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Abstract

Visualization has become an important ingredient of data analysis, supporting users in exploring data and confirming
hypotheses. At the beginning of a visual data analysis process, data characteristics are often assessed in an initial
data profiling step. These include, for example, statistical properties of the data and information on the data’s well-
formedness, which can be used during the subsequent analysis to adequately parametrize views, and to highlight
or exclude data items. We term this information data descriptors, which can span such diverse aspects as the data’s
provenance, its storage schema, or its uncertainties. Gathered descriptors encapsulate basic knowledge about the data
and can thus be used as objective starting points for the visual analysis process. In this paper, we bring together these
different aspects in a systematic form that describes the data itself (e.g., its content and context) and its relation to the
larger data gathering and visual analysis process (e.g., its provenance and its utility). Once established in general, we
further detail the concept of data descriptors specifically for tabular data as the most common form of structured data
today. Finally, we utilize these data descriptors for tabular data to capture domain-specific data characteristics in the
field of climate impact research. This procedure from the general concept via the concrete data type to the specific
application domain effectively provides a blueprint for instantiating data descriptors for other data types and domains in

the future.
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Introduction

Over the last two decades, visualization has matured into
an important tool for data analysis. The scientific literature
encompasses a plethora of visualization techniques that
support exploratory analysis (i.e., hypothesis generation) and
confirmatory analysis (i.e., hypothesis testing). Yet, these
visual analysis techniques require certain constraints to be
met by the input data to ensure their applicability and
usefulness — for example, a certain quantity and quality of
data. As a given input dataset rarely carries information
about these aspects beyond the raw data, comprehensive data
analysis methodologies start with an initial analysis (Ader
2008) or data profiling (Gschwandtner et al. 2014) that aims
to assess these data characteristics before going into the
exploratory or confirmatory phase. The outcome of such an
assessment are what we term data descriptors.

We define a data descriptor as any objective data
characterization that captures data properties with a
particular focus on the data’s subsequent visual analysis.
The objectiveness of the descriptor is of importance to not
bias this base information on which the remainder of the
visual analysis workflow rests. The term “data descriptor”
was chosen to reflect this objectiveness and to set it apart
from interpretive information construing the data. It thus
shares the intention of similar concepts, such as metadata
and semantic data.

Data descriptors explicitly encode a dataset’s characteris-
tics, such as irregularities (e.g., format violations or extreme
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values) and regularities (e.g., data types or constant data val-
ues). These make it possible for subsequent visual analysis
techniques, to check the found irregularities against required
quality constraints and to adapt their parametrization to the
found regularities. A common example for the latter is the
parametrization of a meaningful and effective color scale
according to known properties of the data. These properties
can range from simple information about the data’s type
(Silva et al. 2011) to its spatial frequency (Bergman et al.
1995) or background knowledge about its semantics (Lin
et al. 2013; Setlur and Stone 2016).

Taking this knowledge about a dataset into account when
visualizing the data can be vital. An impressive instance of
how visualization fails, when the facts that are known about
a dataset are not taken into account, was just recently given
in the IEEE VIS 2016 tutorial on “Perception and Cognition
for Visualization” by Bernice Rogowitz. Her example shows
how a poorly chosen and inadequately parametrized color
scale hides the known properties of the Higgs Boson dataset
instead of showing them.*
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Yet, useful data properties and metrics are scattered across
different levels of detail, subsuming various heterogeneous
information about data and spanning different subdomains
of analysis. For example, data descriptors can relate to
such diverse aspects of a dataset as its provenance,
its storage schema, its uncertainties, or its descriptive
statistical measures. From these few examples, it is easily
understandable that these aspects are rarely considered and
described in concert and taken into account only as they
become relevant for a particular computational analysis or
visual mapping.

This paper aims on one hand to bring these scattered
approaches for describing data together in a systematic
form. And on the other hand, it aims to illustrate how
these approaches can be used to support the visual analysis
process. To form such a systematic understanding of data
descriptors, the paper makes the following contributions:

e It gathers a wide variety of data descriptors from
different fields of visual analysis in a generic
classification that is not restricted to a particular data
type or application domain.

e This classification is then instantiated for tabular
data, which is one of the most common types of data
across various application domains, and a pipeline for
gathering descriptors from tabular data is presented.

o To exemplify its use, this instantiation is then adapted
for climate impact research, which has a high
demand for data descriptors due to the heterogeneity of
the various involved disciplines and their diverse data
standards and implementations.

This systematic view on data descriptors will provide a solid
and comprehensive base for their application and further
investigation. In this way, our paper gives a blueprint for
how descriptors for other types of data — e.g., textual
data, image/video data, or graph/network data — can be
systematically established and adapted to their respective
application domains. The structure of this paper follows this
overall direction from the generic to the specific, starting
with the definition and classification of data descriptors in
the following section.

A Classification of Data Descriptors

To concretize our introductory remarks, we define a data
descriptor as objective data about data that is available to
a visual analysis system. Objectivity captures the important
aspect of independence of any a-priori assumptions about the
data and of any preconceived goal or path of analysis. Note
that this does not imply that the data itself must be objective,
if it ever can be (Gitelman 2013) — only its description. As
it is hard to exactly delimit objectivity in technical terms,
we use two indicators that a data description is objective:
invariance (i.e., the same dataset stemming from the same
data source will always result in the same description) and
independence (i.e., the description only depends on the
dataset and its source and no external parameters). If these
indicators are fulfilled by a data description, we deem it
sufficiently probable that the description is not distorted or
biased by an outside influence. Finally, the description’s
availability to a visual analysis system is important, as it
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means that the description is machine-readable, ruling out,
for example, solely verbal or diagrammatic descriptions.

While other fields have already embraced the idea of
leveraging “data about data” (Duval 2001) — be it out
of convenience or out of necessity — the visualization
community has just started to explore this direction.
Examples include the Metadata Mapper (rog 2011) that
utilizes data descriptors to map data between different
visual analysis components, as well as the Knowledge-based
Visual Analytics Reference Architecture (Floring 2012)
that captures analytical results (i.e., knowledge about the
analyzed data and the analysis process) and feeds them back
into future analyses. As applications like these make use of a
few selected data descriptors to reach their particular goals,
a general overview of data descriptors for visual analysis
remains an open point of research.

For giving such an overview, we assume without loss
of generality the described data to be self-contained and
homogeneous. In cases in which this assumption does
not hold - i.e., for datasets that link to external data of
unknown properties (not self-contained) or that are combined
of a number of individual datasets of different structure
and content (heterogeneous dataset) or both — descriptors
can hardly be applied across the whole dataset. In these
cases, the dataset can be partitioned into self-contained
homogeneous subsets, then to be characterized individually
by data descriptors appropriate for each of them.

For such a self-contained homogeneous dataset, our
classification shown in Figure 1 categorizes data descriptors
according to the aspect of the data they are describing.
As a first distinction, data can either be looked at from
a temporal perspective, i.e., the data flow, or from a
structural perspective, i.e., the data space. Current literature
on metadata, data properties, data models, or any related
term or notion hardly ever considers data flow descriptors
and data space descriptors in concert. This is most certainly
due to the fact that data flow descriptors are mainly
used in database applications and information management
scenarios, whereas data space descriptors are mainly used in
data analysis and data mining approaches. Yet, describing
these two aspects of data together is common in other
fields — for example, for describing multimedia not only
content-wise, but also in terms of who produced it and
for which audience (Arens et al. 1993), or for describing
web-based resources together with their utility if limited by
legal or other conditions (Steinacker et al. 2001). Hence, the
following sections give examples of data descriptors for both
aspects, their common notations and models, as well as how
they are used for visual analysis purposes.

Data Flow Descriptors

Data flow descriptors (DFD) give details about where the
data came from (data provenance), where it is now (data
storage), and where it can go from there (data utility). Data
provenance information can range from a simple model
number and firmware version of the device used to record
the data to a full-fledged protocol of all analysis and data
processing steps it has already undergone. Information about
the current storage of the data captures mainly if and how
the data can be retrieved and thus be used in its current
state. Such information can include, for example, details on
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Figure 1. Our proposed classification of data descriptors by the data aspects they describe. The different classes of descriptors
are arranged from general (top) to specific (bottom) and exemplified with a few common descriptors each.

the database schema (i.e., across how many tables does the
data spread), or to how many queries per minutes the server
restricts the access. Lastly, the data utility information can
detail the uses for which a dataset is licensed, or it can specify
for which purpose the data was collected.

