
Tailorable Sampling for Progressive Visual Analytics

Marius Hogräfer and Hans-Jörg Schulz

Linearization

Dataset Linearized Data Subdivided Data Progressive Chunks

Subdivision Selection

Structure[Item] OrderedList[Item] Set[OrderedList[Item]] OrderedList[Set[Item]]

Fig. 1: Enabling tailorable PVA-sampling using a pipeline that structures the sampling process into three steps: linearization, subdivision,
and selection. The steps are depicted here along the data they operate on: The linearization takes in the input data structure and
transforms it into linear structure, which is then subdivided into bins in the subdivision step. The last step then produces the chunks
forwarded into the PVA process by progressively selecting appropriate items from each bin. Different linearization, subdivision, and
selection strategies can be combined to progressively sample a given dataset in various ways.

Abstract— Progressive visual analytics (PVA) allows analysts to maintain their flow during otherwise long-running computations by
producing early, incomplete results that refine over time, for example, by running the computation over smaller partitions of the data.
These partitions are created using sampling, whose goal it isto draw samples of the dataset such that the progressive visualization
becomes as useful as possible as soon as possible. What makes the visualization useful depends on the analysis task and, accordingly,
some task-specific sampling methods have been proposed for PVA to address this need. However, as analysts see more and more of
their data during the progression, the analysis task at hand often changes, which means that analysts need to restart the computation
to switch the sampling method, causing them to lose their analysis flow. This poses a clear limitation to the proposed benefits of
PVA. Hence, we propose a pipeline for PVA-sampling that allows tailoring the data partitioning to analysis scenarios by switching out
modules in a way that does not require restarting the analysis. To that end, we characterize the problem of PVA-sampling, formalize the
pipeline in terms of data structures, discuss on-the-fly tailoring, and present additional examples demonstrating its usefulness.

Index Terms—Progressive Visual Analytics, Visual Analytics, Sampling

1 INTRODUCTION

Visual Analytics (VA) aims to combine the computational power of
modern hardware with the reasoning skills of human analysts for data
analysis through visualization, with analysts configuring the analytic
computation based on observations of the resulting visualization. To be
effective, VA requires that updates after an interaction appear within
interactive response rates of around 1s, as analysts otherwise lose their
analysis “flow” [15]. One challenge to interactivity in VA is the in-
creasing size of datasets, which slows down computation times, thus
making VA ineffective. To nevertheless bring the benefits of interactive
visual analysis to large datasets, one approach is to split the dataset into
smaller partitions and to then run the analysis on those smaller parti-
tions, showing partial results to analysts. This so-called Progressive
Visual Analytics (PVA) approach [37] puts analysts “back into the loop”
of long-running computations, allowing them to regain the flow. Bene-
fits of this approach have, among others, been highlighted by Zgraggen
et al. [42] who show users of progressive systems to clearly outper-
form those using traditional “blocking” systems. Beyond early insights,
additional benefits of PVA include the interactive parametrization of
long-running computations by setting parameters on the fly, the ability
to steer computations towards data subspaces of interest, early termina-
tion (stopping a long-running computation early on), and the ability to
observe how otherwise intransparent “black box” computations evolve
(see the detailed review by Angelini et al. [4]).

Nonetheless, for PVA to be beneficial, the partial results shown to
users need to reflect the final result including any observable patterns

• Marius Hogräfer and Hans-Jörg Schulz are with Aarhus University. E-mail:
{mhograefer,hjschulz}@cs.au.dk

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

therein. The goal for partitioning the data in PVA (which we refer to as
PVA-sampling) is thus to make the visualization as useful as possible as
early as possible. However, we identify two drawbacks in the current
approach to partition the data, which limit the effectiveness of PVA.

First, the notion of usefulness in the sampling goal stated above
highlights a relation to the analysis task: What data should be in a
“useful” sample depends on what analysts are going to do with it. For
example, we can consider the synthetic multivariate dataset depicted
in Figure 2, containing two normally distributed numeric attributes
(encoded as x and y positions) and a Boolean attribute (which is encoded
as color). Depending on what task an analyst wants to perform on that
data, there are different ways for how to make the sampling of that data
most useful: For example, to gain an initial overview of the data, it
makes sense to draw a uniform sample that helps depict the distribution
of all three attributes. In the sample depicted in subfigure (1), the
densely populated region in the center of the plot stands out. On the
other hand, to analyze the local distribution of the Boolean attribute,
it is more useful to sample the data along a regular grid, such that the
density in each grid cell is even throughout the sample, which puts
the focus on the Boolean attribute. In subfigure (2), we clearly notice
the sharp circular border between the two attribute classes. Another
task could involve training a classifier on the Boolean attribute. Then,
a stratified sample is more useful, such that both attribute values are
evenly represented in the training data, as depicted in subfigure (3).
Lastly, analysts may also focus their analysis exclusively on one facet
of the Boolean attribute, prioritizing these items in the sample as in
subfigure (4). The challenge in all this is that the current state of the art
sampling mechanism in PVA remains random sampling, but, as we saw
above, there are many cases where this approach impedes the efficiency
of PVA, as analysts would need to wait before the results computed
over random samples become useful to them. While approaches have
been proposed to provide scenario-specific sampling, these generally
do not translate well beyond the scope they were designed for, so more
tailorable solutions are needed.

4k

1k

0

Uniform Full dataset1 Stratified3 Focused4Equal-density2 item
 d

en
sity

Fig. 2: Depicted is a synthetic dataset containing 100k items with two numeric attributes of normal distribution (encoded along the x and y axes) and
a Boolean attribute. On the right, the distribution of the x and y attributes is depicted in a binned scatterplot. Four samples (||sample||= 10k) are
drawn from this dataset and depicted in subfigures (1) to (4), each of which is tailored to fit a specific analysis task. The Boolean attribute is encoded
as the color. Each sample brings out different aspects of the dataset, showing the importance for tailored sampling in PVA.

In addition to the lack of tailorability and in contrast to sampling for
regular VA tasks, analysts in PVA can dynamically change the course of
their analysis mid-computation, accounting for insights gathered from
the partial visualizations rather than restarting the analysis. This means
that both the data type and the task may change. For instance, an analyst
may begin by passively observing the progression over the multivariate
dataset from our previous example to get a spatial overview of their
dataset, and then move on to analyze items in the center, focusing on
one value of the Boolean attribute. In non-progressive VA, making this
switch is not an issue, as analysts can reconfigure and rerun the entire
analysis whenever their task changes. However, in PVA, the analysis
is an ongoing process and, thus, configurations need to take place on-
the-fly. This is a challenge for the sampling, as the two tasks in the
example above require completely different data: For supporting the
overview task, samples should evenly represent the spatial distribution
to bring out general patterns in the data, while for the second task,
samples should focus on a specific region in the visualization. This
shows that the traditional “fire-and-forget” approach to sampling, where
the sampling is configured once before starting the analysis, no longer
applies in PVA, exactly because analysts can now interact with that
analysis. Yet, existing sampling techniques are generally tailored to
specific tasks on specific data types. Thus, when task or data change like
in the example above, analysts need to restart to change to a dedicated
sampling technique, breaking exactly that flow that the progressive
analysis was supposed to ensure in the first place. Thus, a new approach
is needed that fits the dynamic demands of PVA.

To this end, we identify two main challenges for the effectiveness of
PVA: (1) Current sampling algorithms cannot be tailored to the task,
requiring dedicated sampling techniques whenever the standard method
of random sampling falls short, and (2) the sampling cannot be adjusted
while the computation is ongoing, whenever analysts change their task
based on new insights, which reduces the effectiveness of PVA. In this
paper, we address these challenges by introducing a new approach to
PVA-sampling, which modularizes the sampling process and thereby
allows tailoring it to the requirements of tasks and dataset in a way such
that this tailoring can also take place without stopping the computation.

This paper expands on our 2022 EuroVA workshop paper [21],
in which we first proposed the idea of a sampling pipeline for PVA.
Concretely, this extension consists of the following main contributions:

• We added a characterization of PVA-sampling along its unique
challenges that clearly distinguishes it from regular sampling.

• We added a formalization of the pipeline by defining its steps as
transformations between data structures along the operator design
pattern for visualization.

• We added dynamic tailorability as an additional requirement for
PVA-sampling and show how the pipeline can be used to this end.

• We added a series of new examples on a real-world dataset, show-
ing how the pipeline enables tailored sampling, but also how it
can be used to recreate existing sampling approaches.

The remainder of this paper is structured as follows. First, we
characterize PVA-sampling by outlining its unique requirements and
distinguish it from related sampling approaches. Then, we introduce
the modular sampling pipeline using a running example to demonstrate

the effect that each step has on the final sample. Afterwards, we show
how the pipeline allows for on-the-fly tailoring of the sampling and
discuss additional benefits and limitations.

2 CHARACTERIZING PVA-SAMPLING

PVA supplies analysts with early, partial visualizations that complete
over time to bring the benefits of an interactive visual analysis to long-
running computations. These partial visualizations can, for example,
be produced by showing intermediate results from computations that
iterate over the entire dataset, such as k-means clustering. The second
approach for creating partial visualizations in PVA – which we address
here – is to partition the data into chunks using sampling and to then
run the full computation over these chunks. Sampling for PVA (which
we refer to as PVA-sampling in this paper) is, however, quite differ-
ent from regular sampling. This is because in PVA, sampling is an
ongoing process that runs in parallel to the visual-interactive analysis,
while regular, non-progressive sampling is an operation carried out
once before the analysis. As a result, regular sampling is a binary
selection that determines if an item appears in the sample and thus will
become part of the analysis, whereas PVA-sampling is a ranking of
data that determines when a data item becomes part of the analysis – ef-
fectively prioritizing some data items to be pushed through the analysis
pipeline before others (see Figure 3). This seemingly simple conceptual
difference yields three unique requirements for a useful PVA-sample:

The first requirement regards the frequency at which new samples
are drawn. PVA-sampling needs to continuously produce samples
throughout the analysis, such that new updates to the visualization
arrive within human latency limits. Achieving these update rates is one
of the main motivations for using PVA, as it allows analysts to maintain
their analytic flow even during long-running computations [15]. This
stands in contrast to regular sampling, where a single sample is drawn
before the analysis, meaning that the human latency limits are not a
consideration for the sampling. A side effect of this requirement is that
PVA-sampling sometimes produces samples that are too small to be

Regular sampling:

PVA-sampling:A

B

Interactive
Visual

Analysis

Fig. 3: Demonstrating the difference between PVA-sampling and regular
sampling: Regular sampling (B) and the analysis of the data sample
happen consecutively: The sample is drawn, and then analyzed. Thus,
regular sampling defines for each item, whether it is part of the analysis
or not. In contrast, PVA-sampling (A) is a continuous process taking
place in parallel to – and potentially also influenced by – the analysis.
It draws new samples (so-called chunks) from the full dataset up until
the user stops this process or all data has been sampled. Thus, PVA-
sampling defines for each item, when it becomes available to be shown
and analyzed.

statistically representative. It is because the sampling is a process that
these samples nevertheless become useful to analysts eventually, once
enough data has been sampled.

