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ABSTRACT

Space-filling layout techniques for tree representations are fre-
quently used when the available screen space is small or the data set
is large. In this paper, we propose a new approach to space-filling
tree representations, which uses mechanisms from the point-based
rendering paradigm. Additionally, helpful interaction techniques
that tie in with our layout are presented. We will relate our new
technique to established space-filling techniques along the lines of
a newly developed classification and also evaluate it numerically
using the measures of the Ink-Paper-Ratio and overplotted%.

Keywords: Tree visualization, space-filling layout, point-based
rendering.

Index Terms: I.3.8 [Computing Methodologies]: Computer
Graphics—Applications.

1 INTRODUCTION

Large hierarchies occur frequently in real world applications,
among which are the life sciences and engineering. Yet, their graph-
ical representation is problematic, as the tree might be heavily un-
balanced, extremely wide but relatively shallow, or quite narrow but
very deep. The Treemap [9] and its successors are often used tech-
niques for their representation, because they scale well above all
known node-link-representations. This is due to the fact that they
are space-filling techniques, meaning that they utilize the available
screen space entirely. While many node-link-techniques try to op-
timize their usage of the available screen space, none of them can
be called “space-filling” in the very sense of the word. With this
paper, we want to close this gap and present a first approach to a
space-filling node-link overview visualization for large graphs.

The idea behind those techniques that call themselves space-
filling lies in the fact that they use the available space itself as the
matter that is formed by the layout algorithm to represent the given
tree. Conversely, node-link-representations rather see the tree with
its nodes and edges as the object that needs to be shaped to fit the
available space. The latter is of course hard to do in a manner that
yields a truly space-filling representation, as the node-representing
points usually leave some blank space in between them.

To solve this problem for a node-link-layout, we propose a tes-
sellation of the available space that arranges the nodes in a space-
filling way. This tessellation is taken from the point-based render-
ing paradigm, where similar problems occur. An example of how
our visualization technique treats a large real world hierarchy is
shown in Fig. 1. The depicted tree is the categorization hierarchy
of the Open Directory Project dmoz.org with more than 750.000
nodes. This categorization is used by many sites throughout the in-
ternet for classifying websites (e.g. by Google Directory) or news
articles (e.g. by ScienceDaily).
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Figure 1: Point-based visualization of the DMOZ classification hi-
erarchy. It contains 754403 nodes of which are 576818 leaves.
(dmoz.org snapshot from 03-SEP-2008)

It can be seen that our technique still leaves parts of the screen
space empty, if the tree is unbalanced or partially very narrow. This
is actually a very helpful property of an overview, as it allows to
grasp certain tree characteristics at a glance. Yet overall, nodes are
always positioned in between existing nodes in an attempt to avoid
overlap, creating a space-filling pattern according to the point-based
tessellation. Our method, its ties to point-based rendering, and
some useful interaction techniques that go along with our layout
are presented in Section 2. Its key concepts are illustrated with ex-
amples from the DMOZ data set shown in Fig. 1. Then, we concep-
tually and numerically relate the new point-based layout technique
to existing techniques. For the conceptual comparison, we intro-
duce a classification scheme in Section 3, which generalizes and
categorizes space-filling techniques according to their layout prop-
erties. The numerical comparison is then done with two established
space-filling techniques in Section 4. At the end, we give a short
conclusion and sketch ideas for future work in Section 5.

2 A POINT-BASED APPROACH TO TREE VISUALIZATION

When large amounts of data come into play, visualization designers
look for techniques that make the best use of the available screen
space. Space-filling layout techniques achieve this goal for the
special case of hierarchical structures. Yet, in the past, space-filling
techniques have been set equal to implicit tree layouts. It seemed
that only implicit techniques with their 2-dimensional graphics
primitives are able to fully fill the available screen space. Hence,
explicit techniques, which try to maximize their usage of the
screen space, usually call themselves “space-optimized” or “space-
efficient”. The layout presented here is a first attempt to fill the gap
in between space-filling, implicit techniques and space-optimized,
explicit techniques. It is designed as an explicit technique that is
truly space-filling in the sense of the following definition:



Definition: A tree visualization is called space-filling, iff

Ink-Paper-Ratio = ∣used pixels∣
∣available pixels∣ = 1

and

∣available pixels∣È ∣nodes to display∣

The first condition of this definition formulates the usual under-
standing of the term “space-filling”, namely that every available
pixel is used. The measure of the Ink-Paper-Ratio [4] is basically
the quotient of Tufte’s Data Density and his Data-Ink-Ratio [19]:

Data Density = ∣nodes to display∣
∣available pixels∣

Data-Ink-Ratio = ∣nodes to display∣
∣used pixels∣

The second condition of the definition makes sure that the first
property does not simply hold because of massive overplotting, as
many techniques become virtually space-filling if they are used
with too much data on a small screen space.

2.1 Inspiration
The idea for our proposed layout method stems from the well-
established area of Point-Based Graphics [7]. By point-based meth-
ods, triangular graphics primitives, of which 3-dimensional render-
ings mostly consist, are replaced by point primitives. This makes
sense, as today’s high-resolution-models consist of millions of tri-
angles, which cover only a relatively small screen area and often
share the same pixels. This results in a computational overhead,
which is usually not worth the result. Especially so, as the same
result can be computed with less effort by using point primitives
instead, which are easier to render. Yet, their usage brings along a
new problem: where triangles describe a surface by design, points
need to be carefully arranged to guarantee that no holes or gaps are
left in between. This effect is called undersampling and an exam-
ple is shown on the left side of Fig. 2, where the points are sampled
regularly and leave gaps in steep regions. The right side of Fig. 2
shows a closed surface instead, which is generated by the more ad-
vanced

√
5-sampling [16]. This improvement is due to the adaptive

nature of this method, as it samples more points in otherwise un-
dersampled areas and thus achieves complete coverage with only
as many points as needed.

Interestingly, a space-filling, explicit tree layout technique would
need to solve the very same problem to cover the entire screen space
without leaving gaps. So, even though the

√
5-sampling method

has been developed for a different context, our tree layout uses it to
position the tree’s nodes in a space-filling way.

Figure 2: A point-based rendering of a surface with undersampling
effects (left) and

√
5-sampling results (right) – taken from [16]

2.2 The Basic Layout Technique

The
√

5-sampling uses a hierarchical sample scheme for position-
ing points at possibly undersampled, blank spots around other
points. For each step of this technique, the starting grid will be
refined by a rotation of approx. 27○ and a reduction of 1/√5 of
the distance between two adjacent grid points. Around every un-
dersampled point, four new points will be inserted at the nearest
position in the current grid. Fig. 3 illustrates the steps of this al-
gorithm. This shows nicely how the overall density increases with
every recursion step and how gaps are filled in between the points.

(a) (b)

(c) (d)

Figure 3: Four recursion steps of the
√

5-sampling method.

In Fig. 3, additional lines where included that are not part of
the original

√
5-sampling method. These lines (edges) between the

points (nodes) already hint at a possibility to map a tree structure
onto the resulting point positions. While the

√
5-sampling is orig-

inally adapted according to the surface properties, our technique
uses it to adapt to the tree characteristics. This is done in the same
recursive, step-wise manner as the

√
5-sampling method itself:

(a) Starting with the root in the center of the available screen
space, the root’s first 4 children will be arranged around it.

(b) In the next step, the next 4 children of the root and the first 4
children of the previously laid out nodes are positioned by a
rotation and scaling according to the

√
5-sampling.

(c) Then, the same procedure is repeated to layout the next 4 chil-
dren of the root node, the next 4 children of the nodes laid out
in step (a), and the first 4 children of the nodes that have been
added in step (b).

(d) This last step of Fig. 3 adds another 4 children around the root
node, as well as 4 children to all nodes from steps (a)-(c).

This procedure is repeated until all nodes of the tree are posi-
tioned. Since not all siblings of a node can be positioned in the
same step and thus on the same level, a green-to-red color scale is
used to visualize the number of siblings as an indication of a sub-
tree’s width. In the example from Fig. 3, this can be observed for
the 16 red children of the root node: while the first four of them
could be placed very prominently, the following steps can assign



(a) (b)

(c) (d)

Figure 4: Layout adjustment with 8 (c+d) instead of 4 (a+b) chil-
dren positioned around the root node.

only decreasing areas to the remaining children. So, even though
the last few of them do not really stick out anymore, it can be seen
from the red color assigned to all of them that they have a lot of
siblings and that the tree is quite wide at the first level.