Apart from a few papers contributing to the current
research challenge of data provenance, literature from the
visualization community is rather sparse on data flow
descriptors. The reason for this may be that data flow
descriptors are often less formal than data space descriptors
or they make use of non-standard notations in which the
description is given. Due to the diversity of data, standards
for its description exist mainly for domain-specific cases,
such as the ISO standard 19115-1:2014 (Organization for
Standardization 2014) for geographic information or the
Full-Metadata Format (FMF) (Riede et al. 2010) for data
from scientific experiments. The following sections highlight
data descriptors that have been proposed for the data aspects
of provenance, storage, and utility.

Data Provenance Since data is ubiquitous in these days,
it is not uncommon anymore to have at least minimal
provenance information indicating who authored or curated
a dataset and which version of the dataset one is looking at.
With more knowledge about the origin and lineage of data, it
may also be possible to judge the trustworthiness of the data
and of the processes that generated it (Carata et al. 2014), or
even to independently reproduce the data (Davison 2012).

A number of taxonomies for provenance descriptors
exist. The taxonomy, which captures the widest range of
provenance aspects is the one by Simmbhan et al. (2005a,b).
It contains not only such essential aspects as the data and
the process that has produced it (subject of provenance),
but also such diverse descriptors as the representation, the
storage, the dissemination, and the use of the provenance
information. Other taxonomies tend to focus more on the
conceptual and technical aspects of collecting and managing
provenance information — such as the ones by Glavic and
Dittrich (2007) and by da Cruz et al. (2009). Regardless
of their particular focus, each of these taxonomies can be
thought of as a logical continuation and further subdivision
of the class of provenance descriptors in Figure 1.
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For recording and storing provenance information, either
models from the database community (Buneman et al.
2001) or from the domain of scientific workflows (Cohen
et al. 2006; Ludischer et al. 2008) are more suitable —
depending on whether the provenance information captures
a series of data states or the sequence of processing steps
that produced them. For interchangeability of provenance
information beyond the data and software ecosystems of
a particular domain, the Open Provenance Model (Moreau
et al. 2011) has been developed.

In visual analysis, provenance is still largely an open
research challenge (Keim et al. 2010, ch.3.3). Research
results in this direction deal with capturing either the
generation of the visualization — i.e., the visualization
process itself (Freire et al. 2008; Silva et al. 2007), or
the interaction history with the generated visualization —
i.e., the knowledge discovery process (Groth and Streefkerk
2006; Heer et al. 2008). Along the lines of the current
survey by Ragan et al. (2016), these two strategies can be
called “follow the data” and “follow the user”, respectively.
As an outcome of both, the generated visualization or
the discovered knowledge can then be annotated with the
information about how they were yielded. In particular in
highly exploratory scenarios that are characterized by a
frequent back and forth in which many different alternatives
are tried, provenance information can become quite large
and unwieldy. In these cases, the visual exploration of this
provenance information poses a challenge in itself that is
addressed by dedicated tools like Tableau Behavior Graphs
(Heer et al. 2008) or AVOCADO (Stitz et al. 2016).

Data Storage For retrieving and querying data, information
about its storage is needed. This information does not only
entail descriptions of the data’s organization, such as the
data structure or data schema, but also about the access
mechanism with which to read and manipulate the data.
Descriptors that commonly hold such information can
be given for different aspects of a data storage — e.g.,
for a logical or for a physical perspective (Vassiliadis
2009), as well as for stored data or for stored (business)
rules/processes (Hoxmeier 2005; Vassiliadis 2009). The
latter include descriptors that detail the behavior of a data
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storage through usage statistics and security settings, which
can help to optimize data access patterns or to understand
access limitations, respectively.

Notations for information about the storage of a dataset
are clearly centered on describing the logical model of data
organization, with the relational model describing data as
tables being one of the most prominent examples (Codd
1970, 1990). Other models include graph-based descriptions
of data organization (Angles and Gutierrez 2008) or data
being organized in a multi-dimensional space (Zhuge 2004;
Zhuge et al. 2005). As most models come with their own
notation, more abstract metamodels, like information spaces
(Franklin et al. 2005), and a diverse set of standards, like
the ISO/IEC 10027:1990 Information Resource Dictionary
System (IRDS) (Organization for Standardization 1990) or
the W3C Resource Description Framework (RDF) (World
Wide Web Consortium (W3C) 2014) have been developed.
They can be used to describe the specifics of different forms
of data organization in a uniform way.

In visualization, information about the data storage is
used in some cases for finding correspondences between
data items and using them for visual highlighting (North
and Shneiderman 2000) or for visual linking (Lieberman
et al. 2011) in multiple coordinated views. Other authors
utilize RDF-encoded information about the data organization
to automatically establish mappings of data attributes to
visual attributes without prior knowledge of the data
sources and their schemas (Cammarano et al. 2007). While
these approaches all work on data item level, others use
information about datasets as a whole to visualize the
landscape of all datasets in a particular data repository.
For example, descriptors containing information about each
dataset’s size and server speeds can be used to graph an entire
such data landscape to make an informed decision about
which dataset to use for an analysis at hand (Tshagharyan
and Schulz 2013).

Data Utility The utility of data, i.e., its intended and
imaginable uses — which may not be the same, is rarely
considered in the literature. Some of the data’s utility (or
lack thereof) may be inferred from its provenance, as for
example outdated financial data cannot be used as a basis for
day trading or stale patient records cannot be utilized to plan
a medical procedure. Other utility aspects may be inferred
from storage descriptors, as for example many database
servers limit the number of queries per minute, which can
severely hamper its usefulness for query-intensive analyses.

To the best of our knowledge, no list or taxonomy of
data utility descriptors exist. Apart from legal constraints
that might limit the use of a dataset (e.g., its license or
confidentiality regulations), most of the literature on data
utility relates to anonymized and/or obfuscated data (Russell
2008, ch.2.7). Depending on which methods were used for
anonymization, the utility of the data may be limited to
certain kinds of analyses. For statistical obfuscation methods
(so called statistical disclosure limitations), metrics exist to
measure the remaining utility of the data to find a reasonable
trade-off between anonymity and usefulness (Karr et al.
2006). To the best of our knowledge, no such metrics exist
for technical methods that have either introduced the utility
limitation as an intended outcome (Grammer et al. 2012)
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or as unintended byproduct — e.g., when data compression
disrupts data properties (Bassiouni 1985). In these cases,
the used method should be included with the provenance
descriptor, so that while data utility cannot be automatically
quantified, the user can at least be informed about them.

At this point, the notion of data utility is not widespread
and the decision of which dataset to use for a particular
analysis, or which analysis to perform on a given dataset
is left to the analyst. Hence, a common notation or model
for data utility to store such information alongside the data
remains an open research challenge.

In visualization, privacy preservance is mostly reflected
by methods that aim to provide a given level of anonymity
in the resulting visualization, measured through screen-
space privacy metrics (Dasgupta et al. 2013). Since there
exist no standards for utility descriptors, visual analysis
methods do not make use of them or adhere to them.
The few visualization approaches, which aim at capturing
some notion of utility, apply pragmatic models that link the
available datasets with those visual and analytical techniques
that are deemed appropriate for them by an expert user (Streit
et al. 2012). This overall lack of concern with issues of
data utility stands in contrast to the early observation in
visualization that the functional role of data — i.e., its use
—is a key data characteristic (Zhou and Feiner 1996).

Data Space Descriptors

Data space descriptors (DSD) give details about the data
domain (data context) and the data values therein (data
content). Properties of the data context describe aspects of
the space in which the data was gathered or observed, as
this is important, for example, to relate the data items to
each other. Common instances are the observation space’s
dimensionality (e.g., 2D — Lat/Lon, 3D — Lat/Lon/Alt, 4D —
Lat/Lon/Alt/Time), whether the data is scattered or gridded,
and in case of the latter whether the grid type is structured
or unstructured. Descriptors of the data content include
properties, such as data type (e.g., scalar or vector) or
min/max values, but also information about missing data or
data that is affected by uncertainty.

Since the characteristics of the data space are of utmost
importance for correct analysis and visualization of a
dataset, they have been extensively investigated from the
very beginning of visualization research. There exist a few
descriptors that apply to both aspects of the data space — data
context and data content — in the same manner. Examples
of such descriptors are dimensionality of the data domain
(context) and of the data values (content), as well as the
scale type of each dimension (e.g., nominal, categorical,
ordinal, or interval) (Stevens 1946; Roth and Mattis 1990).
The following sections highlight data descriptors that are
specific to either data context or data content.

