
Visualizing Graphs - A Generalized View

Hans-Jörg Schulz, Heidrun Schumann
Department of Computer Science, University of Rostock, 18051 Rostock, Germany

{hjschulz, schumann}@informatik.uni-rostock.de

Abstract

The visualization of graphs has proven to be very useful
for exploring structures in different application domains.
However, in certain fields of computer science, graph visu-
alization is understood and focused quite differently. While
”graph drawing” focuses on optimized layouts for node-
link-representations of networks, ”information visualiza-
tion” prefers to work on hierarchies focusing on very large
structures, different views and interactivity.

This paper gives a systematic view of the problem of
graph visualization by combining both approaches. We
will introduce a general view of different visualization
methods as well as describe occurring problems and dis-
cuss basic constraints. These will be used to propose a vi-
sualization framework for graphs, whose development mo-
tivated this paper.

Keywords— Network Visualization, Graph Drawing, Ex-
ploratory Graph Analysis

1 Introduction
For a long time, visualizing structures is a hot topic in

the domain of information visualization. Main objectives
are the handling of very large data sets as well as providing
functionality to interactively exploring them. A number of
customized methods for visualizing structures have been
developed. Generally, we distinguish between methods
presenting hierarchical structures and methods for more
general classes of graphs. However, most of the recent
work is concentrating on presenting hierarchies. Here, the
ideas of the information seeking mantra ”Overview first,
Zoom and Filter, then Detail on Demand” [23] can be ef-
fectively realized by using adaptive techniques and infor-
mation hiding. Thus, we may start with an overview image,
showing the first levels of the hierarchy only, and refine it
for regions of interest, e.g. by an interactive folding and
unfolding of subtrees.

On the other side, in the domain of graph drawing,
there exists a wide variety of different layout techniques
for graphs. Here, the focus of many applications and li-
braries like JUNG (http://jung.sourceforge.net) or JGraph

(http://www.jgraph.com) lies upon optimized layouts for
static, medium-sized, sparse node-link-representations,
rather than upon interactivity or providing multiple views
at different levels of detail.

Combining both strategies would significantly increase
the importance of visual techniques to solve problems in
many application domains, where complex structures have
to be analyzed, e.g. in systems biology, electrical circuits
or social networks.

A first step on this way could be a systematic view of
the variety of techniques for visualizing structures from
both domains, information visualization and graph draw-
ing. For visualizing hierarchies there exist classification
schemes [13] as well as studies to analyze and compare the
different approaches [5, 25].

In this paper we want to give a taxonomy of network
presentation techniques (see section 2). Moreover, we want
to discuss the different constraints to be considered, when
visualizing complex structures (see section 3). Finally, we
will show, how the different approaches can be combined
in a framework for exploring complex graphs (see section
4).

2 Taxonomy
Over the last years a great number of powerful meth-

ods for visualizing structures have been developed. Since
different methods focus on different aspects, choosing the
right one can be a difficult task. To support the se-
lection of appropriate visualization techniques, classifica-
tion schemes have been proven to be very helpful, since
they clarify the fundamental features of the different ap-
proaches. In doing so, they allow comparisons and evalua-
tions of diverse techniques.

In general, an important criterion in classifying visual-
ization methods is, whether the layouts are realized in 2- or
3-dimensional presentation space. 2D-techniques are intu-
itive and widely used, which is true for graph visualization
techniques as well. However, with the growing amount of
data on one side, and with the growing capabilities of mod-
ern graphic cards on the other side, even 3D-techniques be-
come popular. In 3D presentation space we have an addi-



tional axis for information encoding. This extra dimension
can either be used to encode attributes of nodes/edges in a
so called ”21

2D” network representation, as it is discussed
in [7], or to lay out large data sets within three dimen-
sions. However, there are also some problems with these
3D-layouts like occlusions, perspective distortions, diffi-
culties in the interpretation of location and orientation of
lines and so on. Therefore, the choice between 2D- or 3D-
representations has to be made with care. Figure 1 shows
examples for two 3D- and four 2D-graph-layouts.

In addition to this general criterion of dimensionality,
we can classify visualization techniques for structures by
more specific aspects. This will be discussed in the next
sections. First in section 2.1, we will briefly describe a
taxonomy of visualization methods for hierarchies. After-
wards in section 2.2 we will introduce our taxonomy for
network visualization techniques.

