and 3D Circular Treemaps
(Figure 13i), which are actually a 2-dimensional subdivi-
sion and packing technique, respectively [20], [21]. This
shows that the user always has more than one option
if the tree structure needs to be emphasized: instead of
changing the layout from subdivision to packing, one
can still maintain the subdivision and extrude the layout
into another dimension to achieve the same goal.

Additionally, it is usually the layout algorithm that has
to ensure that certain external constraints are fulfilled.
Wattenberg introduces four fundamental constraints to
be met by a “perfect” layout [59]:

• Stability: small changes in the data should only
result in small changes in the visualization,

• Split Neutrality: structural changes should only affect
the parent-region they occur in,

• Order Adjacency: if defined, an ordering of the nodes
should be maintained,

• c-Locality: the representation should be as compact
as possible (aspect ratio ≈ 1).

While variants of Icicle Plots for instance handle or-
dering by design, other constraints must be explicitly
enforced in the layout. Different layouts put a different
emphasis on these constraints. Some of them are mostly
concerned with order adjacency (Spiral Treemap layout
– Figure 13o, Ordered Treemap layout), others with c-
Locality (Squarified Treemap) [18], [53], [60]. Wattenberg
introduced the Jigsaw Map (Figure 13g) as one possible
realization that fulfills all of the above constraints [59].

Apart from that, the layout may be required to fulfill
additional application-specific demands. This is the case
for instance for 2-dimensional order adjacency as realized
for cartographic contexts in Spatially Ordered Treemaps,
or when dealing with unusual aspect ratios as in Treemap-
Bars, which embed Treemaps into bar charts [61], [62].

Even though the layout is an independent dimension
of the design space, we admit that there can be some
interplay with the choice of the node representation.
While packing layouts can (in theory) handle all kinds of
primitives, it gets a little more complicated for subdivi-
sion layouts. In this case, the layout actually shapes the
node representation by subdividing the space. Hence,

an independent choice of node primitive and layout is
hardly possible. If a shape is chosen other than the one
that is generated by the layout, it must be scaled and
packed inside the space generated by the layout.

2.2 Design Space Discussion
Bringing the discussed design dimensions together to
form the actual design space raises several concrete ques-
tions that are worth investigating. First and foremost, the
question is whether the overall design space is complete
and consistent, two important properties a design space
should fulfill. The required practical utility of the design
space beyond pure classification of existing techniques
imposes additional design issues.

2.2.1 Completeness and Consistency
Telling whether a design space definition is complete is a
complicated task. There may very well be undiscovered
or unpublished implicit hierarchy visualizations that are
consistent with the design space definition, but that are
so awkward that our proposed design space definition
does not include them (yet). Hence, we assume a design
space definition to be complete, if it contains the known
implicit techniques as of today. If in the future an implicit
visualization is found that is not yet covered by the de-
sign space, it needs to be expanded. While completeness
is hard to prove, in Table 1 we show that it is possible
to position the majority of today’s implicit hierarchy
representations. Even though these are of course not all
existing implicit techniques, being able to place them
in the design space is already a solid indication for the
design space’s completeness.

While an incomplete design space would be the result
of a design space definition that is too rigid, an incon-
sistent design space usually results from a definition
that is too broad and may go well beyond the design
space originally intended. We consider a design space
definition for implicit techniques as consistent, if it does
not violate the basic design principle of implicit visu-
alizations: representing the hierarchy without drawing
edges. This excludes two kinds of visualizations:

• any detached arrangement of graphics primitives
that does not represent the hierarchical structure at
all, as there is no apparent spatial relation between
them. An example is the Graph Signature Visual-
ization shown in Figure 3(a) [63]. This visualization
uses a scatterplot to show different node classes.
Even though they do not include any links between
the nodes, these visualizations cannot be consid-
ered implicit, because the hierarchical structure is
completely lost in the mapping step and cannot be
discerned from the representation any more.