The second requirement is that priorities are given to different parts
of the data as to what to sample first and last. PVA-sampling defines
for all items, when they are selected, and so all data is eventually part
of the analysis – unless, of course, analysts terminate the computation
beforehand. Regular sampling for VA, on the other hand, does not
prioritize the data, but instead it defines for all items if they are selected
as part of the sample. All items that are not part of the sample are,
therefore, also not part of the analysis. The way in which PVA-sampling
prioritizes certain data items depends on what makes the visualization
useful as soon as possible (as outlined in the Introduction).

The third requirement for PVA-sampling is the flexibility of adjusting
the sampling process while it runs, in order to sync it with the visual
analytic process that is concurrently being carried out: as one process
changes, so must the other. One side of this dependency is that sampling
depends on the analysis, in that the task characterizes what items are
useful. But it also means that the analysis is influenced by the sampling,
as analysts gain new insights from the partial results in the samples,
which again influences their task. For PVA-sampling to be flexible,
this means that the process can be dynamically adjusted (i.e., without
restarting) to tailor the data prioritization to changing tasks. This is
not a requirement for regular sampling in VA: The sampling terminates
before the analysis. Thus, in order to tailor it to the task, the sampling
step must be rerun to create a more fitting sample.

3 RELATED WORK

3.1 Sampling for non-progressive VA

In section 2, we distinguished PVA-sampling from regular sampling for
PVA, in that regular sampling is an operation that concludes before the
interactive visual analysis is run. Regular sampling for VA is commonly
used to reduce the complexity of large datasets in cases where approxi-
mate results are as useful as seeing the full picture [23]. This can be
desirable for many reasons, including reduction of computation time
for complex analyses [23] and also clutter reduction in view space [14].
In contrast to PVA-sampling, only one “final” sample is used to conduct
the analysis. Therefore, it is generally important that this sample is
statistically representative of the dataset, so that the insights gathered
from it also apply to the rest of the data. Olken and Rotem provided
an early survey of sampling methods in 1990 [27] and many more
sampling algorithms have been proposed since then. To the best of
our knowledge, what they have in common, though, is that tailorability
beyond a particular analysis scenario is generally not considered.

Another related method is active learning [36], where the goal is to
find a “best” training set, i.e., a subset of the data for which a model
performs best, even when compared to training it on all data. Rather
than selecting “clear-cut” items far away from the decision boundary
that clearly belong to a class, active learning aims to sample borderline
items for which the prediction certainty is low. The goal is to sharpen
the decision boundary around those edge cases, as those have a stronger
impact on its performance. Active learning thus tries to make a model
as accurate as possible as early as possible.

There are other examples of sampling processes, where the analysis
and the sampling are iterative, in that the sampling is adjusted based
on insights gained from the sample, and vice versa. One method
similar – not only in name – to PVA-sampling is so-called progressive
sampling, where an increasingly larger sample is drawn until a quality
metric computed with that sample is reached or until a metric no longer
improves. Usually, progressive sampling is used to reduce model
training times by determining the smallest necessary training sample
from a large dataset, beyond which the prediction accuracy no longer
(noticeably) improves [32]. Starting from an appropriate initial sample
size [18], the model is fully retrained on a progressively larger sample.
Progressive sampling shares some similarities with PVA-sampling in
that it aims to make a model as useful as possible as soon as possible.

In contrast to PVA-sampling, though, neither progressive sampling
nor active learning are intended to eventually sample the entire dataset,

and neither is intended to produce samples at interactive rates required
for PVA.

Another approach using sampling as a process is streaming sampling,
where the goal is to run an analysis over a potentially infinite data
stream. One of the major challenges here is to maintain the “ground
truth” data the sample is drawn from. For example, the well-established
reservoir sampling method [39] produces a uniform sample over all
data that has been processed so far while only requiring to keep a
sample in memory. A more recent example is the approach by Losing
et al. [25], who use clustering to summarize the data stream to a set of
representatives. Similar to PVA-sampling, sampling of data streams is
a continuous process, yet analysts may not end up seeing all data as
only some new elements are being selected for the sample.

3.2 Sampling for PVA
Prior work has investigated some aspects of PVA-sampling as charac-
terized in section 2. The standard sampling approach in PVA literature
is arguably random sampling without replacement [5, 22, 24, 38, 42],
as PVA is often proposed as an interactive method for the overview
task. Tailored approaches have also been proposed. Most recently,
Chen et al. presented sampling for progressive scatterplots [9] using
three criteria to define a useful sample: preserve temporal coherence
between successive samples, preserve the relative density and outliers,
and achieve sufficient efficiency to retrieve samples within the latency
constraints of PVA. Another approach is the work by Turkay et al., who
introduced a method for adapting the size of the sample dynamically,
such that the visualization is updated within a specified interval [38]. A
common consideration for PVA-sampling is to reduce the error in the
partial visualization. One example is the work by Rahman et al. who
present an algorithm that prioritizes salient features in treemaps and
line charts [33], or Sample+Seek [13] and BlinkDB [2] – two sampling
approaches that reduce and bound errors and response times of certain
query types on large datasets. Another example is the selective wander
join method proposed by Procopio et al. [31] that addresses the chal-
lenges of sampling for queries containing data joins that also filter the
data, achieving interactive sampling speeds in these cases.

The diversity of these techniques illustrates the benefit of (and need
for) having tailored sampling algorithms, yet, it also shows that existing
sampling techniques use dedicated, custom implementations as reusing
parts of approaches to transfer them to other scenarios is generally not
considered. Moreover, exchanging the sampling method mid-analysis
is generally not discussed. This is why we propose a sampling pipeline
for PVA, which modularizes the sampling process, allowing to tailor it
to the requirements of an ongoing analysis, while increasing reusability
of parts of the sampling process across scenarios.

4 A PIPELINE FOR TAILORABLE PVA-SAMPLING

Here, we introduce our tailorable sampling approach for PVA using
a pipeline. We first derive the steps of the pipeline from input and
output structures and then discuss each step in detail, demonstrating
their impact on the sampling with a running example.

4.1 Modularizing PVA-sampling along data structures
Pipelines are widely used in visualization to make complex processes
modular and tailorable, for instance, the visualization pipeline [7], the
data state reference model [10], or the Operator Pattern formulated
by Heer and Agrawala [19]. Our pipeline draws from these ideas to
enable “flexible and reconfigurable” output [19]. Concretely, we apply
the Operator Pattern to PVA-sampling in that each step of the pipeline
is a module “that performs a specific processing action, updating the
contents of the [sample] in accordance with a data state model” [19].
Each step of the pipeline applies a transformation on the input dataset
analysts are working with, transforming it to a specific output structure
(i.e., the data state model in the above citation), finally leading to a
series of data chunks. In relying on the operator pattern, we can make
the complex PVA-sampling process tailorable. It also allows us to rep-
resent transformations of different complexity, as well as intermediary
operations that operate within one step (i.e., data state). Tailoring the
sampling then means modifying these transformations used along the

Full Dataset Sample using base configuration

cardinality maximumshuffle

trip distance (in mi)
0

1.0
0.8
0.6
0.4
0.2

0

count (10)7

5 10 15 20 25 30
trip distance (in mi)

0 10 20 30 40
0

10
20
30
40
50
60

Fig. 4: Left: Distribution of the trip distance attribute in the full dataset
used in the running example, showing a clear spike in short distance taxi
rides. Right: The distribution of the same attribute in a sample produced
with the base pipeline (||sample||= 10k), showing a noticeable shift in the
distribution towards longer trip distances.

pipeline, and because transformations conform to the same input and
output structure, we increase reusability between scenarios.

From a high-level perspective, PVA-sampling generally transforms
the input dataset into ordered chunks. These chunks are then forwarded
to the PVA process, i.e., sampling is generally positioned ahead of
the analytical processing step in the data state reference model [24].
We can describe that input dataset as an arbitrary structure defined
over a set of items Structure[Item]. We purposefully do not prescribe
a particular data type like table or graph here to keep the sampling
pipeline independent from them, and we also keep the structure of
Item arbitrary for the same purpose. On the other end of the process,
the chunks produced by the sampling are a list of subsets of the input
dataset OrderedList[Set[Item]]. These chunks – that is, each Set[Item]
– are disjoint and for every item in the dataset, the sampling assigns a
position in exactly one chunk. A PVA-sampling method is a function
that transforms data from this input to that output structure, and the
sampling pipeline P must therefore conform to the following high-level
structure:

P : Structure[Item]→ OrderedList[Set[Item]]

In order to make the complex, monolithic transformation P tailorable,
we modularize it into three steps: linearization, subdivision, and selec-
tion. In the first step, the data is put into linear order, which is then
subdivided into bins, from which the chunks are then assembled in the
last step, selecting the most appropriate item(s) from each bin. The
data structures and steps are summarized in Fig. 1.