Data Context The data context (often also called data
domain, independent variables, or primary key) denotes the
part of the data that specifies the frame of reference of
the data values. Since the frame of reference is spanned
via n axes in space, in time, or in some abstract space
of identifiers, the data context can be understood as an
n-dimensional space. A particular n-tuple specifying a
point within that space forms the data context for its
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associated data content, i.e., the gathered data values or data
characteristics (Andrienko and Andrienko 2006). Knowledge
about the data context is essential to determine, for example,
the data’s completeness — i.e., whether a data entry exists for
all identifiers or locations.

One of the first characterizations of the data context
was given by Zhou and Feiner (1996) under the term data
domain and in particular data domain entity, which can
be anything unique from a person to a point in time and
space at which a measurement was taken. This generalizes
other such notions, like the distinction between coordinates
and amounts (Roth and Mattis 1990), or between the data
types ID, 2D, 3D, temporal (Shneiderman 1996). These
data domain entities can have a point-wise, local, or global
extent for which they are deemed valid (Robertson 1991).
For example, a given point in space could not only stand
for this particular point, but for its local neighborhood as
well. Finally, the characterization by Zhou and Feiner (1996)
also defines data relations that can be used to describe a
structure underlying the data domain, such as a grid or a
multi-level topology. This is in line with the concept of
relations by Roth and Mattis (1990), and with the data types
network and tree from Shneiderman (1996). Some theories
order these characteristics of the data context in layers that
are hidden underneath the data content and only visible to
the professional user (Lux 1998).

The characterization of the data context is probably the
most influential in visualization research, as one prominent
distinction between Information Visualization and Scientific
Visualization is whether the data is spatially referenced (Tory
and Moller 2004). Yet nowadays already 60%-80% of the
data is geospatially referenced (Hahmann and Burghardt
2013) — including document and image collections, whose
depiction is usually considered to be part of Information
Visualization. Hence, this common demarcation line is hard
to uphold as most data is somehow spatially referenced. As
a result, the distinction between scattered and gridded data
becomes of increasing importance as a more meaningful
characterization of Information Visualization and Scientific
Visualization, respectively. Furthermore, the data context
may indicate how to partition the data in a meaningful way,
which can have repercussions all the way to the storage level
(cp. OLAP).

Data Content The data content (often also called attribute
space or dependent variables) denotes the part of the data
that specifies the actual (gathered) data values. It is for this
part of the data, for which probably the most descriptors exist
and for which the border between descriptions from an initial
analysis phase and analytical results from later analysis
phases is the most blurred. For example, some literature
considers clustering results as an inherent characteristic of
the data content. Yet, requiring independence as part of the
descriptors’ objectivity forbids to consider it as such, as
clustering depends on a number of subjective assumptions,
such as a similarity threshold or even a predefined number of
clusters (cf. k-Means clustering).

Purely descriptive properties of data content are, for
example, the types of each data attribute. Abstract
distinctions differentiate the data type merely as being
atomic or composite (Zhou and Feiner 1996), while more
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concrete descriptions in common software packages, such as
OpenDX, distinguish further between scalar, vector, matrix,
and fensor data. Another common data content descriptor
relates to the quality of the data, which subsumes a whole
range of dirty data properties, as they are surveyed by
Kim et al. (2003), Oliveira et al. (2005), and Gschwandtner
et al. (2012). This includes the overall data quality (Batini
and Scannapieca 2006; Josko et al. 2016) and in particular
the data’s uncertainty (Ayyub and Klir 2006; Drosg 2009)
that plays the most prominent role in visualization besides
missing data, unusable data, or undefined data. On top
of these given properties, it is common to derive further
descriptors that can be computed without being biased by
user parametrization — e.g., descriptive statistics (Cleary et al.
1996).

Notations for data content descriptors exist only partially
in some data formats, such as the NetCDF format that will
be discussed in further detail in the section on data from
climate impact research. Only for the subset of data quality
descriptors, specialized notations can be found. Among them
are the ISO/IEC standard 25012:2008 (Organization for
Standardization 2008), as well as a proposal for an extension
to the Business Process Model and Notation (BPMN) to
encode data quality requirements (Rodriguez et al. 2012).

A specific focus in the visualization community lies on
representing data quality in general (Sulo et al. 2005; Josko
and Ferreira 2016) and data uncertainty in particular, as
communicating the data’s trustworthiness is of essence
when basing a visual analysis on it. Specifically for the
challenge of uncertainty visualization, a number of extensive
overview articles provide a good outline of the massive
corpus of literature on this topic — see, for example, (Pang
et al. 1997; Thomson et al. 2005; Correa et al. 2009;
Skeels et al. 2010; Ward et al. 2011; Potter et al. 2012;
Brodlie et al. 2012; Ristovski et al. 2014). Furthermore, the
problem of visualizing missing data is frequently singled
out as a particular challenge, since it is unclear how to
show something that is not present. Notable approaches
in this direction include missing value charts by Theus
et al. (1997), shadow plots by Swayne and Buja (1998),
missingness profile plots by Fernstad and Glen (2014), and
missingness maps by Cheng et al. (2015). The opposite of
missing data, namely duplicate data entries, are addressed
by visual analytics tools, such as D-Dupe (Bilgic et al. 2006;
Kang et al. 2008) and GeoDDupe (Kang et al. 2007).

Notations to describe the data space including data
context and data content are, for example, the framework of
Galhardas et al. (1998) that is based on first-order logic, as
well as the E-notation by Brodlie (1992) and its extension
into the domino notation (Brodlie and Noor 2007). Older
variants are the fiber bundle-based notation by Butler and
Pendley (1989) and the L-notation by Bergeron and Grinstein
(1989). File formats with metadata capabilities are, for
example, CDF, HDF, NetCDF, XDF, or XSIL. Data space
descriptors like these are sometimes used to classify visual
mappings — for example, as it was done by Rankin (1990) or
Brodlie (1992).
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Gathering Data Descriptors

The process of gathering data descriptors is not necessarily
straightforward, as there exist at least three different sources
for descriptors, which may differ in the required effort and
their attainable reliability and objectivity. The first source
for a descriptor is to query it from the data source, if it
has been stored alongside the dataset, e.g., as annotation
or supplemental material. The second source is to derive a
descriptor by computing it from the dataset or by inferring
it from other descriptors — i.e., inferring data utility from
data provenance. The third source are the users with their
background knowledge about the data, who can be prompted
for input to specify a descriptor. On top of these basic
mechanisms, combinations can be employed. A common
combination is that a descriptor, which has been determined
once through a computation or a user input, is then stored as
an annotation to the dataset, so that it does not need to be
recomputed or re-entered, but can be queried directly from
the data source in the future.

Tool support for gathering generic data descriptors is
rare. The gathering of data space descriptors is (if at all)
only supported as a step in a larger process — e.g., for
performing automated data quality assessment in Profiler
(Kandel et al. 2012) or for generating automated previews
of datasets in AutoVis (Wills and Wilkinson 2010). These
tools understand the descriptors they compute as means
towards a particular end and do not allow to uncouple them
from the process in which they are embedded, even though
they could be beneficial for other purposes as well. The
only tools that are geared towards gathering generic data
descriptors are designed for capturing data provenance and
generally motivated by the goal of traceable and reproducible
data analysis. Notable examples for such tools include the
well-known frameworks for scientific workflow management
Karma (Simmhan et al. 2008), Kepler (Ludischer et al.
2006), and Taverna (Belhajjame et al. 2008). In the field of
visual analysis, the most advanced provenance management
is currently available from dedicated frameworks that capture
the visualization process, such as VisTrails (Silva et al.
2007). Visualization tools can utilize VisTrails’ features
by integrating it through a common API (Callahan et al.
2008). Approaches that also aim to capture computational
processing steps may be able to extract the provenance
information from the analytical scripts being run on the
data (Huq et al. 2013). The most comprehensive approach
would be to use a system-wide capturing that spans different
applications, as it is envisioned by Glass Box (Cowley et al.
2005, 2006).

After having established the fundamental notions of data
descriptor classes and the different ways of gathering them,
we make use of these concepts to compile data-type-specific
descriptors for tabular data in the following section.

