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ABSTRACT
Visual Analytics is successfully employed for an integrated
data analysis by means of combining visual and analytical
methods. The starting point for current Visual Analytics
tools and workflows is usually the readily available data
set. Rarely though, Visual Analytics goes beyond the data
set and also incorporates the data generating processes that
have led to the data in the first place into the analysis. And
indeed, in many use case scenarios, this is hardly possible,
as these processes cannot be captured as data to be ana-
lyzed themselves. Yet for the applications, in which this is
feasible, new opportunities and challenges open up.

In this paper, we illustrate these opportunities and chal-
lenges by our efforts to bring together Visual Analytics and
stochastic simulation for cell biological applications. The
integration of both is possible, as the data generating pro-
cess runs in silico and can thus be captured and analyzed
alongside the mere simulation result. For this, we present
solutions and tools, which permit Visual Analytics on all
stages of this particular data generating process – on the
stages of the model, the experiment, the simulation runs,
and a combination of all three.

Categories and Subject Descriptors
H.5.m [Information Interfaces and Presentation]: Mis-
cellaneous; I.6.6 [Simulation and Modeling]: Simulation
Output Analysis

General Terms
Design

Keywords
Visual analytics, stochastic event-based simulation, cell bi-
ological models

1. INTRODUCTION
Visual Analytics is a novel multidisciplinary field. In the
last few years different solutions and success stories have
been developed, which aim at supporting the user in obtain-
ing deeper insights of models and data by means of Visual
Analytics [19]. For this, Visual Analytics relies on a broad
set of methods from Statistics, KDD/Data Mining, and In-
formation Visualization. Yet, what is often neglected is the
fact that data does not appear by itself, but is the result
of a data generation, data collection, or measurement pro-
cess. These processes determine which data is gathered how
often and at which level of accuracy – provenance aspects,
which should be included in the analysis but current analysis
methods generally do not support this.

Simulation studies offer the opportunity to consider the data
generation process when presenting and analyzing the simu-
lation results. This is highly desirable as simulation studies
contain many interdependent steps and methods that might
influence the outcome. The modeling and simulation life
cycle comprises many different steps [33] and alone for exe-
cuting in silico simulation experiments, six steps have been
identified [23]: requirement specification, which might
stretch from comparing a single simulation trajectory with
given data to sweeping the parameter space of a model, con-
figuration, which identifies points in the model parame-
ter space that needs to be investigated, execution of the
model, which refers to the algorithm used for calculating
the model, observation of the model, which includes
identifying the crucial part of information to be collected,
analysis of the simulation traces, which might refer to
single or multiple runs, evaluation, which might lead to
new configurations or results to be presented, e.g., for face
validation. Many of those steps are supported by a plethora
of methods which have an impact on subsequent steps and
the overall quality and reliability of the simulation study
and the achieved results [32]. Not without reason, Perrone
et. al. [28] state that “the level of complexity of rigorous
simulation methodology requires more from net-working re-
searchers than they are capable of handling with-out addi-
tional support from software tools.” This observation applies
also to other fields, especially those in which more complex
systems are under study, as it is the case in cell biology.

Cell biological systems are characterized by dynamics that
happen at different temporal and spatial scales. Recent find-
ings emphasize the central role that stochasticity [27] and
space [21] play in inter- and intracellular dynamics. Thus,
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an urgent need exists to take the relay of information within
and between cells into consideration. In fact, space has been
termed the final frontier in the simulation of cell biological
systems [22], a frontier which has been approached from the
direction of both modeling languages (e.g., [5, 17]) and sim-
ulation algorithms (e.g., [9, 16]) over the last years.