Running Example: We introduce each step of the pipeline using
a running example, demonstrating the effect of different operators at
a particular step on the final sample. Concretely, we sample the 2018
Yellow Taxi trip dataset1 of taxi rides in New York City. This dataset
contains around 112 Million items, each representing a taxi ride along
numeric (e.g., trip distance), categorical (e.g., pickup and dropoff zone
codes), and temporal (e.g., pickup and dropoff time) attributes. For
illustrative purposes, we enriched this dataset with geospatial attributes
for pickup and dropoff locations, by generating random locations in the
polygons belonging to each zone code. Its size makes this dataset a clear
candidate for a progressive analysis, and along its diverse attributes
there are many interesting patterns to explore, allowing us to illustrate
tailorable sampling. On that data, we use the following “base” pipeline
as a running example: random linearization → cardinality subdivision
→ maximum selection. The linearization strategy puts the data in
random order, the subdivision splits it up into bins of equal size, and
the maximum strategy selects taxi rides with the highest values along
the trip distance attribute. his pipeline yields an overview of long
taxi rides in the data already from the first chunk before filling in
data on shorter taxi rides coming in later chunks. Thus, this pipeline
supports analysts unfamiliar with the dataset, who are interested in
quickly developing an idea for what characterizes such long taxi rides
(in contrast to prioritizing “the longest”), for example, in terms of their
spatial distribution. The ground truth distribution (for practicality, we
use the first 11M lines, i.e., 10%, of the data) as well as the distribution
yielded by the base pipeline are depicted in Figure 4. In the examples,

1https://data.cityofnewyork.us/Traasportation/
2018-Yellow-Taxi-Trip-Data/t29m-gskq

Random shuffle Numeric sort Z-order

Fig. 5: Three examples for linearizing the same dataset: Random shuf-
fling, sorting by a numeric attribute, and sorting spatially in z-order.

we show how to further tailor the sampling by making adjustments to
this base setup at every step. Specifically, we demonstrate the impact
on the distribution inside the first sample of 10k items using a particular
pipeline and report the runtime for each operator.

To this end, we implemented the pipeline as a proof-of-concept
in Python 3.9, using numpy (version 1.22.2)2 and pymorton (version
1.0.5)3. Based on this implementation, for each strategy we also re-
port its processing times computed on standard laptop hardware (intel
core i7-8550U with 1.6−3.4GHz on 16GB of RAM) to indicate their
impact on the analysis. The code of our implementation, the data pre-
processing we applied, as well as notebooks for reproducing the figures
included in this section can be found on Github4.

4.2 Linearization: Putting the data in order

In the first step, we linearize the data into the standardized structure
OrderedList[Item]. This is necessary, as the data type influences the
way it can be processed (i.e., a graph dataset needs to be treated differ-
ently than tabular data). Thus, by harmonizing the data into the linear
list structure at the first step, we allow the rest of the pipeline to be
largely independent of the input data type, while also increasing the
reusability and flexibility of downstream operators.

How to appropriately linearize the dataset depends on the analysis
scenario. The harmonization aspect is mostly influenced by the data
structure. Because of the simplicity of linear lists, there often exist
(multiple) linearization algorithms for a particular dataset, which means
that as long as we can find a fitting linearization algorithm for our
data, our pipeline supports it. Hierarchical data, for example, can be
linearized using traversal strategies like depth-first search, geospatial
data can be linearized using space-filling curves like the Hilbert [12]
or z-order curve [44], and graphs can be linearized along their shortest
path using a traveling salesman heuristic [28].

Once in linearized form, we can further reorder the items based on
its attributes. Depicted in Figure 5 are three examples of strategies for
sorting data based on their numeric values. The first strategy shown
there is random shuffling, which puts the data in random order. Shuf-
fling is widely applicable, as it does not use any item-driven metrics to
sort the data, but instead makes as little assumptions about the data as
possible. This also makes shuffling a good option whenever analysts’
interest in the data is unclear, or whenever analysts want to overcome
unwanted sorting biases in the data. The second strategy depicted is nu-
meric sorting, which as the name implies, orders the data by a numeric
attribute of interest. Sorting means that similar items appear after one
another in linearized order, which makes it easier to tailor the sampling
to patterns found along that attribute, for example by sampling for
similar values or by prioritizing outliers. For spatial data, we can use
space-filling curves to put it in order, for example in z-order as depicted
in the third example. Analyzing data based on spatial proximity is a
common requirement in the analysis of spatial and geographic data, so
space-filling curves allow tailoring the sampling accordingly.

Example: Depicted in Figure 8 are the effects of these three lin-
earization strategies on the base pipeline. In the first configuration, we
want to make as little assumptions about the underlying data in the lin-
earization which is useful for analysts unfamiliar with a dataset, thus we

2https://numpy.org/
3https://pypi.org/project/pymorton/
4https://vis-au.github.io/prosample

https://data.cityofnewyork.us/Transportation/NYC-Taxi-Zones/d3c5-ddgc
https://data.cityofnewyork.us/Traasportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://data.cityofnewyork.us/Traasportation/2018-Yellow-Taxi-Trip-Data/t29m-gskq
https://numpy.org/
https://pypi.org/project/pymorton/
https://vis-au.github.io/prosample

Cardinality

Cohesion X

Coverage Y

Linearized data, sorted by attribute X:
X
Y

Fig. 6: Examples for subdivision strategies over the same, two-
dimensional linearized data: cardinality (splitting into equal-sized bins),
cohesion (splitting at greatest differences in successive values, along
the same attribute as used for the linearization), and coverage (splitting
every time min and max values are found, along a different attribute than
as used for the linearization).

use random shuffling in the linearization step. Comparing the resulting
sample to the ground truth by the trip distance distribution, we notice a
clear skew towards larger values. This makes sense, as every item has
the same probability for appearing in a subdivision bin, and therefore,
when selecting maximum values from each bin, the sample will contain
mostly larger values. To focus the analysis on the spatial distribution of
the trip distance attribute, we can use the z-order linearization resulting
in items to appear after one another in the linearized data if their ride
pickup locations are located close to each other. Thus, the subdivision
bins created from this linearization are spatially ordered, and again,
we see that the depicted sample distribution is skewed towards larger
values, suggesting that longer rides are distributed in geospace instead
of being concentrated in particular areas. In our third configuration
we sort the data by the attribute of interest, which means that the bins
created by the subdivision contain items of similar values. The effect
on the distribution is that the sample largely resembles the ground truth
distribution of trip distance, meaning that the sample is not skewed
towards larger values. This configuration is useful when analysts want
to prioritize other parts of the dataset while ensuring a representative
distribution of the trip distance attribute.

4.3 Subdivision: Splitting the data into bins
To construct useful chunks from this now sorted, but otherwise difficult-
to-query data, we next define a scenario-specific structure on top
of this list by splitting it up into bins. We express these bins as
Set[OrderedList[Item]], where each list OrderedList[Item] is a section
of the linearized data, keeping the order defined by the linearization
step. While this order may be relaxed by the subsequent selection
step, prescribing it here allows for some tailored selection strategies
that utilize it (e.g., selecting the first item in each set). Rather than al-
ready producing the chunks at this stage, this intermediate step instead
constructs a “search structure” of the data that we then query for the
most relevant data at a certain point of the analysis in the next step.
Essentially, we take a “divide-and-conquer” approach to the search
problem for useful items, shifting from a global scope to the scope of
smaller bins.

There are many ways in which one may subdivide the linearized data.
The two extreme approaches are to put all data into one bin or every
item into its own bin. The former can be used to model a sequential
read, taking the first n items from the bucket at every chunk, while the
latter allows to directly query the data, for instance to find the top-k
largest values. For all cases in between, we need to define a criterion
for comparing consecutive items that subdivides the data in a desired
manner. In Figure 6, we outline three strategies. One simple criterion
is to divide the data by cardinality, subdividing it in regular intervals so
that every bin contains the same number of items. This strategy makes
little assumptions about the underlying data, making it a good fit for
cases where analysts are unfamiliar with a dataset or where they want
to explore it. For cases where the user interest is more clearly defined,
we can, for example, increase the cohesion within bins by subdividing

Subdivided data Sample

Maximum value per bin

Median value per bin

Random item per bin

Fig. 7: Examples of selection strategies used on on the same subdivided
data: Maximum value, median value, and selecting a random element.

the linearized data whenever we measure a large difference between
successive items. This provides us with a subdivision where each bin
contains a set of similar items, which in turn allows us to tailor the
sampling based on that similarity criterion.

Yet, measuring the similarity may not always be possible, desirable,
or useful and so another strategy is to increase the coverage over an
attribute of interest. This means that, rather than making the items
similar to each other per bin, we create bins that have similar statistic
properties. This allows controlling for the probability of selecting
certain values from a bin. In the example in Figure 6, we create bins for
successive pairs of min and max values along an attribute in the data.

Example: Exchanging the subdivision strategy has a noticeable
effect on the distribution in the samples we draw, as depicted in Figure 9.
Dividing the data by cardinality (here ||bins||= 1k), subdivides the data
into bins that evenly subdivide the linearized (i.e., randomly shuffled)
data. Thus, a “dense” region in the input where the linearization strategy
finds many similar values are spread out over many bins, while “sparse”
regions are packed into a few. The linearization used in the base
pipeline, however, randomly distributes the data, so each bin potentially
contains the entire value range for all attributes. Since we are selecting
the maximum value from each bin, the distribution depicted in the
figure is skewed towards larger values for this case.

Looking at the cohesion strategy in the second plot, we can see how
the distribution differs from the first. This strategy further skews the
sample towards larger values, because we can utilize two characteris-
tics of our scenario: the trip distance attribute contains relatively few
large values, and these values are randomly distributed because of the
shuffling linearization. As a result, large values are likely to lie close
to smaller values in the linearized data, and therefore, this subdivision
creates new bins for the largest values in the data. This allows analysts
to prioritize extreme values.

Likewise, the distribution yielded by the coverage strategy in the
third plot is also skewed towards larger values. Bins here are created
by matching pairs of successive upper and lower values (0.05 and 0.95
quantile), which means that the rare, large values are also likely to
appear in many bins, and therefore are likely to appear in the sample.
As a result, the two samples yielded by the cohesion and coverage
strategies in this configuration are rather similar.