• any visualization that contains explicit links. An
example for a hierarchy visualization of this cat-
egory are the Information Slices depicted in Fig-
ure 3(b) [64]. Even though they are an implicit vi-
sualization techniques at their core (a semi-circular
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2 1/2D Treemap [65]

Polar Treemap [15]

Treemaps with Ovals [15]

Nested Columns [15]

3D Treemap [15]

Information Cube [29]

Cheops     [50]

Triangular Aggregated Treemap [48]

Cushion Treemap [51]

3D Nested Treemap [25]

Quantum Treemap [66]

Data Jewelry Box [58]

Pebble Map [36]

Nested Hemispheres [26]

Jigsaw Map [59]

Generalized Treemap (Pie) [8]

Generalized Treemap (Pyramid) [8]

Generalized Treemap (Pie+Pyramid) [8]

Cushioned Icicle Plot [52]

Contrast Spiral Treemap [53]

Circular Partitions [45]

Lifted Treemap [68]
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12(c)

13(o)

12(d)

12(e)

13(g)

13(j) - left

13(j) - middle

13(j) - right

13(c)

12(h)

12(m)

13(f)

13(q)

12(q)

12(r)

13(p)

13(k)

12(f)

13(b)

13(h)

13(r)

12(n)

12(i)

12(g)

12(b) - left

12(a)

13(l)

12(l)

12(p)

12(s)

12(o)

13(m)

13(d)

12(b) - right

13(e)

13(i)

13(n)

13(a)

12(k)

12(j)

TABLE 1
Classification of some existing implicit tree visualization techniques, approximately ordered from the most

attribute-centric technique at the top to the most structure-centric one at the bottom.
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(a) (b)

Fig. 3. Examples of hierarchy visualizations that are not
part of the design space: (a) Graph Signature Visualiza-
tions and (b) Information Slices [63], [64].

Sunburst variation), they use explicit links to con-
nect multiple, otherwise separate parts (slices) of
their implicit hierarchy visualization and are thus
not a part of our design space.

The consistency is basically ensured by the way the
design space is constructed as it does not provide any
explicit edge representations (fulfilling the second con-
dition) but forces the layout to use at least one of the
available edge representations (adjacency, overlap, or
inclusion) and to fulfill acyclicity and non-convergence.
This effectively prevents any detached arrangement and
arrangements that do not represent a tree (fulfilling the
first condition).

Having a complete and consistent design space does
not prevent the definition of mostly “useless” visual-
ization techniques. Figure 4 shows an example of a
visualization design that is so heavily occluded by its
own layout that it obscures more of the data than it
actually shows. This is a problem faced by all vast design
spaces: it is easy to get lost in them and hard to find
the subspaces of useful techniques. Yet, if the designer
wants to explore only the known design decisions, a list
of the existing techniques as given in Table 1 would be
sufficient. We do not see the ability and flexibility to
roam freely in the design space as a burden, but rather
as a chance to discover completely new techniques. Also,
we found it very educational to actually see when and
why well-known techniques break down when altering
them along certain design dimensions. It may even be
the case, for special input data (e.g., binary trees of
bounded height), that useless techniques “degenerate”
into good visualizations. This can be taken further to
actually tailor a visualization to a concrete data set
and/or task by incremental refinement of its design.

Another implication of a complete design space is
that it allows the definition of impossible combinations
of design parameters, for which no reasonable practical
realization exists. This occurs when at least two of the
design decisions made are incompatible – for instance
when the area provided by the layout method and the
(base) area of the child do not match. This is always

the case when one does not respect the dependencies
between layout and node representation mentioned at
the end of Section 2.1.4. An example would be the use
of a Voronoi Treemap layout with circles instead of the
convex polygons provided by the layout. This example
is not far fetched, as similar, incompatible combinations
of graphics primitives are frequently used under the
term “Circle Maps” in cartography. Since our flexible
design space definition does allow such incompatible
combinations, a way must be found to handle these.
Because of the sheer number of possible but incom-
patible combinations, this problem is far too complex
to be solved elegantly in the conceptual design space.
Instead, a practical solution would be to require each
node primitive to provide mechanisms to adapt to a
possibly incompatible area.

In our concrete case, each node primitive must pro-
vide methods that compute an inscribed as well as a
circumscribed circle/sphere and rectangle/cuboid. They
are used to interface between a node primitive and an
incompatible primitive provided by a layout either by
inscribing into the primitive generated by the layout or
by circumscribing the node primitive – both with the
same interface: either circle/sphere or rectangle/cuboid.
They can then be put together easily. The inscription
mode to use (circle/sphere or rectangle/cuboid) is the
one that maximizes the resulting area/volume occupied
by the inscribed primitive. This pragmatic approach does
not guarantee an optimal usage of the space and may not
in all cases lead to aesthetically pleasing results. Yet, it
effectively bridges the gap between the general design
space and a prototypical realization that allows one to
put together new visualization techniques.