Data Descriptors for Tabular Data

This section concretizes our concept of data descriptors by
taking a closer look at its concrete instantiation for tabular
data. That includes the different descriptors such data entails,
as well as methods to gather these descriptors if they are not
supplied with the data.
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Tabular data encompasses the overwhelming amount of
data available in CSV files, spreadsheets, and relational
databases. We assume tabular data to be given in the
form of a single table (dataset) of rows (records), columns
(variables), and cells (individual data items), which can be
likened to Codd’s 3" normal form (Wickham 2014). Non-
tabular data is often first transformed into a table, before
being visualized. This is embodied in the first step of the
visualization pipeline by Card et al. (1999) that performs
a data transformation from raw data into data tables. More
complex settings of multiple tables that are linked via foreign
key relations can be broken down into this canonical form.
As the different parts of the data correspond to sets of
different cardinality — i.e., singleton (cell), tuple (row),
multiset/bag (column), full dataset (table) — we call these
different aspects of tabular data granularities.

Data Flow Descriptors for Tabular Data

As a first observation, we note that all data flow descriptors
are applicable to all four granularities. For example, the
data can have provenance information attached to individual
values, to individual records, to individual variables, or
to the entire table. While data provenance descriptors and
data utility descriptors are conceptually independent of the
kind of dataset they describe, technical particularities of the
described dataset still require some adaptation. For example,
there can be subtle differences depending on whether
the provenance relates to relational databases and SQL
queries (Glavic et al. 2013) or spreadsheets and embedded
formulas (Asuncion 2011). These finer differences are
usually captured by data storage descriptors that detail how
to access the data, which is obviously different for relational
databases and spreadsheets. For data having been stored from
a spreadsheet in a CSV format, this could be whether the file
is comma-separated or tab-separated, and how many lines of
table header it contains. For data stored in relational database
systems, this could be the schema of a table, as it is detailed
by the SHOW COLUMN FROM table statement in SQL.
The output of this statement also gives a number of data
space descriptors, as they are discussed next.

Data Space Descriptors for Tabular Data

Data space descriptors are not only much more specific to
tabular data than data flow descriptors, but they also apply
mostly to its specific granularities. We list a number of
typical data space descriptors for tabular data in Table 1.
Note that this listing does not list uncommon usage of
descriptors. For example, principally it is possible to have
names for records or even individual cells and there certainly
exist scenarios in which this is desirable — yet, it is not very
common, so we list the descriptor “name” only for variables.
Table 1 contains those general data space descriptors that
also apply to tabular data and adds some data-type-specific
descriptors. The descriptors in Table 1, which were not
mentioned in the previous section, are:

Unit & valid range: Given a variable’s unit of
measurement, we can imply various other properties, such
as the variable’s semantics (e.g., degrees Celsius indicate
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Data Space

Descriptors Data Context

Granularity

Value (Cell)
:

Variable (Column)

context outlier

variable name

scale type (e.g., nominal, ordinal, interval)
unit & valid range

extent (point, local, global)

kind of space (e.g., Euclidean)
spatial dimensionality

Dataset (Table)

grid type (structured, unstructured)
variable combinations that form unique keys

Table 1. Data Space Descriptors for tabular data.

a temperature measurement) or its valid value range (e.g.,
values in degrees Celsius cannot be lower than —273,15°C).

Spatial/temporal continuity: If the data context provides
a spatial and/or temporal frame of reference for the data
content, certain continuities among the data values of a
variable may emerge. For example, we can objectively
evaluate if the data values of a variable are monotonically
increasing/decreasing with time or spatial distance and
express this as a descriptor of that variable.

Variable combinations that form unique keys: Besides
the variables, which are explicitly denoted to be keys or IDs,
a dataset may contain other combinations of variables that
uniquely identify the records. Mechanisms, such as primary
key analysis (Borek et al. 2011), can be used to find such
alternative identifiers. Yet often the most interesting case is
when a variable combination that is expected to be unique,
turns out not to be, indicating inconsistencies in the dataset.

These descriptors are typically associated with a single
granularity. Yet, this association is not necessarily exclusive.
For example, univariate statistical measures, such as
min/max/median, can be either descriptors of the variable
(column) for which they have been computed, or descriptors
of the individual value (cell) that constitutes the identified
min/max/median. Furthermore, there exist descriptors that
can be applied to all granularities and which we did not
place in Table 1 for this reason. Important examples include:

Number/size: Everything in a dataset can be counted or
measured in terms of its memory footprint. This can be of
interest as an information about the data, but also point to
errors in the dataset.

Duplications: Certain values and records, but also entire
variables or datasets can be identical or close to identical,
which can make them of higher or lower interest to a user.
While a numerical value appearing twice somewhere within
the dataset does not seem like a notable occurrence, this
is certainly different if the value is a person’s name or a
supposedly unique identifier.

Inconsistencies/mismatches: Data descriptors can
be erroneous as well. For example, the dataset may
have changed since the descriptors where stored, or the
descriptors describe the dataset in a prototypical ideal way,
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contextual uncertainty (e.g., uncertain position or time point) ¢

type of dimensions (spatial, temporal, identifier, other)

Data Content

uncertainty of measurement, calculation, or simulation
type of value (regular, missing, undefined)

content outlier

neighborhood (e.g., connected records via grid structure) * topological feature (e.g., critical point)

variable name

scale type (e.g., nominal, ordinal, interval)

data type (scalar, vector, matrix, tensor)

unit & valid range

univariate statistical measures (e.g., min, max, mean, skewedness)
spatial/tempor. pattern (e.g., constancy, monotonicity, periodicity)

multivariate statistical measures
(e.g., correlation, principal components)

variable relations (e.g., day+month+year, first name+surname)

but the actual data is messy and incomplete. In both cases, it
is important to check if the descriptors match the data and to
annotate those parts of the data that do not.

Out of this collection of descriptors for tabular data, only
a few can be stored together with the data in the common
file and database formats. The CSV format typically contains
the variable name and sometimes also the scale type in
the file header. Whereas relational databases keep these
descriptors together with additional schema information in
separate tables. Other than these basic descriptors are rarely
given in the standard storage formats, even though it would
be useful to have advanced descriptors available to bootstrap
subsequent visual analysis steps. In this situation, we can
gather further descriptors given appropriate tool support.

Gathering Data Descriptors for Tabular Data

When gathering data descriptors for variables, records, and
the entire dataset, dependencies between them have to be
taken into account and — if possible — to be resolved.
This can hardly be achieved in a purely autonomous
preprocess that runs without user intervention. Instead, this
gathering process requires a well-defined workflow that
combines computation for those descriptors that can be
automatically derived with user interaction for those that
rely on the background knowledge of the user. Such a semi-
automated gathering of data descriptors poses the challenge
that automated computations must be confined to acceptable
runtimes so that users do not get frustrated waiting for
intermediary prompts for their input.

To address these points, we propose a series of guidelines
for gathering descriptors:

e The gathering process should follow a step-wise
gathering procedure. This allows for running the
individual gathering steps in a configurable order. That
order can be defined so that it minimizes repeated
calculations and user inputs. Cyclic dependencies
between the data granularities — e.g., certain record
descriptors requiring column descriptors and vice
versa — can be resolved by breaking up the gathering
of descriptors for a granularity into multiple steps.
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Figure 2. Steps for gathering descriptors from tabular data shown in the order in which our approach determines them. Arrows
indicate dependencies between these steps and different shades of blue denote different levels of interactivity.

e The gathering process should allow for different
degrees of interaction. By also providing the
possibility for user inputs and manual adjustments,
the process can on one hand adapt to “dirtier” data
with many inconsistencies that might not lend itself to
automatic descriptor acquisition. On the other hand, it
can also benefit from the users’ additional background
knowledge about the data. Note that together with a
step-wise procedure, the degree of interaction can be
different for the individual gathering steps.

e The gathering process should adhere to given time
frames / speed constraints. As the computation
of some descriptors is computationally expensive,
it is important to be able to limit the necessary
amount of time as needed. This limit can be observed
by first querying all descriptors that are already
available from the dataset itself, then computing only
the very essential descriptors that are still missing,
before finally gathering more “advanced” descriptors
— e.g., running an automatic key analysis on a large
number of variables where many possible variable
combinations have to be checked. Due to the step-wise
gathering procedure, the gathering can be stopped at
each step along the process, when a predefined time
limit is reached.