4.4 Selection: Placing items into chunks
In the third and last step, we then construct chunks by selecting the
most relevant items from the subdivided data using a scenario-specific
prioritization strategy. Following the high-level input and output struc-
tures of progressive sampling, this step outputs the chunk structure
OrderedList[Set[Item]]. In the selection step, the goal is to construct
a useful sample of the entire dataset by selecting the most appropriate
items per bin from the subdivided data.

Given what data analysts are interested in, they can choose an ap-
propriate selection strategy. Three examples are depicted in Figure 7.
Analysts interested in extreme values, for example, may choose the
maximum strategy, which selects the largest value of an attribute of
interest. Analysts who want to get an overview over the dataset may
select the median element from each bin to get a representative ele-
ment, or select items randomly to increase the spread of the data. For
cases where the user interest is not clear, yet, analysts can use the
random strategy, which does not consider the values of the data but

shuffle cardinality maximum z-order cardinality maximum numeric cardinality maximum

+ more than ground truth

- less than ground truth

(c)
(b)(a)

trip distance (in mi)

count

0

500
1000
1500
2000
2500

10 20 30 40 50 60
trip distance (in mi)

0 10 20 30 40 50 60
trip distance (in mi)

0 10 20 30 40 50 60

%

-40

-20

0

20

40

Fig. 8: Impact of the linearization strategy on the sampling (||sample|| = 10k). Depicted in the first row is the distribution along the trip distance
attribute for random shuffling, sorting with a z-order curve along the pickup location attribute, and sorting numerically by the trip distance. The
second row shows the relative difference in % compared to the distribution in the full dataset. We notice how the pipelines using shuffling and
z-order linearizations produce samples that are clearly skewed towards larger values (a, b), while the numeric linearization maintains the original
distribution (c). Timings on 11M items: shuffle 202.56s, numeric sort 192.65s, z-order 583.5s.

cardinality maximum cohesion maximumshuffleshuffle coverage maximumshuffle

+ more than ground truth

- less than ground truth

(a) (b) (c)

trip distance (in mi)

count

0 10 20 30 40 50 60
trip distance (in mi)

0 10 20 30 40 50 60
trip distance (in mi)

0 10 20 30 40 50 60

200
400
600
800

1000
1200
1400
1600

%

-40

-20

0

20

40

Fig. 9: Impact of the subdivision strategy on the sampling (||sample|| = 10k). Depicted in the first row is the distribution along the trip distance
attribute for subdivision by cardinality (||bins||= 1,000), by cohesion (splitting at the top 1,000 biggest differences), and by coverage, with the latter
two considering the trip distance attribute. The second row shows the relative difference in % compared to the distribution in the full dataset. We
can clearly see all three samples being skewed towards larger values, with interesting differences in which values become most frequent: In the
cardinality case, most values are found around 20mi (a), cohesion around 30mi (b), and coverage produces peaks at 10 and 20mi (c). Timings on
11M items: cardinality 0.028s, cohesion 2.514s, coverage 29.017s.

shuffle shuffle shufflecardinality maximum cardinality median cardinality random

+ more than ground truth

- less than ground truth
(a)

(b) (c)

trip distance (in mi)

count

0

500
1000
1500
2000
2500
3000

10 20 30 40 50 60
trip distance (in mi)

0 10 20 30 40 50 60
trip distance (in mi)

0 10 20 30 40 50 60

%

-40

-20

0

20

40

Fig. 10: Impact of the selection strategy on the sampling (||sample||= 10k). Depicted in the first row is the distribution along the trip distance attribute
for selecting the maximum value, the median value, and selecting randomly. The second row shows the relative difference in % compared to the
distribution in the full dataset. We can clearly see how the selection step affects the sample: The maximum selection skews the sample towards
larger values (a), while the median strategy selects mostly small values (b), since most taxi rides in the data are short distance. The sample produced
with random selection mostly stays true to original distribution (c). Timings on 11M items: maximum 0.411s, median 0.32s, random 2.172

Configuration B

Dataset

sampled
Items:

not sampled

Subdivision

LinearizationConfiguration A

Fig. 11: By storing pointers to the original input data, the pipeline config-
uration can be tailored at runtime using precomputed linearization and
subdivision structures.

picks elements randomly from each bin.
How many items to select per chunk also depends on the analysis

scenario. One heuristic is to select as many items as possible, while
still ensuring that the progressive computation produces results within
interactive response times [16], which can even be dynamically ad-
justed to account for fluctuations in recent computation steps [38].
Another option is to always select a fixed number of items per bin, thus
guaranteeing a fixed chunk size in the computation.

Example: When comparing the effects of changing the selection
strategy on the base pipeline, we notice clear differences in the distri-
bution of the trip distance attribute in the plots in Figure 10. Overall,
the selection strategy arguably provides the most “direct” way of con-
trolling the output distribution in our example: Selecting the maximum
value skews the distribution of the trip distance attribute in the sample
towards larger values, selecting the median prioritizes average items
(since a vast majority of taxi rides in New York City are relatively short
distance, this strategy yields mostly short trips), and picking randomly
means that we approximate the global distribution of the attribute. Thus,
depending on the task, we can find clear use for all three: When looking
for extreme values, analysts should choose a min/max strategy, while
analysts interested in getting a representative sample may either select
representative points from each bin using the median strategy, or get
a representative distribution of the overall dataset instead by selecting
randomly.

5 TAILORING PVA-SAMPLING ON-THE-FLY

PVA is an inherently dynamic process, in that the analysis task may
change while the computation is ongoing, the input dataset may grow
over time, or analysts may want to prioritize different subspaces of
interest in the data as their analysis progresses. Rather than having to
restart the analysis to adjust the sampling (and thereby breaking the flow
of the analysis [15]), the sampling should be tailorable dynamically.
In this section, we demonstrate how the modular architecture of the
pipeline allows us to do just that, showing how it accounts for changes
in task, dynamic input data, and changes in scope.

5.1 Dynamically tailoring to changing tasks
In contrast to non-progressive VA, the task a user performs on the
data in PVA may change mid-analysis as new insights arise from the
partial results. Analysts in the progressive explorer role in particular,
who use PVA to “gain a comprehensive understanding of the data and
process” [26] may repeatedly switch their task. For example, an analyst
may at first want to gain a general overview of the data, to then move
on to more specific tasks like analyzing outliers. This switch clearly
influences how the pipeline should be configured, as different parts of
the data become useful: To gain an overview on the taxi data, a pipeline
for random uniform sampling (e.g., shuffle → cardinality → random)
is appropriate, whereas when targeting outliers, the sampling should
prioritize rare items (e.g., z-order → cohesion → maximum). In fact,
dynamically changing the task effectively may require exchanging all
parts of the pipeline at any point in time. The challenge here is that – as
with the long-running computation on the data that is made interactive
by the sampling in the first place – the complexity of the data increases
the complexity of carrying out the pipeline steps.

Both steps, the linearization and subdivision, access the entire dataset
and, depending on the complexity of the chosen strategy, exchanging
(recomputing) them can cause noticeable delays in the analysis. One

3) update linearization2) update subdivision1) new data:

ti+1subdivisiontisubdivision tisubdivision

Fig. 12: An incremental variant of the pipeline concept, showing how
using dynamic data structures for representing linearized and subdivided
data allows including new data to the pipeline, thus allowing to incremen-
tally update the sampling on-the-fly without accessing the entire dataset.

way to nevertheless enable dynamic exchange is by precomputing
combinations of linearization and subdivision operations, thus paying
the computation cost ahead of the analysis. To account for changes
in the analysis scenario at runtime, we can then simply use either of
the precomputed data structures as input to the selection step (see
Figure 11). For example, by storing pointers to the input dataset, we
can keep track of which data has been sampled so far, even when
exchanging the subdivision. For this to be viable, however, analysts
need to consider how much precomputation is “worth it”. When gaining
a first overview of a new, unfamiliar dataset, this pre-processing may in
fact not be worth the wait, as in these cases one pipeline may suffice. Yet
for analysts who often analyze the same dataset multiple times, having
a catalog of linearizations and subdivisions to tailor their sampling can
be particularly useful.

In contrast, the selection step can be evaluated on a per-chunk basis.
Rather than naïvely running it exhaustively over the entire dataset to
preemptively set a chunk for each item, we can instead construct the
next chunk on-demand, significantly reducing its complexity. This way,
we essentially use the selection step as a query over the subdivided
data, allowing for efficient on-demand retrieval. It also means that we
can dynamically exchange the selection operation at runtime by simply
changing what query we use here.

5.2 Dynamically tailoring to incremental input data
Next, we look at how the pipeline can accommodate changes in the
input dataset. Up until now, we took an “upstream”, global perspective
on PVA-sampling, where sampling is positioned at the beginning of
the PVA process with access to the full dataset, and where all other
operators in the PVA process wait for the chunks produced by it. This
perspective is also rather common in the literature [24,37]. However, as
noted by Schulz et al. [34], it falls short in capturing dynamics in PVA.
This is because different operators along the PVA process have different
requirements to the input data, with some operators like clustering
requiring a broader data coverage than a progressive scatterplot. Thus,
using only one sampling ahead of the process is often insufficient. The
solution proposed by Schulz et al. is a buffer/sequencer model for
incremental visualization, where each operator gets to manage their
own priority queue. To integrate dynamic input data with the pipeline,
we essentially need to make the sampling itself incremental, such that
whenever the input dataset of the pipeline changes, the sampling can
reflect that as well. In other words, we need to incrementally compute
the linearization, subdivision, and selection steps.