Also, the level of a node within the tree is mapped to the bright-
ness of this color. This is done for the same reason as above: sib-
lings are not necessarily assigned the same amount of screen space,
but should still be distinguishable from lower levels. For example
in Fig. 4a, it can be observed by the brightness that the area around
the root in the middle of the representation contains nodes of the
same level as the centers of the surrounding four areas.

So apart from the outer border, the described incremental refine-
ment of the layout allows to use indeed every single pixel of the
available space and hence to be space-filling in this sense. Yet, as
this layout method predefines all possible node positions indepen-
dently of the characteristics of the tree itself, the filling degree is
tree dependent. This is not considered a limiting factor, though,
as the areas that remain empty carry a lot of information about a
tree’s width and balancing – an advantage over other established
space-filling techniques, which use the available space completely
at the cost of this structural information. We even use the differ-
ent degrees of filling to determine whether or not to add edges to a
certain area. Only when the representation is sparse enough, edges
are drawn. This reduces the visual clutter on the dense parts of
the tree visualization, and still provides information on the linkage
of sparsely scattered nodes in other areas. In our implementation,
the threshold on the amount of filling, which determines whether to
draw edges or not, can be interactively changed to a value that suits
the user’s task. Besides this, our technique comes with four more
benefits by design due to its fixed positioning:

- It can be laid out in O(n) in a DFS or BFS manner. The
node positions for a full tree of a certain width and depth can
even be precomputed and then be used as a layout template
for different instances of actual trees.

- It preserves the orientation even if parts of the tree are al-
tered, deleted, or added. This is because local changes to the
hierarchy will only result in local changes to the layout.

- It allows for an easy comparison of large trees. Because the
difference between the layout of similar subtrees will primar-
ily be the scaling, it is easy for a user to find recurring patterns.

Figure 5: Improving readability by encoding the hierarchy levels
on the z-axis in a 3D representation of the tree from Fig. 1.

- It is possible to determine an optimal starting distance be-
tween the root and its first four children from the given display
resolution by reverse calculation of the rotation and scaling to
maximize the usage of the available space. As a rule of thumb,
a third of the given dimension works well. This means for a
screen space of 600×600, the distance between the nodes in
the initial grid should be 200.

As it can be seen in Fig. 4a, the rather rugged outline of the
area filled by a full tree leads to relatively large unoccupied areas at
the border. For a square screen space, the full tree occupies about
60% of it. Since the available screen space is usually of rectangu-
lar shape, its utilization can further be improved by the adjustment
shown in Fig. 4c and 4d. Here, four additional children of the root
were laid out in the first step. Due to the interleaving structure, their
subtrees integrate seamlessly with the overall layout. This adjust-
ment increases the utilization of the screen space to about 80%.

To enhance the readability of our layout, we provide a 3-
dimensional extension as an alternative display style, into which
the 2-dimensional orthogonal top-down view can be tilted interac-
tively. It improves particularly the perception of the depth of the
hierarchy as it assigns a z-coordinate to each node according to its
hierarchy level. This approach is illustrated in Fig. 5.

It should be noted that even though we provide a lot of facilities
to improve the readability of the layout (color coding, 3D exten-
sion, etc.) it still requires some training to read it properly. One
simply cannot squeeze as many nodes as possible on the screen and
at the same time expect this representation to be well spaced out
and instantaneous to grasp for the untrained eye. So, the interaction
techniques described in the following allow to manipulate the rep-
resentation. They help in building up an understanding of the data
beyond the initial layout by providing mechanisms for exploration.