We have developed a software tool for gathering descriptors
from tabular data that implements these guidelines. It is
driven by the idea of providing explicit information about
the dataset that allows for gaining first insights and deciding
on visualization possibilities. In this sense, it is conceptually
different from existing software tools for assessing the data
quality and improving it through data cleaning. This is often
termed data wrangling (Kandel et al. 2011a) and a number
of software tools have been developed to help with it —
e.g., AJAX (Galhardas et al. 2000), Potter’s wheel (Raman
and Hellerstein 2001), Wrangler (Kandel et al. 2011b), or
Profiler (Kandel et al. 2012). These tools aim to produce
data that is consistently formatted and sufficiently complete
for subsequent visual analysis steps. Whereas, our tool aims
at gathering information about the data that can be used
in the subsequent visual analysis to decide what to view
(selection of interest) and how to view it (parametrization
of the representation), as it is discussed in a later section.
The procedure used by our tool is shown in Figure 2 and the
corresponding user interface is depicted in the screenshot in
Figure 3. It adopts the step-wise gathering approach, which
is detailed in the following.
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Variable Descriptors I. First and foremost, the process
gathers information about the data types stored in each
column as variable descriptors. This is the most basic
information to gather, as it does not require any other
information about the data. Our acquisition algorithm runs
over all values per column and determines the type of
the majority of entries using heuristics that match digits,
delimiters, and characters and assigns fitting data types. Note
that this step cannot be fully automated, as the algorithm
can discern nominal variables from discrete numerical
variables, but cannot detect ordinal data types. If there exists
an ordering among nominal data values, it needs to be
interactively specified by the user who has the appropriate
domain knowledge and can thus redefine the variable into
ordinal data type. This makes the gathering of the data
type descriptor a semi-automatic step. As this first block
of variable descriptors consists only of this single gathering
step, our tool combines its interface (Figure 3A) with
the interface for the following gathering steps of value
descriptors (Figure 3B).

Value Descriptors. Once the type information is known, we
can gather value descriptors. In particular, we aim to describe
type compliance and missing values. The former can be done
automatically by checking against the data type having been
gathered for each variable in the previous step. If a value is
not compliant, a corresponding descriptor will be added to
that value’s table cell.

Determining the missing values requires some user input,
as “missing” does not necessarily mean that the cell is empty,
but it could also hold a placeholder value that is out of range,
such as UINT_MAX (4294967295, Oxffff£££f). When
such a placeholder value exists and it is type compliant,
which we check first, only the users with their background
knowledge about the data can decide whether this is a
realistic value or a placeholder for a missing value. This
makes this gathering step a semi-automatic one.

Variable Descriptors Il. In this next step, we gather more
variable descriptors, such as descriptive statistics and each
variable’s information content. For these descriptors to
be meaningful, it was important to mark down the non-
compliant and missing values first, so that, for example, a
UINT_MAX placeholder does not skew the computation of
extreme values and distributions. These descriptive statistics
can be computed automatically, since the variable types are
known from the very first gathering step and appropriate
statistics can thus be computed — e.g., the mean for
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Figure 3. Screenshot from our data descriptor gathering tool for a tabular example dataset containing marine measurements
conducted by the Leibniz Institute for Baltic Sea Research. Besides the generic dialogs for loading a dataset and getting a first
overview in the top left, the screenshot features the interfaces for each of the individual gathering steps outlined in Figure 2: A —
Variable Descriptors | (data type), B — Value Descriptors (type compliance, missing values), C — Variable Descriptors Il (descriptive
statistics, information content), D — Dataset Descriptors (variable groupings, spatial/temporal context, extent, grid type), E — Record
Descriptors (outliers, duplicates). In addition, F shows the dialog that allows for adjusting the computational profile.

continuous numerical variables, the median for discrete
numerical variables, and the most frequent term for nominal
variables. As these statistical metrics are required by many of
the following gathering steps, we placed their computation as
early as possible in the process.

On top of these standard measures, we also determine each
variable’s information content by computing the Shannon
entropy over the set of all values per variable. These can
be used to identify and eliminate variables that contain a
constant value throughout, which is surprisingly common in
practice. Both, statistical descriptors and information content
are displayed for the users to inspect in Figure 3C. Note that
for convenience reasons, this table also contains the data type
from the first gathering step.

Dataset Descriptors. In this step, the first three descriptors
have the common goal of providing information for
discriminating between data context and data content. To
this end, we run a primary key analysis, determine the joint
information content of n-tuples of variables, and compute the
bivariate Pearson correlation between all pairs of variables.
These descriptors are then presented to the users who
interactively specify data context and data content based on
them. They can furthermore define hierarchies or groupings
of associated variables, as it is suggested by Robertson
(1990) — e.g., grouping two variables “first name” and
“surname” into “name”.

Once specified, we gather additional descriptors for the
data context. At first, the users are asked to interactively
specify those context variables that denote a spatial and/or
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temporal frame of reference. In addition, for each such
reference, the users can define its extent — i.e., point, local, or
global — which is important for a subsequent visualization,
as it tells whether it is possible to interpolate between
the data or not. The procedure then tries to establish the
data’s grid type (structured or unstructured) by checking
the spatial and temporal references for equidistance across
records. Since this heuristic is easily misled by a single
outlier or undetected header row, we follow a semi-automatic
approach and present its results to the users for validation
and correction. Lastly, if we have determined a regularly
structured grid, we automatically check for completeness
— i.e., whether there is a corresponding data record for
all possible grid positions. While completeness would be
a record descriptor by the data granularity it describes, it
still is treated as a dataset descriptor, because the records
it describes are missing and thus cannot be marked as such.
This is different from missing individual values, as they were
determined in the beginning, for which an empty table cell
exists to which to attach the corresponding descriptor. The
interface for these descriptors is spread over two tabs (see
Figure 3D) — the first tab accommodates the descriptors that
discern between data context and content, the second tab
holds the dataset’s context descriptors.

Record Descriptors. This last step gathers information
about outlier records and duplicate records in the dataset.
Outlier records are determined automatically by statistical
means (Blommestijn and Peerbolte 2012). As for duplicates,
we automatically check for so-called inconsistent duplicates



10

Information Visualization XX(X)

that contain different information, but refer to the same
entity — i.e., the same customer listed twice under different
addresses (Oliveira et al. 2005). Figure 3E shows found
outliers in a table view for the user to inspect.

In the standard configuration of our tool, we go through
these steps trying to automatically gather as many descriptors
as possible, while asking the user for input only as much
as necessary. In accordance with our guidelines, we also
provide other degrees of interaction from “no interaction”
(automatically compute as many descriptors as possible
and leave out the rest) to a “high degree of interaction”
(report all automatically derived descriptors to the user for
validation and readjustment). Furthermore, we also have
two different computational profiles — “normal” and “fast”.
The “normal” mode follows the default prioritization of
automated gathering through computation for as many as
descriptors as possible and an interactive gathering for
the rest. In contrast, the “fast” mode tries first to query
stored descriptors from the data source itself. For those
descriptors that are not available from the data source, the
system automatically performs computationally inexpensive
gathering steps (e.g., descriptive statistics or correlations)
and asks the user for input on computationally expensive
ones (e.g., key analysis). Note that the fast mode comes
with the price of possibly having incorrect descriptors, as
the ones accompanying the dataset may be outdated and
the ones entered by an inexperienced user may be incorrect.
Hence, the fast mode is best used by an experienced user
on trustworthy data sources that are known to provide valid
descriptors. Both parametrizations of the gathering process
are shown in Figure 3F.

Our software for gathering data descriptors was designed
to be a general-purpose tool for tabular data about which
nothing more than its tabular nature is known or assumed.
The tool can be extended to discern more specific data
types that follow known formats and value ranges, which
can be exploited for their detection. For example, country
codes could easily be detected and used accordingly in a
geographic mapping, as it is done by recent versions of
Tableau and MS Excel.

Leveraging Data Descriptors for Visualizing
Tabular Data

On one hand, the gathered data descriptors can be
visualized themselves to graphically communicate high-level
information about the dataset, which is mainly used for
subset selection. For example, dos Santos and Brodlie (2004)
introduced visual displays for certain data descriptors, which
were designed for providing easier access to the data filtering
step in the visualization preprocess. Their interaction
graph and n-dimensional window give an overview over
the dimensionality of the attribute space — i.e., the data
content. They allow for selecting subspaces of interest
(reducing the dimensionality — i.e., columns) or variable
ranges of interest (reducing the number of data records
— i.e., rows), respectively. Other instances of descriptor
visualizations include GeoVISTA’s display of the maximum
conditional entropy and correlation values between data
content dimensions (MacEachren 2003), as well as the
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arrangement of data dimensions in a way that allows for
exploring their interdependencies by Yang et al. (2007).