2.1 Hierarchy Representations

There are two principal alternatives to classify visual-
ization techniques for hierarchies:

- explicit vs. implicit
- axes-oriented vs. radial

Figure 1: Examples of hierarchical graph representations
— derived from [22]

Explicit vs. Implicit: Explicit methods display the edges
between the elements of the hierarchy in the traditional
node-link-representation (see upper row of figure 1). Im-
plicit techniques are space-filling methods. They use a
wide variety of abstract node representations (lines, boxes,
circles, etc.) and indicate their relation by subtle arrange-
ments of these elements (inclusion, intersection, adjacency,
etc.). For examples see the lower row of figure 1.

A user study comparing explicit and implicit represen-
tation techniques according to their usability for different
tasks was presented in [5]. As a representative of explicit
techniques, the Organization Chart was chosen. Moreover,

3 implicit techniques (Icicle Plot, Treemap, and Tree Ring)
were considered. The comparison was based on such as-
pects as: ease of interpretation, node size and user pref-
erences. During the tests, the Icicle Plot achieved nearly
the same results as the Organization Chart. Tree Ring (see
Sunburst in figure 1 to get an impression) and especially
Treemap (see figure 1) required more effort. However,
it was stated that none of the views was clearly superior
to the other views. The achieved results were related to
a combination of the given tasks and the view. Explicit
techniques are advantageous, when solving node descrip-
tion tasks. Implicit techniques like Tree Ring are effective,
when performing node size tasks.

It is of course also possible to combine both approaches
and thus try to make use of the advantages of both. A re-
cent technique of this kind combining Treemaps and Node-
Link-Representations are the Elastic Hierarchies [30].

Axes-oriented vs. Radial: Axes-oriented layouts arrange
elements line by line. One line depicts the nodes of one
level of the hierarchy. Typically, the lines are arranged par-
allel to the axes. Radial layouts present concentric circles
with the root of the hierarchy in the midpoint. The main
advantage of radial layouts is the automatically increasing
display space for each layer of the hierarchy. This advan-
tage is reflected in the outstanding rating the radial tech-
nique Sunburst got at the comparative user study in [25].

While the most widely used tree visualization tech-
niques belong to either one of these two categories, there
are a few exotic tree visualization techniques using more
unrestrained layouts that do not fit into this binary classifi-
cation scheme (i.e. Vornoi Treemaps [4] or Botanical Trees
[14]). Yet due to their small number and their limited prac-
tical impact, a third layout category containing such free
layouts is usually not considered.

2.2 Network Representations

While the organization of data in a hierarchical man-
ner is a powerful pattern used frequently throughout many
fields of application, hierarchies and especially trees are
just a tiny subclass compared to the huge graph class of
networks. That is why adequately representing networks
is in most cases a much more difficult task than depicting
hierarchies. Networks for example do not have the distinct
top-to-bottom-ordering of trees that is exploited heavily by
tree visualization techniques to generate a suitable layout.
Yet in many application domains, it is common to direct
the network’s edges and thus impose an ordering upon it.
Therefore, we distinguish between visualization methods
for plain networks and such suitable to visualize directed
graphs. Additionally, network visualizations can be differ-
entiated between explicit and implicit, or according to the



degree of predetermination of their node layout. The lat-
ter is of particular interest, since it generalizes the notion
of axis-oriented and radial layouts discussed in section 2.1,
which are not applicable to network visualizations. Thus,
we propose three possible categorizations for visualization
techniques for networks:

- directed vs. undirected
- explicit vs. implicit
- free, styled or fixed

Directed vs. Undirected: Attributing the edges of a net-
work with directional information is common in many
fields of application, where it is mostly used to model no-
tions of flow or dependency. In contrast to the layout of
undirected networks, directed graphs pose an additional
challenge to the layout process, as the directions of the
edges should be integrated in the visualization. For node-
link-representations, this is usually done by adding arrow-
heads to the edges indicating their direction. Another alter-
native to encode the directionality of edges is to arrange the
graph in a way, that allows to deduce the directions easily
from the layout itself, as it is done e.g. by the DIG-COLA
method [8].