2.3 Interaction Techniques
The layout technique as described above is designed in such a way
that it communicates an overall impression of a tree’s characteris-
tics, but also serves as a good basis for further exploration of lower
levels of the hierarchy. So, while our initial point-based layout
serves as an overview to start from, the following techniques en-
hance it with suitable methods of interaction along the lines of the
Visual Information Seeking Mantra “Overview first, zoom and filter,
then details-on-demand” [15]:



(a) Original (b) Depth filter (c) Width filter (d) Subtree filter

(e) Original (f) Zoomed #1 (g) Zoomed #2 (h) Zoomed #3

(i) Original (j) Rotated #1 (k) Rotated #2 (l) Rotation Scheme

Figure 6: Different filtering techniques (a-d), subsequent zooming (e-h), and rotation (i-l) of subtrees reveal more details.

Filtering: For our layout, we propose three filtering ap-
proaches, which allow users to locate nodes of interest and mask
out the rest of the tree as it is shown in Fig. 6. The first filter shows
only the nodes of selected hierarchy levels in the layout. As this
filter can be adjusted dynamically, the user gains insight about the
growth of the tree and its depth. Fig. 6b shows for example only
hierarchy levels 7 and below of the DMOZ hierarchy. The second
filter accounts for the number of siblings. An application of this
filter is illustrated in Fig. 6c, where only nodes with more than 30
siblings are drawn. Both filters can be used in conjunction, for ex-
ample to locate where the tree becomes deep and wide. The third
filter can be used to target a specific subtree, masking out all nodes
that are not part of it. This is depicted in Fig. 6d, where only the
subtree corresponding to the top-level DMOZ category “Business”
is shown.

Zooming: This functionality is used to scale a desired re-
gion of the layout to the size of the available screen space. De-
pending on the properties of the tree (its depth and width), the
dense space-filling layout will eventually break up and show the
individual nodes. Also, since zooming-in results in a sparser lay-
out, the degree of filling of the now zoomed-in region is recom-
puted and if needed, additional edges are drawn. This effect can
be observed in Fig. 6e-6h, where it was zoomed into the subtree
“World/Deutsch/Regional/Europa” of the DMOZ hierarchy from
Fig. 1. To identify regions of interest in the overview that may
be worthwhile to zoom in, we also provide a GraphSplat [20] as
a linked view to indicate particularly dense regions in the layout.
The GraphSplat for the example from Fig. 1 can be seen in Fig. 7.
Such views have first been suggested in [3] for the visualization of
millions of items. In such large data sets, cluttering artifacts and

overplotting occur often and obscure the view on the actual number
of data items in a certain region. This property is shared by many
space-filling techniques as they try to produce dense representa-
tions, which may easily lead to overlapping nodes. Our technique
is no exception to that and so, we found it helpful to get additional
insight on where large numbers of nodes can be found.

Details-on-Demand: It is an inherent property of our lay-
out that nodes first positioned have the most space for displaying
their children. We make use of this property by sorting children
by the number of nodes below them. By laying them out first, the
largest subtrees are thus also allotted the most screen space. Yet, if
a subsequently positioned node and the subtree rooted in it are of
particular interest, a reorganization of the nodes allows to enlarge
this subtree by placing it on one of the outermost positions. For
reducing the cognitive effort of comparing the original visualiza-
tion with the reordered result, we use a rotation of the node list as a
traceable reorganization method. The rotation can be performed in
both directions for a selected subtree and its siblings. The rotation
scheme is illustrated in Fig. 6l and Fig. 6i-6k show the rotation in
action. Here the DMOZ category “Adult” is being rotated outwards
within the hierarchy shown in Fig. 1, so that more and more details
become visible, as more space becomes available for the layout of
the subtree of interest.

In combination, all these techniques play together well and allow
for different paths of exploration, while the first overall impression
of the tree and its balancing can be directly derived from the point-
based layout. As an overview visualization should, it conveys the
most important features of the tree and at the same time invites the
user through its interaction techniques to take a closer look.



Figure 7: This GraphSplat shows areas of high density in Fig. 1.
The nodes within the DMOZ hierarchy that correspond to the ar-
eas of high density have been sought out and used to annotate the
GraphSplat with the font sizes reflecting the hierarchy levels. It can
be seen that most of the dense spots correspond to regional subtrees.