Therefore, spatio-temporal visual exploration of models and
simulation processes requires the visualization of huge vol-
umes of multivariate data and their structural dependencies
in space and time. An overview of the aspects of spatio-
temporal Visual Analytics is given in the Visual Analytics
roadmap [19], as well as in [3]. While on one side the visu-
alization of time-dependent data remains a challenging as-
pect [1], on the other side the plotting of simulation data is
an integral part of simulation systems and described in num-
ber of publications, such as [6, 12]. In addition, the visual-
ization of simulation parameter spaces has recently gained
considerable attention in the visualization community, with
a whole session dedicated to it at VisWeek’10 [2, 4, 24, 39].

Visualization techniques exploited by state of the art sim-
ulation tools are typically constrained to presenting results
visually and towards focusing on one particular step of the
Modeling&Simulation life cycle, i.e. the trace analysis. How-
ever, for complex temporal and spatial dynamics, as found,
e.g., in cell biological systems, the usual batch method – run
multiple simulation experiments and then mine the output
for clues [26] and animate the results [7, 29] – though be-
ing valuable is not adequate to address the modeling and
simulation life cycle as a whole.

Consequently, simulation studies in cell biology with their
specific challenges are an excellent application area for Vi-
sual Analytics as they offer opportunities to take the data
generation process into account, and are also heavily in need
for advanced analytical and visual support, due to the dy-
namics operating at different temporal and spatial scales.
Current simulation tools in this area include 2D and 3D
graphical interfaces, e.g., for animating processes and visu-
alizing data, but they primarily focus on representing re-
sults rather than integrating visual methods with the Mod-
eling&Simulation process. In this paper, we aim to take a
first step in this direction by combining stochastic discrete
event-based Modeling&Simulation and visualization in the
spirit of Visual Analytics.

Given the diverse steps involved in simulation studies, plenty
of possibilities for support through Visual Analytics exist.
In the following, we will focus on models, representing the
underlying “blueprint” for the in silico experiment, and two
central steps of in silico experiment – the configuration
of the experiment, referring to the parametrization of the
model, and the trace analysis referring to single or multi-
run simulation data. This is in tune with earlier approaches,
such as [38], which also highlight these three stages as being
crucial to support with visual methods. So, we step through
each of them by presenting a Visual Analytics solution for a
concrete cell biological scenario. This is sensible, as different
scenarios ask for different modeling formalisms, which in
turn require different means of visual analysis:

• models – in this case for biochemical reaction net-
works, which form large complex hypergraph model

structures which are nearly impossible to overview and
investigate without the aid of visualization. In Sec. 2,
we use a table-based visual analysis approach for bipar-
tite graphs, to which we transform the hypergraphs.

• configuration – here we will focus on parallel opti-
mization of large hierarchical models, which can have
100.000’s of components spread across multiple hierar-
chy levels – each of which individually parametrized to
a given initial state. In Sec. 3, we use a space-efficient
point-based layout of the hierarchy to make as much
of the initial parametrization visible as possible.

• trace analysis – in particular with a focus on spatial
distributions, as they are produced by spatial stochas-
tic simulations, e.g., by lattice-based approaches. In
Sec. 4, we make use of an animated volume visual-
ization that allows to trace the simulation trajectory
across time and space in coordinated multiple views.

These “partial” solutions focusing on the individual stages of
in silico experiments illuminate the opportunities and chal-
lenges each of these steps provide for Visual Analytics and
are a basis towards a comprehensive and integrated support
of simulation studies by Visual Analytics. While the tools
realizing these solutions have been individually presented be-
fore, this paper brings them together to illustrate the impor-
tance of visual support for the entire Modeling&Simulation
process – either for individual steps of this process or for
the process as a whole. For the latter, a first approach to
integrate all three steps is shown in Sec. 5 for stochastic, non-
spatial simulation studies of cell biological systems. It basi-
cally considers simulation as the “Analysis First” step of the
Visual Analytics mantra (analyse first, show the important,
zoom, filter and analyse further, details on demand) [20]
and thus provides a first example of Visual Analytics for
stochastic event-based simulation as a whole. All presented
visual analysis solutions tie in with the JAva-based Multi-
purpose Environment for Simulation JAMES II [10], avail-
able at http://www.jamesii.org.