To make the first two steps of the pipeline incremental, we can sim-
ply maintain incremental data structures for linearized and subdivided
data, into which we can insert new data and from which we can remove
processed data. For example, for an incremental linearization of tabular
data, we can use a sorted index structure like a binary search tree over
List[Item]. Whenever the input data changes, we can efficiently remove
or insert those items using that index, and in effect make the lineariza-
tion incremental. Similarly, we can adopt incremental subdivisions
by using data structures like incremental segment trees [41]. A tree
structure is compatible with Set[OrderedList[Item]], in that leaf Items
are grouped by inner nodes of the tree, and this structure can be also
efficiently updated incrementally. For complex subdivision operations
like 1-dimensional clustering, dedicated incremental algorithms can be
utilized [35]. Lastly, as discussed in the previous section, the selection
step already runs on-demand per chunk, rather than exhaustively over

Prioritizeif () not empty
Chunks, steered to

“Regular”
Selection

Subdivided Data

otherwise

Selection

Fig. 13: Integrating computational steering with the sampling pipeline:
Computational steering can be expressed as an extension of the selec-
tion step. This selection prioritizes a subspace of interest by retrieving
that data first and then applies the “regular” selection strategy on the
remaining data.

the entire dataset. Thus it is inherently fit for incremental updates.

5.3 Dynamically tailoring to changing scope

A big advantage when progressively analyzing data is that analysts
can steer the computation towards data subspaces that currently in-
terest them, while that computation is still ongoing. In other words,
the scope of the analysis scenario can change dynamically (from the
entire dataset to a subspace of interest). Steering generally means to
prioritize data inside a user-selected region of interest in the sampling
while the analysis is running, retrieving other data later. As a result,
the visualization of that subspace is “completed” earlier, allowing for
more certain decisions on the data in this particular subspace, making
steering a powerful mechanism for rapidly exploring emerging patterns
in the visualization. An example of this is a progressive searcher [26]
zooming into a specific area of interest on a density plot to see details
about the region that interests them: The computation can then focus
on data that lies inside the zoomed-in region, rather than spending
resources on data that lies outside of it. Below, we discuss how steering
can be integrated into the pipeline (see also Figure 13).

Sampling during steering differs from regular sampling in multiple
ways. One difference is that chunks during steering are no longer
samples of the entire dataset, but they are instead skewed towards
the subspace of interest. When steering the progression, the chunks
analysts see may exclusively contain data from that subspace, while
after the steering, i.e., once that subspace is exhausted, items from that
subspace will not appear in chunks at all. Another difference is that
steering is situation-dependent, in that interesting subspaces arise while
the computation is running, and analysts may change what subspace
they steer towards multiple times during the same progression (see
the progressive observer role [26]). As a result, steering can rarely
be configured before the sampling starts, unlike the conditions for
representative sampling.

In the context of PVA, it is therefore necessary to be able to model
steering as part of the pipeline in order to leverage the full potential
of PVA. We can do so by considering the data structure that steering
operates on. Effectively, steering reorders the items in the sampling,
such that items from the subspace of interest appear in early chunks,
while the remainder of the data is sampled afterwards. In terms of the
data structure in the pipeline, steering is, thus, a transformation with
the structure OrderedList[Set[Item]]→ OrderedList[Set[Item]]. This
means that we can model steering as part of the selection.

One way to achieve this integration is to focus the selection step on
a single bin or at least a subset of bins that contain interesting data. A
requirement here is, however, that the data is linearized and subdivided
by a suitable similarity criterion, such that bins group data that are
similar, making interesting items appear in similar bins. In our running
example from section 4, for instance, an analyst may be interested in
taxi rides that take place around midnight. If the data is subdivided into
hourly intervals, we can steer the progression by selecting items only
from the respective bins from that interval.

In cases where the similarity criterion does not match the user inter-
est, we can integrate steering by adjusting the selection strategy used for
each bin. For example, to prioritize taxi rides around a certain time of
day over all bins, we can select items within that time interval from bins
that contain such items, and otherwise select items that are as close as

possible to that interval. Thus, we need to adjust the selection strategy
per bin based on its data. To achieve this steering, we can maintain
simple descriptive metrics for each bin (such as min/max/mean per
attribute) and then switch the selection strategy for each.

An even more dynamic option to integrate steering is to combine
the previous two approaches, adjusting the number of items selected
per bin based on whether it contains items or not (as outlined in Fig-
ure 13): Then, the selection greedily selects all items from the subspace
of interest from all bins, until the chunk is “full” or the subspace is
exhausted. Again, this can be achieved in a rather straightforward
manner by maintaining descriptive metrics for all bins, this time basing
the number of selected items on them.

Thus, depending on how accurate the steering should be and how
much effort is viable, the sampling pipeline supports these needs. As a
result, any tailored sampling pipeline following the input and output
structures outlined in Sec. 4 can benefit from steering. Second, we
can likewise integrate any steering mechanism with the pipeline as
long as it supports the structure of the selection step. This means that,
regardless of how exactly a subspace is prioritized (e.g., based on a one-
to-one mapping [11], iterative rebinning [40], derived from decision
trees [20]), it can be combined with the sampling pipeline through the
query filter it defines over the remaining data.

6 UTILIZING THE PIPELINE FOR TAILORED SAMPLING

Having formalized task-tailorable PVA-sampling into a modular
pipeline, we next provide examples of how this pipeline can be used to
benefit analysts, again considering the taxi dataset for reference.

6.1 Recreating existing samplings
By formalizing PVA-sampling along a pipeline, our goal is not to
replace nor outperform scenario-specific samplings, but we want to
supplement them. In the previous section, we showed how analysts
can configure custom samplings with the pipeline. Here, we want to
exemplify another advantage of the pipeline, which is that we can also
use it to recreate existing sampling approaches in terms of linearization,
subdivision, and selection strategies. The idea is that, whenever the
qualities of a particular sampling algorithm are required, they can not
only be expressed in the pipeline structure, but also further be tailored
and adjusted, because they are in the pipeline structure. To demonstrate
this, we model well-known sampling algorithms with our pipeline,
showing their output in Figure 14.

• random sampling: random shuffling linearization → cardinality-
based subdivision → random selection.

• stratified sampling: numeric sort-by-attribute linearization →
interval-based subdivision → median selection.

• sampling for balanced spatial autocorrelation: z-order lin-
earization → cardinality-based subdivision → balancing autocor-
relation selection.

This highlights the expressiveness of our sampling pipeline, in that
we can create both simple approaches like random sampling, but also
rather specialized approaches as in the spatial autocorrelation example.
This sampling controls the distribution of four categories (called LL,
HL, LH, and HH), which express whether a local value is greater than
neighboring values (yielding H* or L* categories) and the global mean
value (yielding *H or *L categories) of a spatial variable. This is
inspired by the approach of Zhou et al. [45], who demonstrate that
sampling using spatial autocorrelation allows for effective exploration
of large (and therefore often cluttered) geospatial datasets.

6.2 Recomposing sampling pipelines
Modular design reduces implementation efforts by increasing reusabil-
ity of partial solutions, in that we can compose the operators from
existing sampling methods to create a new approach. For example, we
can recompose operators from other pipelines in this section into a new
sampling approach. In the example depicted in Figure 15, which is
inspired by z-order sampling proposed by Zheng et al. [43], we use
the z-order linearization from the autocorrelation sampling, a cohesion-
based subdivision, and the median selection from stratified sampling.

(a)
LL

HL
LH

HH

0 1,000 2,000 3,000 4,000 5,000 6,000 0 1,000 2,000 3,000 4,000 5,000 6,000 0 1,000 2,000 3,000 4,000 5,000 6,000

(c)

Stratified sampling Autocorrelation samplingRandom sampling

(b)

z-order cardinality autocorr.numeric interval medianrandom cardinality random

0 10 20 30 40 50 60

trip distance (in mi)
20

0

-20

%

0
500

1000
1500
2000
2500

count

0 10 20 30 40 50 60

trip distance (in mi)
0 10 20 30 40 50 60

trip distance (in mi)

Fig. 14: Examples of existing sampling methods recreated using the pipeline: Random sampling, stratified sampling, and spatial autocorrelation
sampling. (a) Random sampling maintains the distribution along the trip distance attribute, while stratified sampling purposefully samples the value
range evenly (b). Autocorrelation sampling on the other hand ensures that the autocorrelation categories are equally distributed in the sample (c).

(a)

Random sampling Recomposed sampling

(c)

(b)

z-order cohesion mediancardin. randomrandom

pickup location pickup location
-74.2

40.55

40.60

40.65

40.70

40.75

40.80

40.85

40.90

-74.1 -74.0 -73.9 -73.8 -74.2 -74.1 -74.0 -73.9 -73.8

Fig. 15: Example of tailored sampling created by recomposing the opera-
tors used in Figure 14 and Figure 16 for a distinct sampling on the taxi
dataset (||sample|| = 10k). The tailored sampling depicted on the right
noticeably preserves sparse regions (a), outliers (b), as well as local
structures (c) compared to the random sample on the left.

Linearization and subdivision both tailor the sampling towards the spa-
tial location of the data points, in that the linearization places points in
successive order if they are close to each other in the pickup location
attribute, and the subdivision splits up this data whenever there is a
large distance between values. This results in bins that contain items
from distinct regions in view space, and their cardinality depends on
the spatial density of that region: densely populated areas are contained
in large bins, while sparse regions are contained in small bins. In turn,
when selecting elements from all bins, this increases the visibility of
outlier points in the sample, while maintaining sparse regions as well
as dense patterns in the sample, which is clearly visible in Figure 15.

This demonstrates the modularity benefits of the pipeline, which
allows reusing existing modules for tailored sampling rather than re-
quiring a completely new implementation.