3 CLASSIFICATION

When relating our technique to other space-filling techniques, we
realized that they have quite different characteristics, which divide
their spectrum into several categories. This is not surprising, as the
term “space-filling” appears with different notions in the literature.
We present a more general view on space-filling techniques that is
able to encompass all the different characteristics and to adequately
relate our’s as well as the existing techniques with each other.

To achieve this, we propose to broaden the scope of the space-
filling paradigm defined in Section 2 by introducing two basic re-
laxations. The first regards space-optimized, explicit node-link lay-
outs. Apparently, these are not space-filling in the defined sense,
but we found it noteworthy that actually many of the explicit layout
methods can easily be transformed into equivalent implicit, and thus
space-filling techniques. This is possible because many of them rely
on a partitioning (top-down) or packing (bottom-up) of the avail-
able space. But instead of using the resulting areas themselves as
node representations, as implicit techniques do, explicit techniques
use them to put nodes (points) inside. If these techniques are mod-
ified so that instead of the points, the respective areas of the screen
space are shown, one obtains an equivalent implicit technique. This
principle is exemplified in Fig. 8. So, the first relaxation of the def-
inition is to consider explicit layouts to be space-filling, too, if such
a transformation from an explicit to an implicit version is possible
and only the implicit version satisfies the definition from Section 2.

The second relaxation concerns the influence of screen space and
tree characteristics on the space-filling property of a layout. It is
introduced because some techniques are space-filling under all cir-
cumstances, while others require certain constraints to be met:

I. Specific aspect ratio: Some techniques require a certain as-
pect ratio to be truly space-filling – e.g. an aspect ratio of 1
for PieTrees [13].

II. Certain shape: Other techniques may cope well with differ-
ent aspect ratios, but can only fill the available screen region if
it is of a certain shape – e.g. a rectangular shape for Treemaps.

III. Unlimited screen space: As a number of techniques grow
outwards from the root node, no upper bound for their final
size can be fixed in beforehand – e.g. for Sunburst [17].

IV. Particular data characteristics: Many techniques fill out the
entire available screen space only if the given tree fulfills cer-
tain properties – e.g. a uniform height for Icicle Plots [10].

So, the second relaxation is to consider a layout as space-filling,
even if the conditions of the definition are only met under any of the
constraints listed above. The examples for the different constraints
show that this is very much in tune with the term “space-filling”, as
it is commonly used.

We used the above four constraints to classify the different exist-
ing space-filling techniques. Using relaxations of the space-filling
definition distinguishes our classification from previous character-
izations like [22], which rather added additional constraints on top
of the space-filling property, e.g. being order preserving or handling
structural changes smoothly, to create a “perfect” space-filling lay-
out. With our relaxations a visualization designer who wants to use
a specific space-filling technique can just look up which constraints
his visualization tool must fulfill to create a truly space-filling tree
representation to start with before adding even more criteria on top
of that.

So in theory, a space-filling visualization technique might be
constrained by any of the 16 possible combinations of the four
points mentioned above. Yet, it is an interesting observation that
when trying to match up techniques from the literature with the
constraints above, only four of these combinations appear in prac-
tice. These four combinations are:

1. No constraints at all. Only very few techniques are able
to completely fill an arbitrarily sized screen space of any desired
aspect ratio and shape for any imaginable tree. Examples for these
rare cases are the Voronoi Treemaps [1] and the Space-Optimized
Tree Visualization [12] shown in Fig. 8c.

2. Constrained by the shape. These techniques can handle
it all: arbitrary trees, different aspect ratios and an upper bound on
the available screen space. Just the shape of it has to be right, which
usually means “rectangular”. Since rectangular screen regions are
the most common in today’s GUIs, this constraint is not a limiting
factor in practice. Besides the standard Treemap, other examples
for this category include Radial Edgeless Trees [8] and the Draw
Tree Algorithm [5].

3. Constrained by aspect ratio and shape. In this case, not
only the shape of the screen space is restricted, but also its aspect
ratio. This group of techniques consists mainly of radial approaches
like the circular Treemap [21], RINGS [18], the Balloon Drawings
from Fig. 8, and the aforementioned PieTrees. Since they all base
on a circular shape, an aspect ratio of 1 is a necessity. Otherwise the
techniques would degenerate into elliptic shapes, which are often
considered to be techniques on their own right – e.g. ellimaps [14].