Explicit vs. Implicit: The distinction between explicit and
implicit graphing techniques for networks runs along the
same line, as shown in section 2.1. Yet, while implicit
tree visualizations usually exploit the characteristic hier-
archical, acyclic topology of trees, implicit network visu-
alizations cannot take advantage of such structural restric-
tions. There are essentially three ways to cope with this
additional difficulty:

- use a matrix-based implicit layout, since matrices are
well know to admit every kind of graph – examples
are introduced in [1, 19],

- use an implicit tree layout to depict a spanning tree
of the network and augment it with the remaining
edges, as it can be done using techniques presented
in [11, 18],

- check the network for certain structural characteris-
tics and exploit them, i.e. a planar network can be
depicted using a tesselation representation [26] or an
interval graph can be represented by segments of a
straight line [17].

Figure 2 respectively shows an example for each one of the
possibilities given above. However, because it has proven
to be quite difficult to implicitly depict networks, up to
now node-link representations are the most common way
to display graphs (for a comprehensive overview see [6])
and implicit techniques are far from being as widespread
and accepted as for tree visualizations. That might be the

reason that user studies comparing the usefulness of im-
plicit and explicit network layouts for different tasks are
very rare. Thus far, there exists only one comparison be-
tween matrix-based and explicit layout techniques [12].

Figure 2: Examples for implicit network representations
(from left to right): the matrix-based technique Graph
Sketch [1], two ArcTrees [18] and the tesselation repre-
sentation of a planar graph [6]

Free, Styled and Fixed: Yet another way to classify net-
work visualization techniques is to use the degree of free-
dom for node layouts within the presentation space. In
most cases, the node layout is not restricted (free layout)
and can thus be generated with a wide variety of meth-
ods (i.e. force-directed placement [6]) On the other hand,
there are cases where the node layout is entirely fixed and
only the run of the edges can be determined freely by the
technique. This occurs mostly for geospatial visualization
techniques, i.e. as it is known from airway route maps. But
there are also a few implicit techniques for which an alter-
ation of the fixed node layout would result in discrepancies
to the originally represented graph topology. An example
for such a case is the permutation diagram of a permuta-
tion graph [10]. Apart from free and fixed layouts, there
are less restricted, yet not entirely free layouts called styled
layouts. That means the node layout confines to a certain
predefined scheme, i.e. a grid. Using a styled layout has
the advantage that the overall style of the graph visualiza-
tion is known even before the actual layout is computed.
This knowledge can be used to estimate the screen space
needed to display the graph and to preselect fitting inter-
action methods that are known to work well on a certain
style. Figure 3 shows a graph in two common styled node-
link-layouts:

Figure 3: Two examples for styled network layouts: circu-
lar (left) and grid (right).



Since trees can be conceived as a certain type of network,
it is not surprising that this layout-based differentiation of
graph visualization techniques works just as well for tree
visualizations. There the only limitation is that merely two
styled layouts are used in practice: axis-oriented and radial.

3 Constraints on Network Visualization

As the above sections have shown, there is an abun-
dance of visualization techniques available for all kinds
of graph topologies, application domains and visualization
goals. So today’s question is not whether there exists a suit-
able visualization technique, but which of them to choose.
The following sections discuss a number of constraints that
influence the decision for a certain visualization method
on different levels. All of the constraints mentioned in the
following sections must be considered in order to yield a
meaningful and usable visualization.

3.1 User Constraints

The following examples are constraints that can be de-
rived from assumptions about interactive tasks that the user
will be likely to carry out on the final visual representa-
tion. That means, the information seeking mantra has to
be supported, providing different views on the given graph
at different levels of granularity to solve different tasks.

Compatibility of visualization and user: In some fields
of application, certain visualization methods are more
common and better understood than others. Since at the
end, the user with the scientific background from her do-
main of research has to work with the chosen visualization,
this should be an important consideration when choosing
a visualization technique. Hence, when evaluating visual
representations user preferences are a main aspect, e.g. [5].

Well known examples are the standards for technical
drawing, that require i.e. to depict conducting paths in
a circuit diagram as orthogonal edges of a node-link-
representation.