Fig. 4. The Spiral Steptree from Section 3.1.3 (cp. Fig-
ure 7) where the layout was changed to a Strip Treemap
Layout, rendering it practically useless.
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2.2.2 Design Issues

To be applicable as a theoretical framework for the classi-
fication of visualization techniques and as a practical tool
that aids in the design of new visualization, a number
of issues are worth mentioning:

Mixing Design Choices. The design space has so far
been applied to the tree as a whole. Yet, a global scope
for design decisions is neither necessary nor useful. In
fact, there are a number of mixed implicit visualizations
that cannot be expressed without a more refined, local
way to specify the visualization design. The term mixed
was first used for mixed Treemaps by Vliegen et al. for
their Generalized Treemaps (Figure 13j) in which the
authors use a Slice-and-Dice layout for the upper levels
of a hierarchy and the squarified layout for the lower
levels [8]. The concept of mixing different design choices,
be it layouts or node primitives, has been known (but not
been named) well before that. It can also be observed for:

• 2 1/2D Treemaps [65] (Figure 12d) mixing a 2D
representation for the inner nodes with 3D pyramid-
like graphics objects for the leaves

• Quantum Treemaps [66] (Figure 12q) mixing a sub-
division layout for the inner nodes with a packing
layout for the leaves

• 3D circular packing [21] (Figure 13i) mixing cylin-
ders for the inner nodes with hemispheres for the
leaves

• 2D Beamtrees [23] mixing overlap for the inner
nodes with inclusion for the leaves

• 3D Beamtrees [23] (Figure 13a) mixing adjacency for
the inner nodes with inclusion for the leaves

Altering design choices for leaf- and non-leaf-nodes is
the most common form of mixing. This is either because
they are of different types (e.g., directories vs. files) or
just to help discerning them. As mentioned in [8], [9],
design choices can be made on a per-node basis. This al-
lows us to map not only structural node properties (e.g.,
is leaf, or depth) to design parameters, but also derived
properties, such as Strahler numbers or other numerical
or categorical attributes [67]. Mixed representations can
also be used to emphasize entire subtrees, as it is done
in [68] (Figure 13r) by adding orthogonal sub-Treemaps
on top of a 2-dimensional base Treemap.

Positioning in the Design Space. The design dimen-
sions are sufficient to be used for general discussions.
For a practical application their specification needs to be
refined. The reason is that they are not concrete enough
to define each and every aspect of a technique to clearly
position it in the design space. This is only natural,
as a design space should first and foremost serve as a
clear mental map for a class of visualizations. Param-
eters that describe every tiny facet of a visualization’s
appearance would only obfuscate this map. Yet, for a
concrete realization of the design space these additional
clarifications are needed to resolve otherwise unspecific
design decisions. An example is that the choice of a node
primitive does not decide on where exactly to attach the

child nodes in case of adjacency – for a cylinder it can be
its flat top (3D Circular Treemap) or its curved coat (3D
Beamtree). Consequently, before the design space can be
realized, missing details like this must be added to its
definition. In case of attaching 3D primitives, one needs
to specify three additional attributes for the primitives:
the surface onto which to attach the children, the surface
normal to indicate which side to attach to, and the
anchor point for connecting the parent.

Displacement in the Design Space. The notion of
individual visualization techniques being concrete po-
sitions within a design space allows us to establish a
notion of similarity between techniques, even though
it is hardly possible to define a distance metric in the
mathematical sense. Yet, each change in design decisions
can be understood as a displacement in the design space,
which in turn provides a measure of similarity. The
number of changes needed to convert one technique into
another one gives a sense of how much they have in
common and thus how close they are conceptually –
very much like edit distances. This is quite useful for
devising user studies for a newly developed technique,
as it allows finding established techniques that are close
to the new technique as candidates for comparison.
As an example, the conversion path between 2D Polar
Treemaps and Information Pyramids shows that all four
design axes are needed to transform one into the other.
While this might not be the shortest or most direct path
within the design space, it is one that only uses known
techniques as intermediary steps:

1) 2D Polar Treemaps: change relationship from nest-
ing to adjacency – yields: 2D Sunburst

2) 2D Sunburst: change primitive from circle(-section)
to rectangle – yields: 2D Icicle Plot

3) 2D Icicle Plot: change dimensionality from 2D to
3D – yields: 3D Icicle Plot

4) 3D Icicle Plot: change layout from horizontal slicing
to squarified – yields: Steptree

5) Steptree: change primitive from cuboid to pyramid
frustum – yields: Information Pyramids