(a) Explicit (b) Implicit (c) Explicit (d) Implicit

Figure 8: (a) The Balloon Drawings [11] or Bubble Tree Draw-
ings [6] are explicit techniques by design. (b) Yet, if instead
of the nodes their bounding circles are used, it becomes a circu-
lar Treemap technique. (c) The Space-Optimized Tree Visualiza-
tion [12] has been published as an explicit technique as well. (d)
The derived version uses the underlying polygonal space-division
in a Treemap-manner to yield an equivalent implicit layout.



4. Constrained in every aspect. This category contains all
techniques that pose constraints on every aspect (shape, aspect
ratio, screen space, and tree characteristics) to become truly
space-filling. These are basically all the techniques which grow
outwards, like Sunburst or Icicle Plots. As their shape, aspect ratio
and required screen space depends on the tree itself, it is a matter
of the data whether these techniques really fill out the space. In
the cases of Sunburst and Icicle plots, the tree must have a uniform
depth to gain a complete coverage of a circular resp. rectangular
space. Additionally, for Icicle Plots, the ratio of the tree’s width
and height determines the aspect ratio of its icicle representation.

Interestingly, as discussed in Section 2, our approach falls into
neither of these four categories. Instead, so far it seems to be the
only member of the following 5th category:

5. Constrained by shape, aspect ratio, and tree charac-
teristics. This class of techniques requires a certain shape of
a certain aspect ratio, which is only filled up to the last pixel, if
the tree’s width and/or height adhere to certain principles – e.g.
being a multiple of 4. Yet, it is still possible to set an upper bound
on the size, which will not be exceeded by the visual representation.

These five categories can be schematically depicted as shown in
Fig. 9 to give an impression of the landscape of currently existing
space-filling techniques and the gaps in between them. For exam-
ple, Fig. 9 shows that the constraint I (aspect ratio) seems to be a
stricter version of constraint II (shape): while there exist many tech-
niques that require a certain shape, but can handle arbitrary aspect
ratios, there is no known technique that does the opposite – is able
to fill an area of arbitrary shape but needs a fixed aspect ratio. So,
a fixed shape is a necessary condition for a fixed aspect ratio – at
least until a technique is developed to fill this gap.

Figure 9: The five categories of space-filling techniques and what
they are constrained by.

4 EVALUATION

This section evaluates the basic, unrefined layout of our point-based
technique. This means that we do not use any of the enhancements
or layout adjustments that are described in Section 2.2: not the
adaptive edge drawing nor the placement of 8 instead of 4 children
at the first level. We found this just fair, as we used for instance the
Space-Optimized Tree layout also in its basic and not its computa-
tionally more intensive alternative layout scheme [12].

For the evaluation, we took it as an indicator for the goodness of
a layout how well it distributes the nodes over the available screen
space and thus hopefully minimizes overplotting. This seemed rea-
sonable, as overplotting is a problem of any dense, space-filling
node-link-layout. To numerically quantify screen utilization and
overplotting artifacts, we used the Ink-Paper-Ratio that was men-
tioned in Section 2, as well as overplotted% from [2]:

overplotted% = 100× ∣overplotted pixels∣
∣used pixels∣

Besides our point-based layout, we investigated RINGS and the
Space-Optimized Tree Visualization with regard to the above mea-

sures. We chose these two techniques basically because they are ex-
plicit techniques, too, but fall into different categories of our classi-
fication – both of which being less constrained than our own layout.

To compare the different techniques, we fixed the node size to
1 pixel and used a fixed, quadratic screen space of 600× 600, as
RINGS and our layout require a rectangular shape with an aspect
ratio of 1. This section details the comparison for an artificial test
set of hierarchies and for the DMOZ example hierarchy from Fig. 1.

4.1 Evaluating the Test Set
As an optimal space-filling layout could place 360.000 1-pixel
nodes on a 600×600 screen-space, we constructed three different
full trees with nearly as much nodes. These trees are fully balanced,
so that each non-leaf node has the same amount of children. The
chosen width-depth-combinations and their overall sizes are listed
in Table 1. The computed measures for the different layouts and
trees are shown in Fig. 10 and some visual results in Fig. 11 and 12.

test case depth width # of nodes # of leaves thereof

A 6 8 299.593 262.144
B 7 6 335.923 279.936
C 9 4 349.525 262.144

Table 1: Sizes of the three evaluated width-depth-combinations.