On the other hand, the description can be used to suitably
parametrize visualizations of the described dataset. It is
noteworthy that to this end, data descriptors are at least
implicitly already part of each visualization system, as
without knowledge about the distribution of data values no
meaningful color-coding and no sensible scaling of axes is
possible. The concept of data descriptors gives these already
existing means of describing a dataset a formal framework
and advocates for dedicated mechanisms for gathering and
managing them. So it is not a question of whether to use data
descriptors or not, but how to use (and re-use) them.

Figure 4 shows the marine dataset that was already used
in Figure 3, as it would be depicted in the absence of any
further information about it. By default, the coordinate axes
are sorted alphabetically by variable name, which is certainly
not optimal, but it at least allows users to quickly seek
out a variable of interest. Ideally, one would want to see
related variables placed on axes close to each other, so as to
ease their combined inspection. One can furthermore observe
some unreasonably high values, such as water temperatures
(TEMP) of around the boiling point of 100°C or salinity
measurements (SALI) around 100%. While these values can
be easily spotted and identified as being invalid, probably
placeholders for missing values, they nevertheless distort
the axes and reduce the axis resolution for valid values.
For example, the majority of values on the temperature and
salinity axes are now being compressed into the lower part
and are hardly discernible.

After gathering data descriptors, as depicted in Figure 3,
we can leverage this additional information about the data
to alleviate these problems. To first establish a sense of
plausibility for a given dataset, we can use a network diagram
depicting a bivariate correlation network of the dataset’s
variables. This diagram, shown in Figure 5, exhibits a group
of correlated data content variables on the right side of the
figure. The correlations between salinity (SALI), relative
oxygen levels (O2PR), absolute oxygen levels (O2ML), and
water temperature (TEMP) are to be expected in a marine
dataset. If they would not show up, the source of the dataset
should be questioned. The credibility of the dataset is further
underlined by the correlation between water temperature
and month of the year (MON), which reflects a well-known
seasonal pattern in the Baltic Sea. Merely the correlation
between month, water temperature, and the numerical ID of
the measurement station (STATNO) is an artifact that either
happened by chance or is due to a particular numbering
scheme for these stations that we are not aware of.

We can further use the bivariate correlations to improve
the parallel coordinate plot from Figure 4 by auto-adjusting
the order of the axes, so that correlated variables are
placed in each other’s proximity (New 2009, ch.4). We can
furthermore use identified placeholders for missing values
to map them onto separate positions, so that the axes do
not get distorted by them. Figure 6 shows the outcome of
these descriptor-driven adaptations. The group of correlated
data context variables from the left side of Figure 5 is
clearly being placed together at the very left of the parallel
coordinates, whereas the other observed group of correlated
variables gets placed at the right side. The missing values
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Figure 4. Parallel Coordinates view of the raw marine dataset from Figure 3 without taking descriptors into account.
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Figure 5. Network diagram of the unsigned bivariate correlation between different variables from the marine dataset described in
Figure 3. Each node represents a variable, where gray nodes indicate data context variables and white nodes indicate data content
variables. Links between two nodes denote a correlation of at least 0.15 — a threshold that is necessary to set, as all variables are
minimally correlated, which would result in a fully connected and thus meaningless display.
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Figure 6. Improved parallel coordinates view from Figure 5. The axes have been re-ordered so that highly correlated variables are
positioned close together. The orange marks below each axis single out the placeholder value for missing data.
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Figure 7. Looking at the variables from the six rightmost axes in Figure 6, we can investigate the correlations via brushing. The left
figure highlights the low temperature records and we can observe that at these temperatures, we get mainly high oxygen levels and
low salinity. Whereas in the right figure, the highlighted high temperature records exhibit the reverse relations.
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are singled out below the axes and marked in orange. This
does not only improve the visibility of the legitimate values
as these are now spread across each axis, but also eases the
application of interactive means, such as brushing. Figure 7
illustrates the correlations among a subset of variables by
brushing low and high temperatures, respectively.

Data Descriptors for Climate Impact
Research

Many data-intensive scientific domains have established
domain-specific data descriptors for their datasets — for
example, ecology (Jones et al. 2006), astronomy (Hurt et al.
2007), or systems biology (Stanford et al. 2015). Dedicated
systems, so-called metadata repositories, that serve the
purpose of storing, managing, and querying not the datasets
themselves, but merely their DFDs and DSDs at dataset
granularity have emerged from these fields (Jones et al. 2001;
Berkley et al. 2009; Xiao et al. 2015).

For this article, we have chosen the field of climate impact
research to instantiate our set of tabular data descriptors. It
presents a most challenging scenario for data descriptors,
as it encompasses measurement and simulation data from
a multitude of different disciplines, including meteorology,
climatology, ecology, agriculture, hydrology, economy, and
sociology. Hence, the domain-specific requirements for
data descriptors in each of these fields are to some level
reflected in those established for climate impact research.
Furthermore, working with data from such a multitude of
disciplines makes it necessary to meticulously keep track
of the different datasets and their various revisions for their
cross-disciplinary analysis. Hence, it is not surprising that
the field of climate impact research has already developed
a number of different notations and standards for data
descriptors. While having such standards is a promising
direction in theory, in practice climate impact researchers
have to deal with a number of caveats that more often than
not prevent the use of given data descriptors. These include:

e Competing standards: The different standards for data
descriptors each describe some data aspects and leave
out others. Yet they are not complementary to each
other, as they overlap in some parts and are disjoint
in others.

e Different versions of a standard: Standards evolve
to capture notions that arise over time. This creates
incompatibilities among different versions of the same
standard.

e Flexibility in interpreting a standard: The standards
leave some flexibility to their realization, which is
why two software tools that officially support the
same standard may not be able to use each other’s
descriptors.

e Incomplete implementations of the standard: Stan-
dards are rarely implemented in full and most software
tools work with some sensible subsets that are useful
in their context, but hardly match across tools.

e Standardized descriptors still require validation: Even
if standards are fully implemented and a full set of
data descriptors is available for a dataset, that does not
mean that the provided descriptors are correct.
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This shows that by having such standards, the data
description and the use of data descriptors can hardly be
automated in the background. While necessary to keep
track of the data, it becomes another aspect of the data to
which the user has to attend. To do so, the user must have
basic knowledge about them in order to resolve conflicting
descriptors or to identify implausible ones. This section
gives a list of data flow and data space descriptors that are
specific for the field of climate impact research, including
their availability in the most important standards. To aid
the climate researchers in maintaining consistent and valid
descriptors for their data despite the challenges outlined
above, this section furthermore introduces a software
module for gathering data descriptors within a climate data
visualization support tool.

Data Flow Descriptors for Climate Data

We have catalogued data flow descriptors that are specifically
suitable for climate-related data in Table 2 (top). In gen-
eral, the rather generic ISO 19115-1 geodata standardization
already includes data flow descriptors, such as provenance
information (e.g., evaluation method for quality assessment),
storage information (e.g., format, recommended decompres-
sion algorithm), and utility information (e.g., purpose). This
standard is a good fit for geospatial data in general, but it
does not explicitly support climate-specific descriptors. With
explicitly, we mean that while the standard provides places
to put climate-specific information in textual form for the
user, there are no dedicated fields for this information that
make it available to a visual analysis tool in the sense of our
definition of data descriptors.

In particular data provenance descriptors play an
important role in climate impact research, as the data can
originate from a wealth of sources, including measurements,
simulations, or further postprocessing steps, as well as
from a variety of disparate fields that all contribute to
climate impact research. This is reflected by the NetCDF-
CF convention, where “CF” stands for “Climate Forecast”
and denotes an extension to the NetCDF standard that is
developed by the University Corporation for Atmospheric
Research (UCAR). It includes a number of more specific
data provenance descriptors, as indicated in the top part
of Table 2. For data originating from simulations, such
climate-specific descriptors include information about the
climate model, such as type and version, and about the
simulation run on that model, such as the used driver,
which are of major importance to assess and reproduce
climate simulations. For measured data, this includes
information about the measurement device (accuracy,
precision, resolution, and sensitivity) and other acquisition
information when conducting weather observations, or
collecting data from paleo-climatic ice cores or flowstones.