The paper is concluded by a short summary and ideas for
future work in Sec. 6.

2. VISUAL ANALYTICS FOR MODELS
As the underlying model plays an important role for the
suitability and performance of simulation algorithms, their
visual analysis is worthwhile before even a single simulation
run is conducted. The challenge lies here in the size and
complexity of cell biological models. The reason for this is
the abundance of factors possibly influencing cell biological
processes – from the estimated 25,000 genes of the human
genome to the 100,000 different forms of the human pro-
teome all the way to the 4,000 biochemical reactions of the
human reactome, which are distributed across 800 different
functional pathways. Methods for their visual representa-
tion and analysis play a key role in current research, as
visual tools are effective means of curating models of cell
biological processes and exploring their interrelations [25].

Especially these interrelations, the reactome, which concep-
tually forms a large hypergraph with the chemical com-
pounds (called species) as nodes and the reactions as di-
rected hyperedges connecting a number of reactants and
products, poses a challenge to its interactive exploration.

http://www.jamesii.org


Figure 1: The table-based visualization approach [35] showing a part of the human reactome model. The
species are listed in the left table with the cell compartments they reside in shown in the far right column,
the reaction are listed in the right table. The links in between both tables indicate which species participate
in which reaction. The arcs at both sides are shortcuts for a faster traversal of the network without the need
to go back and forth between both tables to follow up on dependencies. Different automated selections have
been made in this example, using a script-based selection mechanism.

These collections of biochemical reactions are often modeled
in a rule-based manner [11], capturing not only the structure
of the reactome, but also the reaction kinetics. The resulting
models can be stored in specific exchange formats, such as
the Systems Biology Markup Language (SBML).

In order to provide a visualization with a lot of possibilities
for interactive analysis, we developed a table-based repre-
sentation for such models of reaction networks [35]. In this
table-based representation attributes are used for represent-
ing discrete space, by assigning species to reside in discrete
compartments, e.g., outside of the cell, within the cytosol,
within the nucleus, etc. (see also [30]).

It starts out with computing a graph-theoretical transforma-
tion, the so-called König’s Transformation [36], which con-
verts the hypergraph structure into a bipartite graph struc-
ture. This bipartite graph contains the species as one node
set, with their compartment encoded as a node attribute,
the reactions as another node set, and the edges between
both node sets indicate which species partake in which reac-
tions. An overview of the table-based visualization showing
both node sets and the edges in between is given in Fig. 1.

The benefits of this approach are apparent: tables scale up to
100,000 entries [8], they do not clutter, they are interactively

re-orderable, and they can be used with all the enhance-
ments that have been developed for tables, e.g., the table
lens and its extensions [18]. The integrated exploration of
both tables is supported by edge-based traveling techniques,
which allow to investigate biochemical dependencies in de-
tail even if they are scattered across larger tables. Additional
analytical support is given by a script-based selection mech-
anism, which is able to automatically generate follow-up se-
lections by carrying out a script that traverses the network
according to the given script logic. Process knowledge about
analytical procedures on reaction networks, such as depen-
dency analysis, can thus be encoded in such a script, carried
out whenever needed with a single mouse click, and even
passed on for use by other researchers as well. This way,
all aspects of Visual Analytics are naturally supported: the
visualization with the table-based representation, the inter-
active analysis through a multitude of interaction facilities,
and the computational analysis via script-based analytical
methods focusing mainly on the model topology [35].