Ink-Paper-Ratio: The Ink-Paper-Ratio shows the utilization
of the available screen space. A higher value means a better usage
of the space and is thus preferable. First of all, it is noteworthy that
all three techniques behave differently with respect to increasing
depth and decreasing width. While the Ink-Paper-Ratio is steadily
rising for the Space-Optimized Tree layouts, it stays about the same
for our point-based technique. The latter is interesting, as it can be
seen in the GraphSplats of Fig. 12 that for all of the three different
trees, the distribution of nodes on the screen space is changing dra-
matically. As for RINGS, in terms of the Ink-Paper-Ratio, it would
behave similarly to our layout, if it were not for a special case in
the RINGS layout for trees with exactly 6 children. This case is de-
picted in Fig. 11b, and it can be seen that the layout allows the sixth
subtree to occupy the entire middle of the layout, which leads to the
better ratio for this case. Furthermore, the left diagram in Fig. 10
shows that the maximal Ink-Paper-Ratio is still below 50% for all
of the test cases, which is already quite good for an explicit lay-
out. Also, it is not surprising that the Space-Optimized Tree layout
achieved the best utilization for all of the trees as it is the one with
the most adaptable of the three layouts examined. Yet, its adaptabil-
ity, which tries to distribute the nodes evenly and thus to maximize

Figure 10: The Ink-Paper-Ratios and overplotted%-values for the 3
trees from Table 1.



(a) Space-Optimized Layout for Test Case B (b) RINGS Layout for Test Case B

(c) Space-Optimized Layout for the DMOZ Hierarchy (d) RINGS Layout for the DMOZ Hierarchy

Figure 11: The Space-Optimized layout and the RINGS layout with their respective GraphSplats showing test case B and the DMOZ hierarchy
from Fig. 1. The dotted circle in the GraphSplat of (b) illustrates the circular area in which the RINGS-representation is laid out, accounting
for the wasted space at the bottom of the quadratic screen space.

the screen usage, leads to the effect that the overall characteristics
of the tree are evened out, which makes it hardly possible to relate
the density of one subtree to another. This is where techniques like
the point-based layout or RINGS have their strengths. Here, tree
characteristics are preserved through the layout process at the ex-
pense of a lower screen utilization, resulting in blank spaces that
are not occupied. That the Ink-Paper-Ratios of RINGS are below
the ones of the point-based layout is mostly due to its circular ap-
proach, which leaves a lot of whitespace by design. This is not nec-
essarily a drawback, as it allows to clearly distinguish the individual
subtrees from each other, whereas the point-based and the Space-
Optimized approach achieve a tighter packing and thus a better Ink-
Paper-Ratio, but at the expense of the subtrees’ distinguishability.

overplotted%: The overplotted% values give the relative
amount of overplotted pixels, which is in this case equivalent to
visual clutter. Hence, a lower value means less clutter and is there-
fore desirable. It can be observed in the diagrams that the over-
plotted% values of our point-based and the RINGS layout are both
rising with increasing depth and decreasing width. Both show also
a distinct jump from about 50% to about 80%. Only this jump oc-
curs earlier for RINGS than for the point-based approach. This can
also be observed from Fig. 12b to 12c. Interestingly, the overplot-
ted% values for the Space-Optimized Tree layout are even slightly
falling with increasing depth and decreasing width. We believe this
is due to the fact that this technique is very much influenced by
tree width, because it partitions the available space according to the
number of children. When the number of children is large, it pro-
duces many narrow partitions, which make the layout at the next
level even harder. Here again, like in the Ink-Paper-Ratio diagram,
our point-based technique is sandwiched in between the other two
techniques. The only exception is test case A, where point-based
performed slightly better than the Space-Optimized layout. This
overall distribution is related to the Ink-Paper-Ratio, since the use
of more pixels has an effect on the degree of overplotting.