Data Space Descriptors for Climate Data

Data space descriptors that are relevant for the visual analysis
of climate-related data are given in Table 2 (bottom). Here it
is the data context that is best covered by existing standards.
This is not surprising, as climate researchers measure and
simulate very different aspects and processes, but always
in the same geophysical space. Hence, there is a consensus
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NetCDF-CF:
* institution, date
* name of the climate (impact) model
« simulation experiment type (e.g., Monte-Carlo)
* data generation workflow / operator sequence
Not standardized:
* author

NetCDF-CF:

Not standardized:

Data Space
Descriptors
Granularity

Data Context

NetCDF-U:

NetCDF:
Record « grid values restricted to certain regions
NetCDF-CF:

* measurement station

* measurement position change (e.g., balloon or ship)
NetCDF-U:

* uncertainty

NetCDF:
* dimensions describing simulation ensemble factors
NetCDF-CF:
* domain-specific type of spatial dimensions
(longitude, latitude, pressure level)

Variable

NetCDF:
* number and kind of homogeneous subsets

Dataset

NetCDF-CF:
* geospatial extent (global, regional, urban)

« climate/model-specific conventions

* dating uncertainty (e.g., age dating for ice cores or flowstones)

(e.g. ocean only, land surface only, with or without Greenland/Arctic)

 values defined for centers, edges, or vertices of grid cells?

* variable-specific properties of time (e.g., different time steps)

« kind of coordinate reference system (e.g., geographical, projected)
and associated properties (e.g., rotated pole, conformal, equidistant)

(e.g., earth surface and 3D atmospheric variable sets)

Not standardized:
* kind of analyses the dataset can be used for
(e.g., hydrology simulations, storm track analysis)

« storage format (e.g., GRIB, ASCII, binary)
* data partitioning scheme (e.g., all data in one
file, each time step in a separate file)

Data Content

NetCDF-CF:
* domain-specific missing values
NetCDF-U:
* domain-specific value uncertainties (e.g., of the emission
scenario, global/regional climate model, impact model)

NetCDF-CF:
* meteorological / climatic features:
* 1D: centers of pressure systems
Not standardized:
* meteorological / climatic features:
* 2D: storm tracks, weather fronts, jet stream
¢ 3D: clouds, dust, circulation patterns

NetCDF-CF:
* holds certain climate quantity (e.g., temperature 2m
above sea level, precipitation including snow and/or hail)
Not standardized:
« fit of simulated variable distributions to reference data
(e.g., measurements or reanalysis data) -> bias measures
* trends of mean values, variability, and extremes
* periodicities and time-delayed correlations

NetCDF-CF:
* relation between variables
(e.g., thickness and temperature of sea ice)

Table 2. Data descriptors for climate data as they are supported by the various standards.

about what climate researchers want to describe about the
data context and this consensus has been formalized through
standards. Whereas for the data content, possible descriptors
are much more diverse and thus their set is much less
standardized.

A few generic data context descriptors are part of
the general NetCDF convention, such as the information
about masked data — i.e., data that is only available for
certain regions, such as land or sea area. Others that are
more specific are captured by the NetCDF-CF extension.
For example, for representing the dynamics of oceans,
atmosphere, and ice shields, physical variables are provided
as sub-models in different spatial dimensionalities (1D, 2D,
3D), with partly different, linked grid structures and varying
temporal granularities (see, e.g., Petoukhov et al. (2000))
that define the data context. For a meaningful visualization
of climate data, these structures and dependencies need to
be known. In addition, typical data content descriptors, such
as climate-related regions of interest in the data, range from
centers of pressure systems (Wong et al. 2000), to weather
fronts and storm tracks (Moorhead and Zhu 1993), and even
to the 3D tracking of clouds, dust, and atmospheric pollutants
(Ma and Smith 1993). Descriptors for paleo-climate analysis
include periodicity and time-delayed correlations. While
uncertainty information can be explicitly stored using the
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NetCDF-U extension, in practice this is rarely done and it is
more common to include an additional variable representing
the uncertainty information.

Gathering Data Descriptors for Climate Data

In the previous section on tabular data, we concerned
ourselves mostly with the computation and interactive
specification of data descriptors as these are usually not
provided alongside the data. For data from the domain
of climate impact research, the situation is quite different,
as the sections on climate-specific data descriptors and
their standards have illustrated: a range of descriptors are
usually already given — yet, they are possibly incomplete,
incompatible, or inconsistent. Thus a gathering of data
descriptors in climate impact research focuses on retrieving
or querying those existing data descriptors, computing those
that are missing or do not match the data, and converting
them into the right standard and version for the visual
analysis tool to be subsequently used.

Precisely for this purpose, we have developed a data
descriptor module within a climate data visualization support
tool (Nocke et al. 2007). This module helps climate scientists
to bridge the gap between the data descriptors that are
given and those that should be given for a subsequent visual
analysis. In a first step, it queries the descriptors stored
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Figure 8. The gathering module allows a detailed examination of the descriptors for the data content (a), the data context (b),
gridded subsets of the context (c), and the data flow (d). The shown example is from a dataset generated by a regional climate

model simulation with the CLM model.

with the NetCDF/NetCDF-CF data to obtain any descriptors
already provided by the data. If they are incomplete, it
derives additional data descriptors from the dataset in a
second step. Finally, in a third step, it presents the queried
and derived descriptors to the user in order to prompt for
input for the interactive adaptation of those that have been
gathered and for the completion of those that cannot be
computed automatically.

The first step queries data descriptors from the NetCDF
data description. NetCDF is a particularly good source for
dataset descriptors, as many descriptors are mandatory by
the NetCDF convention and must be given. This includes
information about the grid’s dimensionality and structure,
which allows us to automatically distinguish between data
context variables (i.e., longitude, latitude, and time) and data
content variables (i.e., the measured or simulated values) as
well as to relate different grids / ensemble members.

The second step gathers optional data descriptors that
were not given with the data. For example, often missing
within NetCDF are the data extent (point, local, global)
or a variable’s unit. Where possible, our tool tries to infer
these from domain knowledge and assumes, for example,
that “lightning” is point information and that a variable
“temperature” has the unit “Kelvin”. It also tries to find
and fix common spelling errors and replaces, for example,
the unknown identifier “units” with the standard-conform
identifier “unit”. Only if no descriptor is found — neither
directly nor by the described inference — our tool aims to
gather it using the pipeline from Figure 2.

Prepared using sagej.cls

The third step presents the results of the previous two
steps to the user, as it is illustrated in Figure 8. The shown
interface provides an overview of the data content variables,
each being assigned a colored glyph that denotes the context,
which provides the frame of reference for that variable
(Figure 8a). The number of nodes that comprise these
glyphs indicate the dimensionality of the corresponding data
context, with differently colored glyphs marking different
contexts. In the shown example, one can see two 4-
dimensional data contexts colored yellow for ice days and
summer days, and orange for wind speed. To find out
concretely which variables comprise these contexts, one can
switch to the data context tab (Figure 8b). It becomes evident
that the two 4-dimensional contexts are both composed of
latitude, longitude, and time, and that they only differ in
the included altitude variable. One can further notice that
these altitude variables are somewhat peculiar, as the “Nr
of Values” descriptor shows that they only contain a single
data value each: 2 meters and 10 meters, respectively, as
a quick glance at the “Value Range” descriptor reveals.
So, the altitude is in both cases not a variable (as there is
no variability), but a constant that simply means that wind
speeds where simulated at an altitude of 10 meters, while ice
days and summer days where defined at 2 meters. Trying to
visualize the data in this “pseudo” 4-dimensional form would
most certainly lead to an ill-configured 3D visualization, as
the data is actually flat and should also be visualized as
such. The interface further allows the users to inspect context
descriptors for selected subsets (Figure 8c) and data flow
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descriptors (Figure 8d) and to interactively readjust them if
necessary.

The software module has been designed in collaboration
with researchers from the Potsdam Institute of Climate
Impact Research and is in active use. User interviews have
highlighted two principal usage scenarios: before and after
the visualization. Using the module before the visualization
reflects the idea of an initial analysis step that gives first
insight into the data to decide on later analysis steps.
Whereas the usage afterwards reflects a debugging process
where users found their data misrepresented and are looking
for the reason. The above example of the “pseudo” 4-
dimensional dataset illustrates how easily a visualization
system can misinterpret a dataset and thus how important it
is to be able to go back from an improper visualization to
inspect and adjust the data descriptors.