Ranges in the Design Space. The design space can
be used to trace different design alternatives across the
entire design space. One example for such a design
alternative is the mentioned conflict between attributes
and structure. As it is often impractical to decide for
either one, the resulting visualization should rather be a
good compromise between both. Techniques that focus
solely on either one can be understood as the endpoints
of this particular range. An implicit visualization can be
moved in this design rage to achieve certain goals:

• focus on attributes: Squarified Treemaps – a 2D
inclusion technique using rectangles of aspect ratio
close to 1 and a space-filling subdivision layout

• focus on structure: CheopsTM– a 2D adjacency tech-
nique that uses overlapping triangles of uniform
size and a nested packing technique with lots of
white space to visualize paths and subtrees
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A prominent application example for a visualization
that focuses almost entirely on attributes rather than on
hierarchical structure is Wattenberg’s Map of the Stock
Market [69]. In this case, the focus is only natural, as the
hierarchy in question has only 3 levels, which are easy to
overview: the whole stock market (root), the industrial
sectors (internal nodes), and the individual companies
(leaves).

Within the range between these endpoints lie all the
intermediary compromises between showing values and
showing structure. Table 1 is approximately sorted along
this spectrum with the attribute-oriented (squarified)
Treemap technique at the top and the structure-oriented
CheopsTM at the bottom. Another example would be
the range of how siblings are spatially related to each
other: all the way from no apparent spatial relation (as
in the original Treemap), through a certain degree of
co-location (as in Wattenberg’s Stock Market Treemap
layout, later called Cluster Treemap), to a linear order
(as in Jigsaw Maps or Spiral Treemaps) and finally to a
direct overlap (as in CheopsTM).

3 GENERATING NEW TECHNIQUES

Having surveyed the existing techniques in Section 2,
we now fill in some of the gaps that have been left
unexplored and unpublished so far. As the number of
unexplored implicit visualization techniques is of course
infinite, because there are endless ways of putting to-
gether and mixing numerous graphics primitives in 2D
and 3D, we can only discuss a few examples of not yet
published techniques. However, we want to use these
examples to highlight three important design strategies
that in many cases lead to useful and aesthetically pleas-
ing visualization results:

• seek unexplored regions within the existing design
space, e.g., novel combinations of visualization pa-
rameters,

• establish new connections between different regions
of the design space, e.g., by mixing design choices,

• find a novel parametrization of an otherwise fixed
design, e.g., by using derived measures.

All three approaches target a different part of the
design space: the first uses the design axes to construct
a new technique, the second utilizes the possibility to
combine multiple designs into a new one, and finally
the third explores the parameter space of a visualization
design to the same end. Since these three strategies are
independent of each other, they can also be used in
conjunction if needed. Each of them is illustrated by
selected examples in the following.

In these examples, we focus on different node prim-
itives, because they largely determine a visualization’s
appearance. In many cases techniques are even named
after the primitive used: e.g., Information Pyramids,
Information Cube, Tree Cube, CropCircles, Ellimaps.
As pointed out in Section 2.1.2, a number of design
considerations can be addressed just by the choice of

an appropriate primitive. This section discusses aspects
of the node representation along the lines of the three
points listed above: discussing novel node primitives
in Section 3.1, mixing different node primitives in Sec-
tion 3.2, and parametrizing node primitives according to
derived measures in Section 3.3.

3.1 Novel Combinations of Visualization Parameters
Seeking out unexplored regions of the design space to
generate new techniques is at first nothing else than
deciding for (a combination of) values of the individual
design axes that no one had thought about before. These
visualization parameters can be, for instance, a certain
layout or a specific node primitive. Once identified, they
span a subspace within the design space that contains
novel visualization techniques. Yet chances are that the
found visualizations will be not very useful. Careful
parametrization, testing with different data sets, and
subsequent evaluation are necessary before a ready-to-
use technique will emerge.

In this section, we pick a few noteworthy techniques
from the so far largely unexplored design subspace of
spherical and cylindrical node primitives. As a pre-
requisite for combining these primitives with all other
visualization parameters (e.g., edge representation or
layout), it is necessary to make all possible cut sections
of these primitives available. Otherwise, for instance, a
Slice-and-Dice layout will not work as expected. The 3-
dimensional sections for our two examples are shown
schematically in Figure 5, which lists all the different
polar cuttings of a cylinder and a sphere. Sphere and
cylinder sections are not new, but apart from the 3D
cylindrical Sunburst they are relatively unexplored in
the context of implicit tree visualizations [70]. Once
made explicit, these sections are no longer just parts
of a standard primitive (cylinder, sphere), but they are
primitives in their own right and can be used as such, as
illustrated in the following Sections 3.1.1 and 3.1.2. One
can of course also generate a new primitive as an entirely
new parameter and explore the design subspace it opens
up. An example of this approach is given in Section 3.1.3.