6.3 Tailoring the sampling towards multiple attributes
The modularity also allows us to independently tailor each step of the
pipeline to account for a different aspect of the analysis scenario, cov-
ering complex analysis scenarios. As an example, we here configure a
sampling tailored for analysts exploring the relationship between the
spatial distribution of long taxi rides in December of 2018. Accord-
ingly, we configure a pipeline tailored towards three attributes at the
same time: The linearization sorts the data along a z-order curve over
the pickup location, the subdivision increases coverage over the trip
distance attribute, and the selection picks the maximum value along the

(d) trip distance (in mi)

+
-

0.4
0.2

0
-0.2
-0.4

+
-

(a) (b)

z-order cohesion maximum

Random sampling Multi-attribute sampling

(c) pickup time (month)

pickup locationpickup location

40.60

40.65

40.70

40.75

40.80

40.85

40.90

-74.1 -74.0 -73.9 -73.8 -74.1 -74.0 -73.9 -73.8

cardin. randomrandom

Fig. 16: Example of sampling tailored to multiple attributes on the taxi
dataset (||sample|| = 10k). The pickup location in the tailored sample
better maintains both outliers (a) and dense regions (b) than a random
sample, albeit not as clearly as in the sampling tailored only to the spatial
distribution in Figure 15. The histograms show that the sampling is also
clearly skewed to pickup times late in the year (c), while the distribution
of the trip distance matches the overall distribution in the dataset (d).

pickup date attribute. The linearization ensures that items within the
same bin are also located close to each other in geospace, which helps
to preserve outliers and dense regions in the sample when selecting
items from all bins. The subdivision then ensures that all bins contain
both long and short trips, which ensures that this distribution is main-
tained in the sample. The selection then skews the sample towards trips
that are latest in the year. The effect is visible in Figure 16.

This example demonstrates the flexibility of the pipeline in two
ways: First, we can consider multiple data attributes in the sampling.
This means that the sampling can be tailored to address more complex
analysis scenarios, controlling the sample distributions for more than
one attribute. The second benefit is that we can consider multiple data
types in the sampling. This is noteworthy, as many existing sampling
algorithms are geared towards one particular data type (sampling for
spatial data, temporal sampling, sampling multivariate data, ...).

7 DISCUSSION

Here, we consider aspects of integrating tailorable sampling into anal-
yses: integrating it into real-world database systems, integrating it as
part of the analysis itself, and integrating it from a usability perspective.

7.1 Implementing tailored sampling into DBMS
We produced the examples in this paper using a proof-of-concept im-
plementation written in Python, demonstrating our pipeline’s utility.
A logical next step is to consider if and how our pipeline can be in-
tegrated with existing database systems in order to drive real-world
analyses. To this end, we here explore a promising use case of doing
so, namely ProgressiveDB [6], a middleware that enables progressive
queries on existing SQL-based databases like MySQL or Postgres. Pro-
gressiveDB works by rewriting incoming SQL queries into a set of
smaller queries that can be completed within human latency limits,
which is achieved internally by relying on the partitioning support of
the underlying database, or by defining a dedicated sampling column
and index. Currently, ProgressiveDB only supports random uniform
sampling. Below, we discuss how our pipeline can in principle be inte-
grated into ProgressiveDB requiring minimal additional modifications.
To integrate the three steps of the pipeline with ProgressiveDB, we can
take advantage of features of the underlying SQL database as well as
features provided by ProgressiveDB.

First, linearizations can be precomputed on the dataset as indexes.
Modern SQL databases support a variety of data types for creating
complex indexes, supporting numeric, temporal, textual, and spatial
attributes, thus, inherently offering a variety of linearization strategies
for tailoring the sampling. Nevertheless, specialized linearizations such
as sorting by z-order may only be supported by some databases (e.g.,
Apache Impala). Moreover, building indexes over large datasets takes
time (e.g., 360s to define an index on the trip distance attribute in the
taxi dataset), requiring analysts to trade-off flexibility and utility.

Next, for the subdivision step, we can take advantage of the internal
partitioning feature of modern database management systems, which
assigns rows to partitions based on column values. Partitioning divides
large tables into separate files. It is originally designed to optimize
storage of datasets across file systems. Yet, ProgressiveDB utilizes it to
reduce the response time per query to human latency limits, consolidat-
ing the responses of multiple queries into one approximate result. Thus,
similar to the subdivision step, we can tailor the sampling by adjusting
the partitioning mechanism. Like the linearization step, partitioning
can, however, be time consuming on large datasets.

Lastly, we can implement the selection step by utilizing the steering
feature of ProgressiveDB, which defines so-called progressive views.
Progressive views perform the query on the partitions, aggregating their
results, similar to how the selection strategies pick the most relevant
elements from each bin in the subdivision, and they can be dynamically
defined during the analysis. In ProgressiveDB, we can express different
selection strategies via standard SQL operators like SELECT, WHERE
and ORDER BY clauses. In addition, as discussed in subsection 5.3, this
setup allows us to still maintain the ability to steer by dynamically
switching to another view containing the steering filters. Another
added benefit is that ProgressiveDB automatically supplies uncertainty
information for each completed chunk (called “confidence”).

Overall, such an integration would utilize the features provided by
ProgressiveDB, therefore we expect it to perform comparable to Pro-
gressiveDB in terms of retrieval and pre-processing times. However,
while this implementation would benefit from the optimizations and
scalability of modern database systems, the performance bottlenecks
of this implementation clearly lie in the pre-computation necessary for
building indexes and partitioning the data. These are well-known limi-
tations when working with massive tabular databases and not unique
to tailorable sampling. A common practice to alleviate them is to run
these lengthy pre-processes over night when only few or no users are
connected to the database at all, in order to benefit from the added per-
formance during the day, when most traffic is expected. Nevertheless,
the requirement of additional pre-computation is a clear limitation of
our pipeline, which we further discuss in subsection 8.1.

7.2 Tailored sampling as data analysis method
An interesting observation from applying the pipeline concept to PVA
is that it enables analysts to tailor the sampling to explore the data,
whereas previously, sampling served to prepare such analyses. For
instance, one takeaway in the example in subsection 4.2 was that longer

rides appeared to be spatially spread out throughout the dataset, or in
subsection 4.3, it was observed that the sample was “skewed” towards
larger values. These insights were gained from adjusting the sampling,
indicating that our pipeline provides analysts with a novel means of
exploring massive datasets. Comparable to steering approaches like
Sherpa [11], which allow focusing the computation on a data subspace
of interest, tailorable sampling gives analysts another means of con-
trolling the data flow towards desired data, thus, making the partial
visualization more expressive of the desired information. In contrast
to non-progressive VA, tailorable sampling shifts the data exploration
step ahead in the analysis pipeline: Where configuring the sampling
previously took place before the analysis, in PVA the sampling is part of
it, in the sense that chunk-wise provisioning of the raw data is already
influenced by the analysis to be performed. This characteristic of PVA
only became apparent after applying tailorable sampling in practice,
indicating the need for more empirical work studying how it influences
analysts’ workflows in practice, for instance.

7.3 Usability aspects of tailored sampling
The added flexibility of tailorable sampling inherently introduces chal-
lenges about how to integrate it with analysis workflows to the analysts’
benefit, rather than impeding their work with added complexity. One
way of tying the pipeline configuration to the analysis scenario is via the
visualization technique used to display the data, as it gives an indication
as to what aspects in the data analysts are interested in, i.e., parts of the
data that the sampling should bring out. For example, analysts using a
map to display the data are likely investigating spatial properties of the
data, which the pipeline can support via a z-order linearization. Single-
attribute visualizations like bar charts and histograms can be supported
by tailoring the sampling towards that attribute, e.g., sorting the data
by attribute and dividing it into bins that increase cohesion. Trellis
plots that show subsets of the data by splitting it along an attribute in
multiple, side-by-side plots could be supported by increasing coverage
over that attribute in the subdivision. Multi-attribute visualizations like
scatterplots can benefit from ensuring a uniform sampling, e.g., via
a random selection operation. Then, tailoring the sampling can take
place whenever analysts change their visualization; either automatically
by switching to pre-defined operators per visualization technique, or
by providing analysts with a selection of adjustments to choose from.
Furthermore, to inform changes to the pipeline, a preview of the effect
that different options have on the visualization can be provided (see
subsection 8.3). Considerations like these arise from the unique fea-
tures of PVA and there is obviously more to explore in this regard; in
particular the usability and user experience aspects of such an approach
requires dedicated empirical studies. Our pipeline lays the groundwork
for more work in this direction.

8 IMPLICATIONS AND LIMITATIONS

While the pipeline provides analysts with new flexibility during their
sense-making process, it also requires additional effort and, therefore,
impacts the efficiency of the analysis, i.e., the difference between the
cost of using it compared to its potential gains. We discuss this impact
below along three phases: before, during, and after the sampling.

8.1 Impact before sampling
Regardless of whether analysts use our pipeline or not, configuring the
sampling has an impact on the efficiency before starting the analysis.
This is because analysts, either way, need to reflect on how to bring
out interesting patterns in the data that are relevant to their task, to
then choose an appropriate sampling that achieves this. In contrast to
the non-progressive case, our pipeline allows analysts to fine-tune this
decision later on, reducing the time spent before seeing the data and,
thus, improving the efficiency. However, the pipeline also requires that
analysts first familiarize themselves with the pipeline steps and their
strategies, which in turn reduces the efficiency for pipeline-novices.
To reduce these initial configuration cost, it is beneficial to provide
pre-configured pipelines that fit many common analysis scenarios such
as the random sampling pipeline that supports overview tasks. This
way, analysts do not need to start “from scratch” each time and only

https://issues.apache.org/jira/browse/IMPALA-8755
https://dev.mysql.com/doc/refman/8.0/en/partitioning-types.html

need to make small adjustments to their needs. Yet, conversely, even
when providing a catalogue of pipelines to choose from, analysts need
to decide whether a particular sampling actually fits their analysis
scenario. While these costs are higher in the beginning, when analysts
first familiarize themselves with the pipeline concept, they remain even
for expert users. While in subsection 7.3 we provide first considerations
based on the visualization technique to alleviate the configuration (see
subsection 7.2), there is still a clear need for guidance based on other
aspects of the analysis scenario (e.g., dataset, task, analysis role [26]).