3. VISUAL ANALYTICS FOR CONFIGURA-
TIONS

The last section dealt with a flat model structure. Modeling
of spatial dynamics is realized via attributes, e.g., to describe
β − catenin shuttling from the cytosol to the nucleus, the
value of the attribute denoting its location would change



Figure 2: The point-based tree layout, as it is integrated in the James II simulation framework for comparative
analysis of different configurations of hierarchical models. The initial states are color-coded on the model
structure, showing different cells and within the cells multiple compartments and finally species. As low
initial concentrations are colored in green and high concentrations are colored in red (see color scale at the
left), differences between the configurations become instantly visible.

from cytosol to nucleus. Discrete localization of a species can
also be modeled via an explicit hierarchical model structure
which breaks the cell down in its compartments on the first
level and then subsequently into subcompartments to which
the species are finally assigned as leaves. In this case, a table
cannot represent the more complex model structure.

To represent such tree-structured models and the configura-
tions based on them, we propose to use a point-based frac-
tal layout [34], which distributes the hierarchically ordered
species nicely in the available drawing area. At the same
time, it maintains their compartmentalization by assigning
each branch of the model a different region of the layout. Ini-
tial concentrations, i.e. the configurations, defined on top of
such a model are then color-coded at each point, with red
standing for high initial values and green for low values.

Because the layout is space-filling it scales up to even large
models with hundreds of thousands of objects at the leaf-
level. This allows for an overview of a configuration in which
a maximum number of individual species (leaves) and their
assigned initial concentrations is visible in minimal required
space. A high degree of space-efficiency is required, as of-
ten a number of configurations are generated to cover the
parameter space of a model as best as possible.

Fig. 2 shows the point-based layout for configurations, as it is
integrated in the JAMES II framework. A number of differ-
ent configurations for parallel optimization that have been
generated for being executed concurrently [13] are shown
side by side to allow for their comparative visual analysis.

The depicted model is used to describe the processes of endo-
cytosis and exocytosis, which engulf molecules into the cell
or expel them from it, respectively, in case these molecules
are too big to pass the cell membrane. The configurations
thus differ in the initial concentrations of such molecules
(species) in the different outside and inside of each cell.

This rather attribute-centric view of a configuration is com-
plemented with a set of interactive features that are specif-
ically designed to illuminate the structural aspects as well
– e.g., interactions to investigate a leaf’s path to the root
node, thus enumerating the (sub-)compartments it is part
of. Along such a leaf-to-root path, it is possible to show
for example how much the concentration of a single species
contributes to the solution of the compartments it is con-
tained in. Analytical methods, such as statistical tests, are
available through JAMES II, so that the proper distribution
of initial values in a single configuration and across a set of
configurations can be tested. Together, the point-based vi-



sualization of model structure and configuration, the visual
analysis by means of interactive exploration of the model
topology, and the computational analysis of the configura-
tions’ distribution across the parameter space yield a ver-
satile Visual Analytics approach for this step of the Model-
ing&Simulation process.

4. VISUAL ANALYTICS OF SIMULATION
TRACES

Simulating cell biological models and the subsequent visual
analysis of the resulting simulation data poses a number of
challenges. One of the main challenges stems again from
the spatial aspect, which results in species not being equally
distributed within the cell, but concentrated differently not
only between compartments, but even within compartments.

The simulation of cell biological processes hence accounts
for this by using either particle-based simulation methods
with a distinct position for each particle, or lattice-based
methods with different square regions being inhabited by
a different number of species. Thus, the spatial aspect of
an inhomogeneous molecule distribution is represented not
by discretizing the volume into explicit compartments as
before, but by an implicit grid-like mesh. This mesh, or
lattice, forms the basis for a series of stochastic approaches
that account not only for reactions within a voxel but also
for diffusion events between neighbored ones [9, 15, 16, 31]

As a cell is not a flat object, but stretches out in all three
dimensions, volumetric visualization is needed to represent
the three-dimensional space in which the simulation runs.
Also, this level adds the temporal dimension to the data, as
not simply individual states of the simulation are given, but
entire simulation traces across a high-dimensional parame-
ter space. Hence the visualization has to account for time,
space, and high-dimensional data at once.