3.1.1 3D Polar Treemaps / Radial Treecube
This technique uses the sphere section and the cylinder
section for a subdivision layout together with an inclu-
sion relation for edge representation. It uses the radial
Slice-and-Dice layout that does not cut along the x-, y-
, and z-axis, but along the two angles and the radius
instead. It is combined with a sphere/sphere-section
primitive yielding a new technique that can with equal
justification be described either as a 3D Polar Treemap
(being a 3D extension of Johnson’s Polar Treemap) or as
a Radial Treecube (being a radial variant of the Treecube
technique) [15], [30].

There are more than one possible 3-dimensional ex-
tensions of a circle: sphere, cylinder, or cone. Hence,
we have also derived a cylindrical version – shown
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(a) (b)

Fig. 5. All possible polar cuttings of a cylinder (a) and a sphere (b). The red colored sections are cut in the next step.
The blue colored sections are the resulting least elements – the building blocks of all the shapes above them.

alongside the spherical one in Figure 6(a-c) together with
the original 2-dimensional Polar Treemap. While being
aesthetically very pleasing, 3D Polar Treemaps suffer
from the same amount of occlusion as Treecubes and
cannot be recommended for deep hierarchies. Yet, chang-
ing the inclusion relation into an adjacency relation leads
to the extruded 3D Polar Treemap shown in Figure 10.
Likewise, it could also be called a radial cylindrical Step-
Tree, if the squarified layout of the StepTree is altered
into a polar coordinate Slice-and-Dice. It still has the
Polar Treemap feel to it, but it is less occluded than the
ones discussed here.

3.1.2 Spherical 3D Sunbursts
While in [70] a 3-dimensional version of the well known
Sunburst technique has already been presented, it is
based on a cylindrical extension of the circular Sunburst.
Our spherical 3D Sunburst is an extruded technique that
makes use of adjacency to represent the parent-child re-
lation. It is an example of how the sphere section can be
used as a primitive by itself and (correctly parametrized)
stacked on top of others of its kind.

Again, as there is more than one possible 3-
dimensional extension for circles, we introduce the so
far missing spherical 3D Sunburst in two variants. Both
variants use a sphere and certain spherical cross sec-
tions as primitives – one allows the entire root to be
covered (variant “Sphere”), whereas the other only al-

lows attaching primitives to a narrow, horizontal belt
(variant “Wheel”) – in part mimicking the original 2D
layout. “Sphere” and “Wheel” are shown in Figure 6(d-
f) alongside the original 2D Sunburst. 3D Sunbursts tend
to accentuate the leaves of a hierarchy, while occluding
most of their interior nodes – quite alike to the original
2D Treemap layout without borders. At the same time,
it is a very space saving way of displaying a rather
wide hierarchy that is not too deep. The variant “Wheel”
lessens this effect a little by allowing viewers to peek
inside the visualization from above and below. Yet, to
do so it sacrifices some of the space that the variant
“Sphere” uses so efficiently.

3.1.3 Spiral Steptree
At the core of this new technique stands a new primitive
which we call a “leaning box”. This is a cuboid with its
top being cut off at a certain angle. Stacking a number of
them on top of each other in a Steptree manner results
in them leaning towards one side of the representation.
If the tree is deep enough, such a visualization starts to
curl around itself, forming a Spiral Steptree as shown in
Figure 7. This proves to be an extremely space efficient
way to display very deep, but narrow hierarchies. How
tightly the representation curls up can be specified by
the cut-off angle of the leaning boxes.

It is crucial to use a layout method that works well
with this kind of primitive. Otherwise, visualizations
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(a) (b) (c)

(d) (e) (f)

Fig. 6. (a) The original 2D Polar Treemap (b) The 3D Polar Treemap variant “Cylinder” (c) The 3D Polar Treemap
variant “Sphere” (d) The original 2D Sunburst (e) The 3D Sunburst variant “Sphere” (f) The 3D Sunburst variant
“Wheel”.

like the one shown in Figure 4 will be the outcome.
The simple layout we have chosen here subdivides the
available space only along one dimension. This results in
something that can be perceived as an Icicle Plot where
the branches are not shown side by side, but are instead
stacked behind one another. Because it is so compact,
this technique is of no use to inspect individual nodes. It
rather provides an overview for deep trees with expected
uniform height. Any deviations from the uniform height
will be instantly visible: shorter branches will show as
gaps in the spiral, longer branches will peek out of the
end of the spiral. To easily determine height differences
between branches, an alternating color scheme has been
chosen. Furthermore, the layout can be reordered to
show a branch of interest up front.