Compatibility of visualization and interaction tech-
niques: Typically the user wants to explore the structure
of a graph in depth, and thus we have to provide differ-
ent views at interactive frame rates. Therefore, the graph-
ical representation of a graph needs to be generated with
respect to the limited time-resources, rather than focusing
on optimized layouts. Moreover, the desired techniques of
interaction have to be easily combinable with the underly-
ing graph visualization to ensure a high degree of usability.
That means, e.g. searching for details of interest has to be
performed without losing the orientation within the general
network. This is one of the main problems, when exploring

large structures. Therefore, often different representations
for overview and detail are linked together in such a way
that manipulating one view automatically updates the oth-
ers. One commonly used manipulation technique in this
context is the identification of certain substructures (i.e.
shortest paths or cliques). That means, the user searches
for some structures of interest in one view, and these struc-
tures are also accentuated in the other views e.g. by high-
lighting or color-coding. Working with different views at
once, the user can effectively change the representations to
choose the best for the task at hand.

This means for example, that a node-link-representation
of a road network would be well suited to navigate through
it, because it is highly compatible with the interaction tech-
niques used for navigation (highlighting of edges to indi-
cate paths, etc.) Yet, a civil engineer who has to plan and
to maintain the road network, might be served better by
a compact matrix-based representation that can easily be
rearranged, grouped and sorted.

Compatibility of different visualization techniques:
Sometimes, the focus of the graph analysis does not lie
upon the structure of the graph, but on certain attributes
associated with the nodes or edges. To reflect this focus,
the visualization has to provide extra space to visualize the
attributes with different visualization methods – each cus-
tomized to the nature of one attribute of interest. An ex-
ample for such a combination of graph and attribute visu-
alization is the so called Needle Grid [2].

Generally, explicit techniques are advantageous in case
of edge attributes to be visualized, since they explicitly
draw the edges and leave enough possibilities for graph-
ically encoding the attributes (color coding, dashing, etc.).
On the other side, implicit techniques are superior to ex-
plicit ones when it comes to annotating nodes with cer-
tain attributes, because no extra space is wasted for draw-
ing edges and all display space is available to depict
the nodes and their attributes. This is valid up to the
point, when more information about each attribute needs
to be displayed than can be represented within the space a
node occupies. Above that level, again explicit node-link-
representations are a better choice, since they leave a lot of
space in between the nodes that can be used for annotation.

3.2 Data Constraints

While the user constraints already rule out a number of
inappropriate visualization methods, they do not take any
properties of the network data itself into account. Among
these are:
Static Data vs. Dynamic Updates: While most sets of
data can be acquired and stored completely before the anal-
ysis starts, some fields of application work with highly



volatile data that changes with every timestep. When for
example analyzing a peer-to-peer net, every now and then
a peer quits its connection (a node and its incident edges are
deleted), while others join the net (a new node is added).

If the user requires these dynamic updates of the struc-
ture to be taken into account, then it would force the vi-
sualization method to be computed relatively fast. Fur-
thermore, it would clearly be a poor choice to visualize
a dynamically changing graph using a topology-dependent
layout, since the graph’s planarity or acyclicity is subject
to change with every update operation. However, a rather
static, maybe styled arrangement of the nodes is needed,
which changes only locally and maintains the overall lay-
out as minor changes on the underlying data occur. This
allows the user to preserve her mental image of the general
graph structure and to orientate herself during the process
of analysis [9].

Figure 4 shows two radial layouts of a dynamically
changing hierarchy before and after an additional subtree
gets attached to it. The left image shows the application of
the Walker algorithm [29], adapted to a radial layout. Af-
ter dynamically attaching the subtree, the original layout is
almost completely lost, and thus the mental map is hard to
maintain. The right image shows an even further adapted
version, the Radial Walker algorithm, that abandons the
optimized space-filling strategy. However, here the orig-
inal structure is recognizable after dynamically attaching
the subtree. Thus, the orientation of the user is preserved.

Figure 4: Two examples for unfolding hierarchies – on the
left side with an optimal space-filling strategy, on the right
side with preserving the orientation

Similar considerations can be made for interactive tech-
niques that allow the folding of subtrees of a hierarchy or
to aggregate clustered nodes in a network, since the effect

is the same: nodes are constantly disappearing and being
reintroduced to the layout.

Size and Density of the Graph: A main problem of
graph visualization is the concealment of structural infor-
mation, which cannot be avoided especially for large and
dense graphs. This problem is commonly known as the
so called ”screen bottleneck”, and it occurs at the latest
when the number of nodes to display at once exceeds the
number of available pixels on the screen. Hence, tech-
niques to circumvent the lack of adequate display space
need to be applied. Among others, the user could uti-
lize overview+detail, clustering or information hiding tech-
niques. However, as already discussed in section 3.1 not
every visualization technique is suitable to be combined
with every possible technique from this list, which re-
sults in additional constraints for the selection of a suitable
graph visualization.