In the following, we are targeting the visualization of lattice-
based simulation traces, which indicate for each modeled
species at each time point of the simulation how many par-
ticles are contained in each voxel of a three-dimensional lat-
tice. This is a huge amount of data, which can only be
visually analyzed at interactive frame rates for selected sub-
volumes of about 100 × 100 × 100 voxels in size. Moreover,
the simulation data does not only contain information about
the states (the number of particles) at each time point, but
also about the events which lead to this state. In our cell
biological case, these events can be either biochemical reac-
tions, which transform some species into other species, thus
changing their particle count, or they can be diffusions of
particles from one voxel into a neighboring voxel, which also
changes their count for the participating voxels.

The VioNeS toolkit [37] used for the visual analysis of this
large volume of data utilizes multiple coordinated views to
cope with the many individual aspects of the data, such as
the spatial distribution of selected species and the events
occurring at each time point. The different views are shown
and described in Fig. 3. For visualizing the three-dimensional
lattice and the distribution of the species within it, it relies
on direct volume rendering, which is GPU-accelerated to
guarantee interactive frame rates when animating the sim-
ulation trace or adjusting the time-slider manually. To rep-

resent the temporal aspect, a mapping from time onto time
is used, meaning that only one time point is shown, but it
can be manually selected from a time line or an animation
can automatically move through the series of time points. It
is coupled with the James II simulation framework, which
thus could be used for analytical operations for time series
analysis, e.g., to perform a steady state analysis. Apart
from that, especially the analysis of cause and effect are
supported by the multiple views showing the events (cause)
and the subsequent state (effect) side by side. Hence, this
Visual Analytics approach is able to yield not only informa-
tion about how the states change from one time point to the
next, but also more importantly knowledge about why they
do so.

5. VISUAL ANALYTICS FOR SIMULA-
TION: AN INTEGRATED APPROACH

The ideal case from a Visual Analytics point of view is when
data on different steps is available, e.g., about the model, the
configuration, and traces from single or multiple runs. As
this is not always possible, it is important that the individ-
ual approaches and tools mentioned in the previous sections
exist and can be used in their own right. Yet, if indeed
all of these different information from the different steps of
the Modeling&Simulation workflow come together, it is not
only challenging to manage the large volumes of heteroge-
neous data (a graph structure describing the model, a set of
node attributes assigned with initial states/values, single- or
multi-run data for each such configuration containing data
with spatio-temporal dependencies), but also to organize it
visually to still allow for an intuitive analysis.

In this integrated case, the novel idea is that the visual anal-
ysis does not start with the simulation data, but that the
process of simulation itself is a means of analysis. This is
also in line with recent developments in modeling and simu-
lation which exploit methods from workflow systems to guide
users and document the different steps in modeling and sim-
ulation [32].

It generates as much additional data through repeated sto-
chastic simulation as is needed to get a meaningful analysis
result of statistical significance. This can include further
configurations to cover so far unexplored spots of the pa-
rameter space, as well as further replications to gain a better
understanding of observed trends in the data.

The Mosan framework [38, 14], which we employed for our
analysis, integrates the averaged outcome of the multi-run
simulation in an overview, thus “Showing the important”,
which is depicted in a node-link graph view in Fig. 4. It com-
municates the underlying model and its structure through
the graph layout, which again encodes a chemical reaction
network with the nodes being the reactants and products
and the hyperedges (the dark blue shapes with arrowheads
indicating the directionality of the hyperedge) represent the
reactions. The major trends of the evolution of the species’
concentrations as they were revealed by the simulation are
embedded as iconographic representations within each node,
so that upward and downward trends are clearly visible al-
ready from this overview. The issue of multi-scale data is
countered by different icon backgrounds which indicate the
order of magnitude for each of the shown concentrations.