3.2 Mixing Design Choices
The above means of generating new techniques already
allow us to obtain numerous hierarchical representa-
tions. Mixing two or more of them together into a new
technique extends these possibilities even further. It is

interesting that mixing is not used much besides the
few examples given in Section 2.2.2, despite its simple
concept and its unobtrusive way to accentuate certain
nodes and subtrees within the shown hierarchy. On top
of that, it also allows one to use specifically tailored
design choices depending on the characteristics of a
subtree.

Our first example mixes node primitives and parent-
child relationships at the same time as shown in Figure 8.
Adjacency is used to stack non-leaf nodes and inclusion
is applied to nest the leaves (shown as red spheres) into
their parents. The level of transparency of the non-leaf
nodes can be adjusted to emphasize either the overall
structure (if made opaque) or to give an impression of
the leaf-level (if made transparent).

The second example in Figure 9 depicts a mixed
Treemap with 2D and 3D node representations: (a) shows
a mixed 2D/3D tree where all internal nodes are mapped
onto stacked boxes in a Steptree-fashion, and all leaves
are displayed as 2D Treemap on top of the boxes. (b)
emphasizes the leaves, by adding transparency to the 3-
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Fig. 7. Spiral Steptree that generates dense visualiza-
tions of hierarchies.

dimensional boxes, leaving only the 2D-Treemap formed
by the leaves clearly visible, but conveying their depth
within the tree by the different heights of the 2D patches.
(c) shows a bird’s eye view, orthogonal to the top-faces
of the 3D boxes, effectively yielding a 2-dimensional
Treemap view of the mixed representation.

3.3 Integrating Derived Measures
In addition to the aforementioned design strategies, it
is always possible to combine analytical means with
visual cues defined by the design space. Two examples
illustrate how such analytical measures can be used to
integrate further structural information into an implicit
hierarchy visualization – a 3D Polar Treemap.

3.3.1 Implicit Tree Skeletons
So far, tree skeletons have been investigated for node-
link-visualizations only. They are defined as “the set of
nodes and edges that are determined to be significant
by a given metric” and are usually encoded in visual
attributes of the edges [71]. While implicit visualizations
lack the edges, the idea of showing just an overview
of the most important main branches of a hierarchy
is equally intriguing for implicit techniques. What the
main branches are and how far down to display them is
usually determined by a complexity measure such as the
Strahler numbers. An example for a 3D realization of an
implicit tree skeleton using Strahler numbers is shown in
Figure 10(b). Here, only nodes having a Strahler number
greater than a certain cutoff value are shown opaque, all
others are rendered semi-transparent.

3.3.2 Eccentricity Values
Eccentricity quantifies the distance between a node and
the tree’s graph theoretical center. It plays an impor-
tant role in rebalancing search trees, and in Operations

Fig. 8. An example of mixing adjacency for internal nodes
and inclusion for leaves.

Research, where a negative correlation exists between
eccentricity and cost efficiency. Often it is desired that
the root of a tree is also its most central node. Therefore,
mapping the eccentricity value onto a tree representation
reveals much about its balance. Figure 10(c) depicts such
an unbalanced hierarchy in which the root is not the
most central node.

As the design space allows us to map eccentricity and
the tree skeleton to orthogonal visual cues, it is now
possible to bring both of them together in one visual-
ization. Figure 10(d) shows this combination. It gives
an overview of the main branches and their balancing
without being occluded by the large number of leaves.

4 IMPLEMENTATION OF THE DESIGN SPACE

This section goes beyond the pure survey presented so
far by briefly describing a practical realization of the
introduced design space. As interesting as the design
space may be by itself, it was mainly devised as a
tool to define new visualizations in the spirit of rapid
visualization prototyping [72], [73]. It was our aim from the
beginning to actually access the design space and to try
out new design combinations. Our software implemen-
tation enables users to interactively explore the design
space. All examples from the previous section were
actually generated using our tool. This is made possible
by an approach consisting of five main components:

• a software architecture that is modular and expand-
able to reflect the changing and ever expanding
design space on the design axes of node primitives,
layouts, and mixing,

• a number of data importers that allow to load
custom hierarchies and real data, and thus to de-
sign visualizations tailored to certain data sets or a
certain kinds of data (e.g., binary trees)
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(a) (b) (c)

Fig. 9. These three visualizations show the same hierarchy with the leaf in the lower left corner being rendered in red
to aid in comparing them: (a) mixed 2D/3D representation with the branches rendered in 3D and the leaves laid out
in 2D on top of the 3D representation, (b) accentuating the leaves of the 2D Treemap by rendering the 3-dimensional
primitives semi-transparent, (c) bird’s eye view from above hiding the 3D part of the representation, leaving a 2-
dimensional impression.