A variety of visualization methods for large graphs al-
ready assume some kind of preprocessing like a hierarchi-
cal clustering of the graph as additional input. A powerful
example of this kind is the matrix-based network visualiza-
tion technique Graph Sketches [1] which supposedly can
handle networks with up to 250 million vertices. In gen-
eral, implicit representations have the advantage that more
nodes can be depicted, since they are screen-filling tech-
niques, that do not use up screen space to draw edges.

Graph Topology: As already discussed in the above sec-
tions, some visualization techniques (especially implicit or
hierarchical methods) admit only graphs of a certain topol-
ogy. These visualizations have the advantage that they em-
phasize the special topology of a graph by means of a well
adapted layout technique.

This restriction is often not tight, which means, that i.e.
a network with only a few so called ”cross edges” can still
be depicted with a wide variety of hierarchical layout tech-
niques. To do so, its spanning tree is laid out hierarchically
and the cross edges that form induced cycles within the
network and thus destroy the hierarchical topology of the
graph are drawn on top of the hierarchical layout. This way
of representing treelike networks emphasizes the underly-
ing topology and eases the identification of cross edges by
coloring them differently. An example for this technique
using a Treemap as underlying hierarchical layout is dis-
cussed in [11] and is depicted on the left of figure 5.

Another way to adequately depict the topological struc-
ture of a network is to divide the network in subgraphs
and to visualize these subgraphs according to their special
topology. A recent technique following this approach has
been presented in [3] and is shown on the right side in fig-
ure 5.



Figure 5: Two examples for topological visualization.
Left: Treemap with cross edges [11], Right: TopoLayout
[3]

3.3 Aesthetic Constraints

Finally the hardest problem when visualizing graphs is
to find an appropriate layout in the 2D- or 3D-space. Some
of the most prominent aesthetical criteria for a desirable
graph layout are:

- small number of edge crossings
- small area of drawing
- small number of bends along the edges
- small but uniform edge lengths

Thus, the selection and parametrization of an appropriate
algorithm for the graph layout is influenced by several con-
straints, i.e. the minimization of edge crossings or nearby
layout for adjacent nodes to preserve structural proximity.
As shown in figure 6, these constraints often even contra-
dict each other, so that the user needs to prioritize or weigh
the constraints according to her aesthetic preference or an
informally stated visualization goal.

(b)(a)

Figure 6: While layout (a) minimizes the number of edge
crossings, it distorts the structural proximity between the
two black nodes. Layout (b) graphically preserves this
structural proximity, but trades an additional edge crossing
to do so.

Further problems arise, when additional node- or edge-
labels need to be integrated in the layout. All of this con-
tributes to make the computation of network layouts a com-
plicated and algorithmically complex task.

4 Assembling the Pieces
Many of the ideas mentioned in the above sections

actually stem from a domain-independent framework for
graph visualization that we developed [21]. In fact, this
framework serves as a perfect example which finally puts
together the presented ideas and proves their usefulness
when combined with each other. Since graph-like struc-
tures occur in many fields of application, the computer
aided visualization and interactive analysis of large graph
structures plays an increasingly important role for modern
scientific research.

A framework to assist the user with visualizing hierar-
chical or network data from any application background
needs to cover the entire process from acquiring and clean-
ing the data through different stages of algorithmic com-
putation to finally visualizing the results and interacting on
them. The layout of the developed framework directly re-
flects this process, as it is shown in figure 7.

Clustering & Decomposition

Results

Prepro- 
cessing

Data- 
base

Algorithmic Kernel

Substructure Extraction

Calculating Structural Measures

Interactive 
Visualization

Calculating Structural Measures

Requirements Specification

Figure 7: Overview of the graph visualization framework.

For its modular design, the shown components of the
framework can be extended with different visualization
techniques and algorithmic modules to realize their func-
tioning according to the actual domain of application. In
detail, the components provide the following functionality:

Requirements Specification: During this initial phase,
the user can roughly parametrize the upcoming algorith-
mic computations, e.g. by setting upper runtime bounds,
choosing preferred visualization techniques or manually
weighing the different layout constraints available.