4.2 Evaluating the DMOZ Hierarchy
Visualizing the DMOZ hierarchy with RINGS and the Space-
Optimized Tree Layout yields Fig. 11c and 11d . The numerical
values for overplotted% and the Ink-Paper-Ratio reflect our find-

ings from above, so that again our point-based layout is in between
the other two. Yet, the comparison of the actual layouts hints at
some interesting properties. For example, while RINGS has its
advantage definitely on the aesthetical side, clutter tends to occur
frequently already at higher levels of the hierarchy. This can be ob-
served from the uniformly large font in the GraphSplat in Fig. 11d,
as the hierarchy level is mapped onto the font size. The varying
font sizes in the GraphSplats in Fig. 7 and Fig. 11c show a much
more diverse occurrence of cluttering artifacts for the point-based
and the Space-Optimized layout. So, RINGS seems to be perfect
to give a nice-looking high-level overview of a large tree like the
DMOZ hierarchy. Contrary to that, the other two techniques al-
low a first glance that reaches further downward the hierarchy, as
they do not restrict themselves to small circular patterns. Yet, while
the Space-Optimized layout tries to minimize clutter by prioritizing
space utilization above everything else, its algorithm actually pro-
duces more clutter than even RINGS. This can be seen in Fig. 11c
and is due to the already mentioned very narrow areas that are al-
located in case of a wide subtree. This also produces the alignment
of the dense regions that can be observed in the GraphSplat, as the
midpoints of these narrow areas, which are used as roots for the
individual subtrees, are all lying side by side. Of course, the point-
based layout cannot prevent clutter from occurring at all. But its
algorithm distributes it nicely and thus minimizes it, as it is less
likely to accumulate in one region.

5 CONCLUSION AND FUTURE WORK

We presented an overview technique for large trees that maximizes
the usage of screen space and preserves tree characteristics.

Using a sampling mechanisms from the field of point-based
graphics, we developed our new point-based layout technique,
which fulfills the above criteria, as it makes good use of the avail-
able screen space without extensive overplotting and also conveys
the basic shape and other features of the tree. As an overview tech-
nique, it allows the user to recognize the width and the depth of a
tree through color coding and the distribution within the available
screen space. Interaction techniques (filter, zoom, rotate) allow to
selectively drill down for further exploration of the tree.

We related this new layout to existing ones on a conceptual



(a) Point-based Layout for Test Case A (b) Point-based Layout for Test Case B (c) Point-based Layout for Test Case C

Figure 12: The point-based layouts of the test cases and their respective GraphSplats.

level through a newly introduced classification of space-filling tech-
niques. In addition, we compared our technique with two other
space-filling techniques for different large trees. For this, we chose
a numerical approach and measured screen utilization and visual
cluttering. As a result, the introduced point-based layout positioned
itself between the other two examined techniques, which confirms
that we seem to have found a good compromise between filling the
entire screen area and preserving the tree characteristics.

For the future, we are planning to extend the spectrum of point-
based tree layout techniques with other possible sampling methods
as shown in Fig. 13. Because they tile the screen space into more
subregions, the two depicted layout schemes are expected to pro-
duce better results on wide trees than the

√
5-sampling that was

used in this paper. Having a number of different sampling algo-
rithms allows us to choose the one that is best fit for a given tree.

(a)
√

13-Sampling (b)
√

25-Sampling

Figure 13: Two other possible arrangements for space-filling, point-
based layouts.

Once such an adjustable sampling mechanism has been investi-
gated and included into our layout, the next important step would
be the evaluation of our technique in the form of a user study. In
this paper, we have already presented a numerical evaluation with
respect to different tree characteristics, namely depth and width. As
the comparison presented in this paper has shown, all the compared
techniques have their advantages for different types of trees. But it
is also the task at hand that determines whether a certain represen-
tation is useful or not for a tree of a certain size. So, the dimensions
that are still missing are different hierarchy sizes and different ex-
ploration tasks. We plan to conduct this user study with large hierar-
chies from biological data and biological domain experts within our
interdisciplinary graduate school dIEM oSiRiS. This will enable us
to answer the important question from which tree size upwards such
a dense representation as the point-based layout is appropriate, and
for which kind of exploration tasks.
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