Another important consideration for the efficiency before using the
pipeline is whether it makes sense to invest time and effort into enabling
tailorability, rather than using an “out-of-the-box” sampling that cannot
be tailored. This is because the pipeline also imposes a temporal cost
on the analysis. In particular providing the flexibility of multiple lin-
earization and subdivisions requires time- and storage-space-consuming
pre-processing. This delay in the analysis is a clear limitation of the
pipeline concept: For quick one-off analyses, it may not be worth to
ensure tailorable sampling. Moreover, for scenarios for which the qual-
ities of an existing PVA-sampling (see subsection 3.2) suffice, it can
make sense to rely on these “off-the-shelf”, optimized solutions rather
than recreating them with the pipeline steps. Yet, PVA is often geared
towards expert users – the progressive explorer described by Micallef et
al. [26] – that continuously analyze a massive dataset, investigating pat-
terns, testing hypotheses on-the-fly, dynamically switching tasks, i.e.,
scenarios where investing pre-processing time upfront makes sense as it
increases the scope of the analysis. It is exactly these complex analysis
scenarios that our pipeline promises to be most beneficial in and, as we
discussed in subsection 7.1, the impact of lengthy pre-computations
can be reduced by modern database systems. At the same time, there is
a clear need for guidelines and support systems to suggest or otherwise
inform analysts’ decision on which operators to pre-compute based on
their analysis scenario (see subsection 7.3).

8.2 Impact during the sampling

In addition to costs for the initial configuration, utilizing the pipeline to
its full potential — dynamically tailoring the sampling during the anal-
ysis — requires further effort. For example, analysts need to constantly
consider, whether the pipeline currently used for sampling still fits their
analysis scenario, and then make the necessary adjustments; costs that
were simply not necessary when using one pre-configured sampling
throughout. An important consideration to this end is automating the
sampling configuration as indicated in the previous section, where a
change in the visualization technique triggers changes to the pipeline.
Yet, as with guidance for the initial configuration, there are many addi-
tional factors of the analysis scenario to consider as input parameters
driving useful guidance for “in-situ” automated configurations. Another
question concerns the degree of guidance [8], that is, whether to inform
analysts that there may be better options, suggesting changes, or to
automatically make changes to the pipeline, not informing analysts at
all, allowing them to focus on the data.

A central assumption in PVA is that the quality of the partial visual-
ization (e.g., in terms of progress, stability, and certainty [3]) increases
over time. Its certainty in particular — the amount of error by which
the actual, final result could still deviate from the current result [3] —
influences what tasks can be effectively performed: While early (very
uncertain) visualizations support passive tasks like observing the data,
later (very certain) visualization support active insight generation and
verification [4]. It is therefore crucial for analysts to be aware of the
certainty when working with partial visualization, i.e., during decision-
making on incomplete results. Error estimation methods, which supply
the metrics for the certainty of results, are often bound to the variance
characteristics of the sampling method [2, 17, 33]. In other words, the
certainty across the partial visualization will increase over time, with
the certainty in some subspaces increasing faster than others, depending
on the sampling that is used. However, when switching sampling meth-
ods on-the-fly, the rate at which the certainty increases for a subspace
changes. This is obviously an important consideration for tailorable
sampling, and analysts must be (made) aware of it while tailoring
the pipeline, constantly calibrating their sense-making process to the

(a) No separation (b) Foreground sep. (c) Background sep.

Fig. 17: Three ways of integrating a tailorable focus sampling with a static
sampling providing the context of the data into a scatterplot.

current sampling method to avoid biases [30].
Another point to note here is that many error estimation methods

assume a continuous, fixed sampling throughout the analysis, which
clearly raises the question of how to estimate the error at all when the
sampling can be switched out at all times. This question is not unique to
tailorable sampling as it, for example, also relates to systems that allow
steering the progression, that is, to temporarily focus the sampling on
subspaces of interest. Dedicated research is necessary for measuring
and reducing the error of error estimation techniques in PVA and to
handle fluctuations in the estimates after tailoring the sampling.

8.3 Impact after sampling
After a tailored sample is drawn, we need to avoid that analysts draw
false conclusions from the incomplete results. The related literature
has evaluated useful approaches for directly encoding the result uncer-
tainty into the visualization [29, 30]. Beyond these technique-specific
solutions, another way to remedy the effects of tailored and, therefore,
potentially skewed samples is to combine the chunks of tailorable sam-
pling with a “baseline sampling” that remains constant throughout the
analysis. A similar idea is used in BlinkDB [1], where both a uniform
sample and a set of stratified samples are maintained. Here, combining
multiple samples provides “tighter approximation errors” and “signif-
icantly reduces [...] the subset error”. Similarly, to avoid analysts
misinterpreting the certainty of results after tailoring the sampling, we
can combine multiple PVA samplings generated by different pipelines.
For example, a “focus” sampling that is dynamically tailored by the
analyst to decrease the uncertainty for data of interest can be combined
with a “context” sampling that remains static throughout the analysis.
This ensures that globally, certainty constantly increases across the
dataset, yet it also reduces the impact of tailoring.

There are different ways of encoding these two samplings in the
visualization, and we outline some preliminary ideas here (depicted
in Figure 17). The first way is to not encode their differences, that is,
not differentiating them in the visualization by simply merging the two
samples into one. This approach introduces the least complexity into
the visualization, but means that analysts need to constantly monitor
uncertainty themselves. To make the impact of the tailored sampling
more apparent in the visual encoding, we can also encode each sample
differently. In a scatterplot, for example, we can assign different colors,
allowing analysts to assess their differences, e.g., in terms of their distri-
bution or their stability between chunks. A third approach is to directly
encode their difference into the visualization. This allows analysts to
focus on data produced by the tailored focus sample, while being able
to assess to what degree parts of the visualization are prioritized or
neglected by it. An example of this can be found in the interface of
ProSteer [20], where a direct encoding of sampling differences was
used to assess the utility of a steering algorithm.

Overall, tailored sampling also impacts the uncertainty of progres-
sive visualization, and analysts need to be made aware in order to
calibrate their analysis tasks to the result completeness. Empirical work
is necessary to evaluate the discussed mitigation strategies.

9 CONCLUSION

In this paper, we introduced the notion of tailorable PVA-sampling,
which differs from “regular” sampling in VA, in that it is a continuous
process rather than a computation step, leading to a unique set of
requirements. Tailorable PVA-sampling allows to fit the sampling
mechanism to the task, to make the progressive visualization as useful
as possible as early as possible. We achieved this by providing a
pipeline consisting of three consecutive modules (linearization, current
needs of the analyst. We demonstrated the flexibility of this pipeline

in a series of examples, both taking a step-by-step perspective, where
we demonstrate how exchanging each module affects the output, but
also by taking a holistic view, showing how the modularity allows
recreating existing sampling methods, reusing operators, and tailoring
to complex user interests at once. We then showed how the pipeline can
be dynamically exchanged at runtime, to account for highly dynamic
user interests common to PVA, changes in the input data, and the
scope of the analysis. Our approach allows, for the first time, to tailor
PVA-sampling to the needs of the analyst without requiring dedicated
reimplementations, while also allowing for adjusting the sampling
on-the-fly without restarting the analysis. It lays the groundwork for
future research in this direction, including library support and empirical
evaluations, as well as automated approaches to reduce user effort.

ACKNOWLEDGMENTS

We thank Jakob Burkhardt for his work on the implementation in early
stages of the project, as well as Helwig Hauser and Marc Streit for
our fruitful discussions on the topic. We also thank our anonymous
reviewers for their insightful feedback on the paper. We gratefully
acknowledge funding of this research by the Innovation Fund Denmark
(IFD) through the Grand Solution project Hospital@Night.

REFERENCES

[1] S. Agarwal, A. P. Iyer, A. Panda, S. Madden, B. Mozafari, and I. Stoica.
Blink and it’s done: interactive queries on very large data. Proc. of VLDB,
5(12):1902–1905, aug 2012. doi: 10.14778/2367502.2367533 11

[2] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica.
BlinkDB: Queries with Bounded Errors and Bounded Response Times on
Very Large Data. In Proc. of EuroSys, pp. 29–42. ACM, 2013. doi: 10.
1145/2465351.2465355 3, 11

[3] M. Angelini, T. May, G. Santucci, and H.-J. Schulz. On Quality Indi-
cators for Progressive Visual Analytics. In Proc. of EuroVA, pp. 25–29.
Eurographics Association, 2019. doi: 10.2312/eurova.20191120 11

[4] M. Angelini, G. Santucci, H. Schumann, and H.-J. Schulz. A review and
characterization of progressive visual analytics. Informatics, 5(3):31:1–
31:27, 2018. doi: 10.3390/informatics5030031 1, 11

[5] S. K. Badam, N. Elmqvist, and J.-D. Fekete. Steering the Craft: UI
Elements and Visualizations for Supporting Progressive Visual Analytics.
Computer Graphics Forum, 36(3):491–502, 2017. doi: 10.1111/cgf.13205
3

[6] L. Berg, T. Ziegler, C. Binnig, and U. Röhm. ProgressiveDB: Progressive
Data Analytics as a Middleware. Proc. VLDB Endow., 12(12):1814–1817,
2019. doi: 10.14778/3352063.3352073 10

[7] S. K. Card, J. D. Mackinlay, and B. Shneiderman. Readings in Information
Visualization: Using Vision To Think. Academic Press, 1999. 3

[8] D. Ceneda, T. Gschwandtner, T. May, S. Miksch, H.-J. Schulz, M. Streit,
and C. Tominski. Characterizing Guidance in Visual Analytics. IEEE
Transactions on Visualization and Computer Graphics, 23(1):111–120,
2017. doi: 10.1109/tvcg.2016.2598468 11

[9] X. Chen, J. Zhang, C.-W. Fu, J.-D. Fekete, and Y. Wang. Pyramid-based
Scatterplots Sampling for Progressive and Streaming Data Visualization.
IEEE Transactions on Visualization and Computer Graphics, 28(1):593–
603, 2022. doi: 10.1109/TVCG.2021.3114880 3

[10] E. H. Chi. A taxonomy of visualization techniques using the data state
reference model. In Proc. of Symposium on Information Visualization, pp.
69–75. IEEE, 2000. doi: 10.1109/INFVIS.2000.885092 3

[11] Z. Cui, J. Kancherla, H. C. Bravo, and N. Elmqvist. Sherpa: Leveraging
User Attention for Computational Steering in Visual Analytics. In Proc.
of VDS, pp. 48–57. IEEE, 2019. doi: 10.1109/VDS48975.2019.8973384
8, 10