Preprocessing: This step can be used for cleansing and fil-
tering the data, i.e. deleting dangling edges or normalizing
node/edge attributes.

Algorithmic Kernel: This component does the actual
work of calculating additional data, which is one of the



crucial features an integrated framework for graph visual-
ization must fulfill: extracting/classifying substructures as
it is needed i.e. for the TopoLayout technique [3], com-
puting measures like density or diameter of a graph that
can be used to automatically determine fitting visualiza-
tion techniques, clustering/decomposition of the graph i.e.
to prepare for later display as a Graph Sketch [1].

Interactive Visualization: Besides laying out and ren-
dering the desired graphical representation, this compo-
nent can also be used to interactively extract a refined data
set (selection/filtering) or to trigger additional calculations,
e.g. of measures of interest.

For each of these computational steps, user defined
modules can be plugged into the framework and executed
in the given order. Of particular interest for the user inter-
action are the two arrows pointing back and forth between
the algorithmic and the visualization component. They
tightly couple non-visual procedures with various visual
representations at different levels of granularity. This inte-
gration enables us, to apply the Shneiderman’s information
seeking mantra to both, non-visual and visual methods al-
lowing a smooth and flexible transition between both – just
as the task at hand requires it (see figure 8).

Visual ComponentsNon-Visual Components

Overview

Zoom & 
Filter

Details on 
Demand

Overview

Zoom & 
Filter

Details on 
Demand

Figure 8: How the framework splits the mantra in tech-
niques on data and on representation level.

How to effectively combine these two views depends on
different aspects, first of all on the interests of the user, but
also on the size of the given structure and the computed
features. A likely example would be, that a user wants
to browse a large network via its cluster hierarchy gener-
ated by a graph clustering algorithm. If the dendrogram
of the cluster hierarchy does not exceed the restrictions of
the available display space, it will be possible to show the
whole dendrogram at once. But, if the display space is
not enough, the user has to start her exploration with an
overview image that presents only the first couple of hierar-
chy levels of the dendrogram but allows further refinement
by unfolding subtrees of interest. This shows that a certain
non-visual processing step does not automatically lead to

its visual counterpart. Instead it can result in different vi-
sual outcomes, which leaves the transition from the visual
to the non-visual components (as shown in figure 8) influ-
enced by environmental constraints (e.g. screen resolution)
or the user’s will.

A second example would be, when the user discovers a
heavy accumulation of nodes in a certain area of the visu-
alization that she suspects to be a complete subgraph. To
prove this, the user could either run an appropriate cluster-
ing or decomposition method that would isolate the dense
subgraph into a separate cluster if it thus proves to be one.
Or, she could use a graph matching approach to search for
the largest complete configuration within the subgraph in
question. This demonstrates the very same flexible nature
of the proposed twofold approach in the other direction.
Depending on the user’s will or the available computation
time, various non-visual components are accessible from
visual ones.

Thus, a framework allowing a flexible combination of
different computational and visual methods has a great
power in supporting the complex visualization and explo-
ration process. Effective exploration utilizes a tight cou-
pling between the different stages as well as between visual
and non-visual methods. This allows a natural, iterative ex-
ploration process that pursues its goal by stepping back and
forth through the available techniques as it is needed. Ex-
actly this is the aim of the new topic visual analytics [27].

We successfully applied our framework to a variety of
data sets. This included a web link graph of our institute
internet pages (51497 nodes, 425247 edges), a citation net-
work (509 nodes, 1551 edges), peer-to-peer-networks with
a few hundred nodes and genomic data sets. In [21], we
demonstrated the usefulness of our framework design and
presented interesting insights for the medium sized Edin-
burgh Associative Thesaurus data set.

5 Conclusion

In this paper we present a generalized view of graph
visualization. This includes a taxonomy scheme for gen-
eral graph representations, an introductory discussion of
constraints that need to be considered in order to gain a
meaningful and useful visual graph representation, and a
proposal for a visualization and exploration framework for
graphs.

The presented ideas point towards current and future
challenges to further investigate and understand the numer-
ous interrelated aspects in depicting and exploring graphs.
In detail, the next steps of our work will be to identify suit-
able constraints for hypergraph visualization and to include
them into our implementation of the proposed framework.



References
[1] J. Abello, I. Fionocchi, and J. Korn. Graph Sketches.