Leveraging Data Descriptors for Visualizing
Climate-related Data

One of the main problems in climate impact research is
neither a lack of data descriptors, nor a lack of standards
to convey them, but that they are only selectively and
inconsistently used by different visualization tools, as can be
seen in Figure 9. The figure shows a dataset that contains the
initial state for a COSMO/CLM (CCLM) climate simulation
run (Rockel et al. 2008). The depicted variable quantifies the
height of the snow cover over Europe, as indicated by the
following NetCDF description:

float W_SNOW(time, rlat,
W_SNOW:standard_name =
"lwe_thickness_of_surface_snow_amount";
W_SNOW: long_name =
"surface snow amount";

rlon);

W_SNOW:units = "m";
W_SNOW:grid_mapping = "rotated_pole";
W_SNOW:coordinates = "lon lat";
W_SNOW:_FillValue = -1.e+20f;

This description contains valuable information for

generating a proper visualization for the dataset: that the
values are given in meters is important for providing a
legend, that missing entries are indicated by a value of
—1.0 x 10% is helpful for masking these entries in the
resulting view, and that the given coordinates are rotated is
relevant for a correct spatial mapping to the map or globe.
Such a rotation of the coordinate grid is often used to yield
evenly-sized grid cells for regions that are not close to the
equator, to ensure stable numerical simulation. If some of
these descriptors were missing or incorrect — e.g., units or
missing values — the researcher would have been able to
add them using the gathering module. So, we assume that
our data descriptors are correct, complete, and conform to
the NetCDF standard, so that a visualization tool should
theoretically be able to render a correct view of the snow
cover dataset. The grid adjustment for the spatial mapping
can be determined from the specifics of the rotation, which
are also given in NetCDF:
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char rotated_pole;

rotated_pole:grid_mapping_name =
"rotated_latitude_longitude";

rotated_pole:grid_north_pole_latitude =
39.25f;

rotated_pole:grid_north_pole_longitude =
-162.f;

float rlon(rlon);
rlon:axis = "X";
rlon:standard_name = "grid_longitude";
rlon:long_name = "rotated longitude";
rlon:units = "degrees";

float rlat(rlat);

rlat:axis = "Y";

rlat:standard_name = "grid_latitude";
rlat:long_name = "rotated latitude";
rlat:units = "degrees";

Yet, Figure 9 illustrates that given the same dataset and
the same data description in NetCDF, different visualization
tools generate very different outcomes. We have tested
the ability of four different visualization tools that are
commonly used in climate research to visualize the NetCDF-
described snow cover dataset using their default settings.
Avizo' properly recognizes the rotated grid from the NetCDF
descriptors and automatically adjusts for the rotation, so that
the data is correctly mapped onto Europe. Yet, in its standard
configuration Avizo does not correctly mask the missing
values, which basically coincide with sea surfaces, and it
also does not display the unit of measurement in the legend.
Whereas OpenDX (Thompson et al. 2004) properly masks
the missing values and display the units correctly, but does
not correctly translate the spatial mapping to adjust for the
rotated grid. This leads to the data clearly showing the outline
of Europe being overlaid on the map of Africa. Similarly,
Ferret (Hankin et al. 1996) also handles the missing values
correctly and gives an indication of the unit of measurement,
yet neglects the rotation of the coordinates, as can be seen
from the latitude/longitude labels on the axes. Finally NCL¥,
the NCAR Command Language, can actually leverage all
three of the highlighted descriptors — units, missing values,
and rotation — using one of its standard example scripts.

To be fair, we have to note that these visualizations
were generated with the respective tools using standard
parametrizations and default options without any further user
intervention. Some of their deficits could be alleviated by
further manual fine-tuning. For example, Avizo allows users
to adjust the color mapping in the Colormap Editor, which
can be used to mask the missing values by hand and thus
to eventually produce a proper visualization of that dataset.
Yet even for that, the users themselves must go over the
NetCDF code in a text editor to find out which value is
used to indicate missing data in order to adjust the colors
accordingly. Domain knowledge about which visualization
tool supports which kinds of NetCDF descriptors could
potentially help to identify tools that are suitable for a dataset
at hand in future work.

fsee http://www.fei.com/software/avizo3d

fsee http://www.ncl.ucar.edu



16

Information Visualization XX(X)

0 0.0838595 0167719

W_SNow

0.1

LATITURE

fta o
LONGITUDE

surface snow amount (m)

(c) Visualization of the Snow Cover Dataset with Ferret

5
01.1950

amoun t

(b) Visualization of the Snow Cover Dataset with
OpenDX

surface snow amount m

30°N— / —30°N

20N/ L 20°N

10°N - —10°N

0° L o°

45°W  30°W 15°W 0° 15°E 30°E 45°E 60°E

(d) Visualization of the Snow Cover Dataset with NCL

Figure 9. Visualizations of the Snow Cover Dataset with four different standard tools commonly used in climate science. It can be
observed that Avizo, OpenDX, and Ferret make only selective use of the given NetCDF descriptors, which results in faulty
visualizations. Only NCL was able to actually leverage all of the given descriptors for generating a proper visualization.

Concluding Remarks

With the proposed concept of data descriptors, we do not
present yet another taxonomy of data types and structures,
but instead a unifying view on those that already exist. From
its scope, our concept is more in line with approaches, such
as meta-metadata (Kerne et al. 2010), that aim to bring
together different data descriptor standards under a unified
meta standard. Yet, we differ in the path taken towards such
a unifying view: While the existing approaches take a top-
down perspective and define new standards for researchers
to adhere to, our concept takes a bottom-up perspective by
filling in the gaps and resolving inconsistencies.

Implications From our own experience in working with
climate researchers, this bottom-up approach is the more
practical one as it yields concrete results that we can already
start using while waiting for the definite data standard to
arrive. Yet this makes it also the more involved approach as
compared to defining a suitable data description standard and
further assuming that any given analysis input adheres to it.
It takes computational effort and the involvement of the users
with their background knowledge to provide information
about data that is

e accurate (matches underlying data),
e complete (covers all relevant data aspects),
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e consistent (does not contradict itself),

e current (reflects data changes), and

e conforms to whichever conventions are used by the
variety of existing analysis tools.

Our concept of data descriptors lifts this information from
a few scattered auxiliary measures to being data entities in
themselves. This allows us to centralize the required effort
for providing reliable information about data in a dedicated
software module — our gathering pipeline. The pipeline
serves as the principal access point to this information for
users to adjust them and for analysis methods to utilize them.

Limitations Providing data descriptors is only one side of
the equation. On the other side, we have no influence over
whether and to which degree subsequent visual analysis steps
actually use given data descriptors. This was illustrated by
the examples in the previous section. To some degree, this
lies in the nature of such a bottom-up approach that rather
offers descriptors for use, than to enforce their observance.
After all, it is hard to determine in general, which descriptors
must be given and used, and which can be given and used
— i.e., which are ultimately necessary and which would be
helpful, but one could do without. This depends largely
on the concrete visual analysis task at hand. While we
do not know the analysis task in beforehand, data type
(e.g., tabular) and application domain (e.g., climatology)
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can help to limit the set of all possible data descriptors to
those that are suitable for the data type and typical in the
domain. In the same way, as we have tailored our general
descriptor framework to tabular data in a first step, and then
to the concrete requirements of the climate research domain,
adaptations are necessary for other data types and domains.
This highlights once again that the descriptors listed in this
paper and the pipeline for gathering them are not a one-
stop solution for all possible data/domain combinations, but
rather a blueprint to be adapted to the specifics of other data
types and to be refined for other domains. Providing a set
of descriptors that is well adapted to the data and tasks of a
particular domain is certainly more likely to be picked up on
by the tools and users in that domain, than some unwieldy
all-encompassing generic metadata solution.

Generalization 1t is noteworthy that common visual
analysis strategies do not explicitly include such an initial
analysis step of gathering information about the data.
Following the commonly applied strategies, an analyst can
initiate a visual analysis either with an overview-first step
(Shneiderman 1996) or with an analyze-first step (Keim
et al. 2006). Yet in both cases, it remains challenging to
decide which overview or analysis method shall be invoked,
respectively, on which data subset and with which parameter
settings. Hence our initial gathering can be understood
as a describe-first step that precedes overview or analysis
and collects information about the data. This information
can either be visualized directly so that users get a meta-
view of their data, or it can be used indirectly for an
informed descriptor-driven selection and parametrization of
appropriate computational or visual methods.

Continuation For the future, we anticipate that descriptive
information about data will play an increasingly important
role in visual data analysis for two reasons. On one hand,
the push for Big Data increases the amount of data, which
in turn has to be described in a meaningful way to select the
right subset for an analysis at hand. On the other hand, more
often than not these days, the data provider is different from
the data analyst and thus information about datasets needs to
be passed on (Patro et al. 2003). As this trend grows with
current movements, such as Open Data and Open Science,
the visualization and visual analytics community needs to
develop concepts and tools to deal with it. We strongly
believe that the concept of data descriptors will serve as an
important foundation for these developments.
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