[12] I. Demir, C. Dick, and R. Westermann. Multi-Charts for Comparative
3D Ensemble Visualization. IEEE Transactions on Visualization and
Computer Graphics, 20(12):2694–2703, 2014. doi: 10.1109/TVCG.2014.
2346448 4

[13] B. Ding, S. Huang, S. Chaudhuri, K. Chakrabarti, and C. Wang. Sample +
Seek: Approximating Aggregates with Distribution Precision Guarantee.
In Proc. of SI, pp. 679–694. ACM, 2016. doi: 10.1145/2882903.2915249
3

[14] G. Ellis, E. Bertini, and A. Dix. The Sampling Lens: Making Sense of
Saturated Visualisations. In Extended Abstract Proc. of CHI, pp. 1351–
1354. ACM, 2005. doi: 10.1145/1056808.1056914 3

[15] N. Elmqvist, A. V. Moere, H.-C. Jetter, D. Cernea, H. Reiterer, and T. J.
Jankun-Kelly. Fluid interaction for information visualization. Information
Visualization, 10(4):327–340, 2011. doi: 10.1177/1473871611413180 1,
2, 7

[16] J. Fekete and R. Primet. Progressive Analytics: A Computation Paradigm
for Exploratory Data Analysis. arXiv.org preprint, 1607.05162, 2016. doi:
10.48550/arXiv.1607.05162 7

[17] D. Fisher. Incremental, approximate database queries and uncertainty for
exploratory visualization. In Proc. of LDAV, pp. 73–80. IEEE, 2011. doi:
10.1109/LDAV.2011.6092320 11

[18] B. Gu, B. Liu, F. Hu, and H. Liu. Efficiently Determining the Starting
Sample Size for Progressive Sampling. In Proc. of ECML, pp. 192–202.
Springer, 2001. doi: 10.1007/3-540-44795-4_17 3

[19] J. Heer and M. Agrawala. Software Design Patterns for Information Visu-
alization. IEEE Transactions on Visualization and Computer Graphics,
12(5):853–860, 2006. doi: 10.1109/TVCG.2006.178 3

[20] M. Hogräfer, M. Angelini, G. Santucci, and H.-J. Schulz. Steering-by-
Example for Progressive Visual Analytics. ACM Trans. Intell. Syst. Tech-
nol., 13(6):96:1–96:26, 2022. doi: 10.1145/3531229 8, 11

[21] M. Hogräfer, J. Burkhardt, and H.-J. Schulz. A Pipeline for Tailored
Sampling for Progressive Visual Analytics. In Proc. of EuroVis Workshop
on Visual Analytics (EuroVA), pp. 49–53. Eurographics, 2022. doi: 10.
2312/eurova.20221079 2

[22] J. Jo, S. L’Yi, B. Lee, and J. Seo. ProReveal: Progressive Visual Analytics
With Safeguards. IEEE Transactions on Visualization and Computer
Graphics, 27(7):3109–3122, 2021. doi: 10.1109/TVCG.2019.2962404 3

[23] B. C. Kwon, J. Verma, P. J. Haas, and C. Demiralp. Sampling for Scalable
Visual Analytics. IEEE Computer Graphics and Applications, 37(1):100–
108, 2017. doi: 10.1109/MCG.2017.6 3

[24] J. K. Li and K. Ma. P5: Portable Progressive Parallel Processing Pipelines
for Interactive Data Analysis and Visualization. IEEE Transactions on
Visualization and Computer Graphics, 26(1):1151–1160, 2020. doi: 10.
1109/TVCG.2019.2934537 3, 4, 7

[25] V. Losing, B. Hammer, and H. Wersing. KNN Classifier with Self Ad-
justing Memory for Heterogeneous Concept Drift. In Proc. of ICDM, pp.
291–300. IEEE, 2016. doi: 10.1109/ICDM.2016.0040 3

[26] L. Micallef, H.-J. Schulz, M. Angelini, M. Aupetit, R. Chang, J. Kohlham-
mer, A. Perer, and G. Santucci. The Human User in Progressive Visual
Analytics. In Proc. of EuroVis Short Papers, pp. 19–23. The Eurographics
Association, 2019. doi: 10.2312/evs.20191164 7, 8, 11

[27] F. Olken and D. Rotem. Random sampling from database files: A survey.
In Proc. of SSDBM, pp. 92–111. Springer, 1990. doi: 10.1007/3-540
-52342-1_23 3

[28] M. Onus, A. Richa, and C. Scheideler. Linearization: Locally Self-
Stabilizing Sorting in Graphs. In Proc. of the ALENEX Workshop, pp.
99–108. SIAM, 2007. doi: 10.1137/1.9781611972870.10 4

[29] A. Patil, G. Richer, C. Jermaine, D. Moritz, and J.-D. Fekete. Studying
Early Decision Making with Progressive Bar Charts. IEEE Transactions
on Visualization and Computer Graphics, 29(1):407–417, 2023. doi: 10.
1109/TVCG.2022.3209426 11

[30] M. Procopio, A. Mosca, C. Scheidegger, E. Wu, and R. Chang. Impact
of Cognitive Biases on Progressive Visualization. IEEE Transactions on
Visualization and Computer Graphics, 28(9):3093–3112, 2022. doi: 10.
1109/TVCG.2021.3051013 11

[31] M. Procopio, C. Scheidegger, E. Wu, and R. Chang. Selective Wander Join:
Fast Progressive Visualizations for Data Joins. Informatics, 6(1):1–21,
2019. doi: 10.3390/informatics6010014 3

[32] F. Provost, D. Jensen, and T. Oates. Efficient Progressive Sampling. In
Proc. of SIGKDD, pp. 23–32. ACM, 1999. doi: 10.1145/312129.312188
3

[33] S. Rahman, M. Aliakbarpour, H. K. Kong, E. Blais, K. Karahalios,
A. Parameswaran, and R. Rubinfield. I’ve Seen "Enough": Incremen-
tally Improving Visualizations to Support Rapid Decision Making. Proc.
of VLDB Endowment, 10(11):1262–1273, 2017. doi: 10.14778/3137628.
3137637 3, 11

[34] H. Schulz, M. Angelini, G. Santucci, and H. Schumann. An Enhanced
Visualization Process Model for Incremental Visualization. IEEE Transac-
tions on Visualization and Computer Graphics, 22(7):1830–1842, 2016.
doi: 10.1109/TVCG.2015.2462356 7

[35] D. Sculley. Web-Scale k-Means Clustering. In Proc. of WWW, pp. 1177–
1178. ACM, 2010. doi: 10.1145/1772690.1772862 7

[36] B. Settles. Active Learning Literature Survey. Technical Report 1649,
University of Wisconsin – Madison, Department of Computer Sciences,

2009. 3
[37] C. D. Stolper, A. Perer, and D. Gotz. Progressive Visual Analytics: User-

Driven Visual Exploration of In-Progress Analytics. IEEE Transactions
on Visualization and Computer Graphics, 20(12):1653–1662, 2014. doi:
10.1109/TVCG.2014.2346574 1, 7

[38] C. Turkay, E. Kaya, S. Balcisoy, and H. Hauser. Designing Progressive
and Interactive Analytics Processes for High-Dimensional Data Analysis.
IEEE Transactions on Visualization and Computer Graphics, 23(1):131–
140, 2017. doi: 10.1109/TVCG.2016.2598470 3, 7

[39] J. S. Vitter. Random Sampling with a Reservoir. Transactions on Mathe-
matical Software, 11(1):37–57, Mar. 1985. doi: 10.1145/3147.3165 3

[40] M. Williams and T. Munzner. Steerable, Progressive Multidimensional
Scaling. In Proc. of VIS, pp. 57–64. IEEE, 2004. doi: 10.1109/INFVIS.
2004.60 8

[41] J. Yang and J. Widom. Incremental computation and maintenance of
temporal aggregates. The VLDB Journal, 12:262–283, 2003. doi: 10.
1007/s00778-003-0107-z 7

[42] E. Zgraggen, A. Galakatos, A. Crotty, J. Fekete, and T. Kraska. How Pro-
gressive Visualizations Affect Exploratory Analysis. IEEE Transactions
on Visualization and Computer Graphics, 23(8):1977–1987, 2017. doi: 10
.1109/TVCG.2016.2607714 1, 3

[43] Y. Zheng, J. Jestes, J. M. Phillips, and F. Li. Quality and efficiency for
kernel density estimates in large data. In Proc. of SIGMOD, pp. 433–444.
ACM, 2013. doi: 10.1145/2463676.2465319 8

[44] Y. Zheng, Y. Ou, A. Lex, and J. M. Phillips. Visualization of Big Spatial
Data using Coresets for Kernel Density Estimates. In Proc. of VDS, pp.
23–30, 2017. doi: 10.1109/VDS.2017.8573446 4

[45] Z. Zhou, C. Shi, X. Shen, L. Cai, H. Wang, Y. Liu, Y. Zhao, and W. Chen.
Context-aware Sampling of Large Networks via Graph Representation
Learning. IEEE Transactions on Visualization and Computer Graphics,
27(2):1709–1719, 2021. doi: 10.1109/TVCG.2020.3030440 8

	Introduction
	Characterizing PVA-Sampling
	Related Work
	Sampling for non-progressive VA
	Sampling for PVA

	A Pipeline for Tailorable PVA-Sampling
	Modularizing PVA-sampling along data structures
	Linearization: Putting the data in order
	Subdivision: Splitting the data into bins
	Selection: Placing items into chunks

	Tailoring PVA-Sampling on-the-fly
	Dynamically tailoring to changing tasks
	Dynamically tailoring to incremental input data
	Dynamically tailoring to changing scope

	Utilizing the pipeline for tailored sampling
	Recreating existing samplings
	Recomposing sampling pipelines
	Tailoring the sampling towards multiple attributes

	Discussion
	Implementing tailored sampling into DBMS
	Tailored sampling as data analysis method
	Usability aspects of tailored sampling

	Implications and Limitations
	Impact before sampling
	Impact during the sampling
	Impact after sampling

	Conclusion

