This poster summarizes our submission to the 2023 IEEE SciVis contest. This year’s contest focused on the visualization of neuronal network simulations of plasticity changes in the human brain, i.e., across neurons and synapses in multiple simulation setups. The overall size of the contest data was about 50GB. The goal was to solve four analysis tasks on that dataset: Overview, plasticity changes, ensemble visualization, and workflow.

NOVEL VR SOLUTION
- Immersive exploration of the brain topology
- Exploring temporal patterns in a linked view
- Drilling into the hierarchical clustering
- Side-by-side ensemble analysis of simulations
- Shelf metaphor for saving and loading analyses
- HTC Vive Setup

EXPLODED VIEW
For unbalanced drill-down clustering

EXTENDED MEAN-SHIFT EDGE BUNDLING
"BRAIN MAP" v.d.Grinten Projection for Brain Data, Sp.-Filling Curves

MODIFIED SPLITTING ALGORITHM
For faster PIP calc.

TANGIBLE INTERACTION FOR 3D VIS

FORMAT PAINTER
Apply drill-down and encoding to ensembles

Backend
- MongoDB
- Redis
- GRPC

Unity Frontend
- GO
- IATK
- STEAM VR

VR devices
- HTC Vive link box
- 2 HTC Vive trackers
- 2 HTC Vive controllers
- 3-4 HTC Vive base stations
- HTC Vive Pro 2

Project website: https://vis-au.github.io/scivis23
Contact: Hans-Jörg Schulz, hjschulz@cs.au.dk