Figure 3: The VioNeS toolkit [37] showing a snapshot of a simulation run where the particles are already
well-stirred and rather homogeneously distributed within the three-dimensional lattice, as it can be seen in
the overview on the left. The recent reactions and diffusion events that have lead to this state are shown
in the “event view” at the lower right. Details can be investigated on demand in the detail view at the top
right, where a cut through the lattice is shown in the form of a two-dimensional grid. The time slider at the
bottom can be used to move back and forth through the simulation trace, in which case the different views
are adapted to reflect states and events of the currently chosen time point.

From this compact yet comprehensive overview “Details on
demand” can then be brought up in linked, adjoint views
which allow the user to investigate individual species and
individual simulation runs thereof. Alternatively, the exper-
iment view can also be subdivided to show simulation runs
for multiple experiments side by side for a comparative vi-
sual analysis. Time points in focus as well as value ranges of
interest for a species’ concentration can be adjusted, which
in turn filters the large amounts of data to the instances
meeting these criteria – e.g., only those simulation runs, in
which the concentration of a certain species exceeds a given
threshold. This is aided by integrated analytical tools, e.g.,
for clustering time series in an “Analyse further” step.

The integration of different steps within one visual frame-
work permits the user to move back and forth between the
data from the different stages of the in-silico experimen-
tation process, thereby allowing a better understanding of
them and adding to the quality of simulation studies. Es-
pecially more complex analysis questions can be answered
with such a combined visual access to all data, e.g., find-
ing experiments that contain simulation runs that share a
rarely observed trend. To realize such a fluent interactive

back and forth between visualizations of data and analy-
sis results from all stages of the experimentation is hardly
possible with a collection of individual toolkits.

6. CONCLUSION
In this paper we identified the importance and challenge of
taking the data generating process into account for Visual
Analytics. Especially in the case where the data generation
is done by simulation, the opportunity to gather additional
data about the generation of the resulting data is given.
Yet, how to incorporate this data derived from all stages
of the in-silico experiment process with the Visual Analyt-
ics mantra is not straightforward, as it depends heavily on
the requirements and available tools of the application sce-
nario at hand. Hence, we have highlighted four different
exemplary solutions for such an integration in the Mod-
eling&Simulation life cycle for cell biological applications.
These have added visual analysis support to help exploring
the model, the configuration of the simulation experiment,
and the simulation traces produced, as well as to combine
all three of them, while at the same time tapping into the
power of the analytical methods provided by the simulation
and the statistical tools.



Figure 4: The integrated visual analysis of model, experiment setup, and multi-run simulation data in the
Mosan framework [38, 14]. It combines three steps in its overview shown at the top left, where the averaged
simulation data from multiple runs are embedded as icons in the model structure, which is in this case not as
complex, because it only models a single pathway. The remaining views are used for in-depth investigation
into individual species, single-run, and multi-run data.

The presented approaches cover only one direction of anal-
ysis – the visual analysis of data generated by the simula-
tion process. The feedback towards the simulation, which
would allow its interactive steering from within the visu-
alization based on the already produced data, remains an
open research question. However, it is this reverse direc-
tion, which would finally tightly intertwine Visual Analytics
and the Modeling&Simulation life cycle, as it permits to use
simulation not only for the“Analysis First” step, but also for
repeated “Analyse Further” steps. This could mean, e.g., to
exchange simulators to generate more precise outcomes for
a region of interest, that has been identified in an overview
originally produced from data generated by a first, faster
running, approximative simulation algorithm. Hence, this is
an important aim, which we will pursue in future work.

A first step in this direction is to also take into account those
stages of the Modeling&Simulation workflow which were so
far skipped, such as, the requirement specification or the ob-
servation of the model. These stages govern which aspects of
a real system are actually modeled and then observed during
simulation. They are important to investigate and support
visually especially when the systems under study get even
larger and more complex. Hence they are integral for ex-
tending the presented concepts and tools into a seamless sup-
port for an interactive and dynamic Modeling&Simulation
process by means of Visual Analytics.
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