(a) (b) (c) (d)

Fig. 10. (a) A plain extruded 3D Polar Treemap, which is basically a Steptree-like technique, but uses the Polar
Treemap subdivision layout (b) All nodes in the 3D Polar Treemap having a Strahler number smaller than a certain
threshold are faded out (c) The eccentricity value mapped onto the color with green being mapped on smaller values,
showing that the root is not the graph theoretical center of the hierarchy (d) A combination of (b) and (c)

• a flexible scripting capability to implement and run
custom-made preprocessing algorithms (e.g., nor-
malizing numerical node attributes or computing
Strahler numbers)

• an interactive user interface that supports the back
and forth of the exploratory process and makes vi-
sualization parameters directly available in a point-
and-click fashion,

• a history mechanism that is able to capture this
process in order to make the design decisions re-
producible within a design session (undo/redo) as
well as across multiple sessions (load/save)

The navigation of the design space is mostly interac-
tive in the sense of point and click. In cases where a more
elaborate parametrization is needed (e.g., making the
height of 3D node primitives inversely proportional to
their depth level within the hierarchy), input fields allow

users to enter custom functions. In contrast to other spec-
ification mechanisms, such as the HiVE notation, which
addresses concrete research questions for specific data
sets [9], our operator-based description of visualization
techniques is independent of the actual data set. All
nodes automatically decorated with certain properties
like is_leaf, has_leaves, number_of_siblings,
or strahler_number, which can be used to exactly
specify the subset of nodes that is affected by a design
decision. A scripting interface allows users to define
additional properties.

A prototype of our software implementation is acces-
sible online as a Java applet at http://vcg.informatik.
uni-rostock.de/∼hs162/itvtk/start.html. It utilizes JOGL
for 3D graphics and Groovy for the scripting support.
We have equipped our software with a number of the
most common primitives, layouts, and preprocessing

http://vcg.informatik.uni-rostock.de/~hs162/itvtk/start.html
http://vcg.informatik.uni-rostock.de/~hs162/itvtk/start.html
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Fig. 11. The Implicit Tree Visualization Toolkit – The figure shows the mammals of the InfoVis 2003 contest
classification hierarchy “A” with the subtree “caniforms” (dog-like animals) highlighted in all views. On the left-hand
side, our software shows statistics of the data set, a regular tree view, and controls for visualization parameters that
have a global effect. Multiple viewports can be opened to create implicit tree visualization prototypes. Each viewport
has a set of local controls to alter visualization parameters on a per-viewport basis either by interactive adjustment
or via scripting. Parameter settings and scripts can be stored for later reuse. The top view (“Viewport 1”) shows
a mixed 3D Treemap technique that stacks boxes inside one another for internal nodes and represents leaves as
spheres inside these boxes. This unobtrusively accentuates the leaves and makes this prototype look very much like
a carefully arranged collection of items, in this case all sorts of mammals. The bottom view (“Viewport 2”) shows a
spherical Sunburst variant as discussed in Section 3.1.2.

algorithms in this field. The largest part of the existing
implicit hierarchy visualization techniques can be built
out of the box using the prototype. Many new techniques
can be generated just by re-combining and mixing these
pre-configured modules in new and unexpected ways.

The prototype shown in Figure 11 displays differ-
ent implicit visualization prototypes in multiple linked
views. The linked views have proven to be extremely
helpful for comparative testing of different techniques.
A view can easily be generated by “cloning” the current
view and then altering the new view’s specification. The
linking between the views is such that a selection in one
visualization is reflected in all others. Optionally, it is

also possible to sync zoom, pan, and rotate operations
across all views – for example to have a second view
that always shows the otherwise invisible back side of a
3D visualization. Applications for the linked views are
for example:

• co-designing overview and detail visualization side
by side,

• branching the design process by cloning the current
viewport to establish two individual specification
histories,

• comparing one’s own visualization with one of the
built-in standards, e.g., a standard Treemap.
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This makes the software a versatile and powerful tool
for rapid visualization prototyping of implicit hierarchy
visualization techniques.

5 CONCLUSION

Unraveling, defining, and surveying the design space for
the class of implicit tree visualizations has shown to be
useful in many aspects. The definition of a conceptually
complete and consistent design space and its practical
applicability stand as a basis for a holistic classification
and a rapid prototyping of known and yet unknown
visualization techniques in this class. The systematic
discussion of the entire design space helps the sporadic
visualization user to get acquainted with the general
design concept behind a whole class of visualizations,
putting the known examples into a broader context.
Taking this step back and looking at the big picture
enabled us to break down visualization techniques into
the recurring visualization design patterns that they are
made of. It is this externalization of design knowledge
that provides a more generative perspective on implicit
tree visualizations and by that to get a grip on its rather
vast design space by means of rapid prototyping. It
is the very same design space that allows comparing
different techniques: conceptually through the number
of steps needed in the design space to transform one
into the other, and practically through direct interaction
with multiple linked prototypes in the design space
implementation.

Of course, this survey could not depict and discuss all
existing implicit techniques. Even beyond the numerous
examples that we evaluated in Table 1 and Figures 12
and 13, there are many more existing implicit hier-
archy visualizations out there, e.g., Bubblemaps, Grid
Treemaps, Context Treemaps, Treemaps with Textures
and Bump Mapping, Filled Sunbursts and the Hybrid
Sunburst/Treemap (basically a 2-sided Icicle Plot), Con-
tour Maps, and the Blob Hierarchy Layout to name just
a few [66], [74]–[79]. This abundance shows clearly that
a survey was long overdue. But all of the techniques
not considered in this survey can equally be placed in
the proposed design space. As many more new implicit
visualizations will surely follow, it is not the incomplete
list of techniques in Table 1 that is the main contribution
of this survey, but rather the complete and consistent
design space definition that captures them all – existing
ones, as well as new ones.

The design space implies multiple promising direc-
tions for future work. As the overall design dimen-
sions have been identified, subtler design aspects such
as parametrization and mixing of design choices come
into focus. Especially their specification according to
the characteristics of a hierarchy seems largely unex-
plored and highly promising to yield more effective
visualizations. For instance, mixing different layout tech-
niques or parametrizing a layout according to a subtree’s
width/depth would result in unique visualizations that

by themselves are characteristic for the hierarchy they
display.
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(a) Castles 1981 [17] (b) 2D+3D Icicle Plots 1983 [12] (c) Treemap 1991 [10], [11]

(d) 2 1/2-D Treemap
1992 [65]

(e) Polar Treemap
1993 [15]

(f) Treemap with Ovals 1993 [15] (g) Nested Columns
1993 [15]

(h) 3D Treemap
1993 [15]

(i) Information
Cube 1993 [29]

(j) CheopsTM 1996 [50] (k) Information
PyramidsTM 1997 [28]

(l) Triangular Aggregated
Treemap 1998 [49]

(m) Cushion Treemap
1999 [51]

(n) 3D Nested Treemap 1999 [26] (o) PieTree 2000 [38]

(p) Sunburst 2000 [40] (q) Quantum Treemap
2001 [66]

(r) Data Jewelry Box
2002 [58]

(s) InterRing 2002 [42]

Fig. 12. A selection of prominent and lesser known examples of implicit tree visualizations. Part A: 1981–2002
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(a) 3D Beamtree 2002 [23] (b) Pebble Map
2003 [36]

(c) Tree Cube 2003 [30] (d) StepTree 2004 [20]

(e) Nested Hemispheres
2004 [27]

(f) Voronoi Treemap
2005 [44]

(g) Jigsaw Map
2005 [59]

(h) CropCircles
2006 [37]

(i) 3D Nested Cylinders and
Spheres 2006 [21]

(j) Generalized Treemaps 2006 [8] – pie, pyramid, and combination of both

(k) Ellimap 2007 [48] (l) Cushioned Icicle Plot 2007 [52] (m) Radial Edgeless
Tree 2007 [46], [47]

(n) 3D Sunburst
2007 [70]

(o) Contrast Spiral Treemap
2007 [53]

(p) Cascaded
Treemap 2008 [19]

(q) Circular Partitions
2008 [45]

(r) Lifted Treemap 2009 [68]

Fig. 13. A selection of prominent and lesser known examples of implicit tree visualizations. Part B: 2002–2009
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