In Proc. of InfoVis’01, pages 67–70, 2001.

[2] J. Abello and J. Korn. MGV: A System for Visualiz-
ing Massive Multidigraphs. IEEE Trans. on Visual-
ization and Computer Graphics, 8(1):21–38, 2002.

[3] D. Archambault, T. Munzner, and D. Auber. Interac-
tive Poster: TopoLayout - Graph Layout by Topolog-
ical Features. In Proc. of InfoVis‘05, 2005.

[4] M. Balzer and O. Deussen. Vornoi Treemaps. In
Proc. of InfoVis’05, pages 49–56, 2005.

[5] T. Barlow and P. Neville. A Comparison of 2-D Vi-
sualizations of Hierarchies. In Proc. of InfoVis’01,
pages 131–138, 2001.

[6] G. di Battista, P. Eades, R. Tamassia, and I. Tollis.
Graph Drawing - Algorithms for the Visualization of
Graphs. Prentice Hall, 1999.

[7] T. Dwyer. Two-and-a-Half-Dimensional Visualisa-
tion of Relational Networks. PhD thesis, 2004.

[8] T. Dwyer and Y. Koren. Dig-CoLa: Directed Graph
Layout through Constrained Energy Minimization. In
Proc. of InfoVis’05, pages 65–72, 2005.

[9] P. Eades, W. Lai, K. Misue, and K. Sugiyama. Pre-
serving the mental map of a diagram. In Proc. of
Compugraphics, pages 24–33, 1991.

[10] S. Even, A. Pnueli, and A. Lempel. Permutation
Graphs and Transitive Graphs. Journal of the ACM,
19(3):400–410, 1972.

[11] J.-D. Fekete, D. Wang, N. Dang, A. Aris, and
C. Plaisant. Interactive Poster: Overlaying Graph
Links on Treemaps. In Proc. of InfoVis’03, 2003.

[12] M. Ghoniem, J.-D. Fekete, and P. Castagliola. On the
Readability of Graphs Using Node-Link and Matrix-
Based Representations. Information Visualization,
4:114–135, 2005.

[13] D. Keim, W. Müller, and H. Schumann. Information
Visualization and Visual Data Mining. State of the
Art Report, Eurographics 2002, 2002.

[14] E. Kleiberg, H. van de Wetering, and J. J. van Wijk.
Botanical Visualization of Huge Trees. In Proc. of
InfoVis’01, pages 87–94, 2001.

[15] M. Kreuseler and H. Schumann. A flexible approach
for visual data mining. IEEE Trans. on Visualization
and Computer Graphics, 8(1):39–51, 2002.

[16] J. Lamping, R. Rao, and P. Pirolli. A focus+context
technique based on hyperbolic geometry for viewing
large hierarchies. In ACM Proc. of CHI´95, pages
401–408, 1995.

[17] C. G. Lekkerkerker and J. C. Boland. Representation
of a Finite Graph by a Set of Intervals on the Real
Line. Fundamenta Mathematicae, 51:45–64, 1962.

[18] P. Neumann, S. Schlechtweg, and S. Carpendale.
ArcTrees: Visualizing Relations in Hierarchical Data.
In Proc. of Eurovis’05, pages 53–61, 2005.

[19] B. Otjacqes and F. Feltz. Representation of Graphs on
a Matrix Layout. In Proc. of IV’05, pages 339–344,
2005.

[20] G. Sander. Graph Layout through the VCG Tool. In
Proc. of Graph Drawing ’94, pages 194–205, 1995.

[21] H.-J. Schulz, T. Nocke, and H. Schumann. A Frame-
work for Visual Data Mining of Structures. In Proc.
of 29th Australasian Computer Science Conference,
pages 157–166, 2006.

[22] H. Schumann and W. Müller. Informationsvisual-
isierung: Methoden und Perspektiven. it - Informa-
tion Technology, 3:135–141, 2004.

[23] B. Shneiderman. The Eyes Have It: A Task by Data
Type Taxonomy for Information Visualization. Tech-
nical report, 1996.

[24] B. Shneiderman and M. Wattenberg. Ordered
Treemap Layouts. In Proc. of InfoVis’01, pages 73–
78, 2001.

[25] J. Stasko, R. Catrambone, M. Guzdial, and K. Mc-
Donald. An Evaluation of Space-Filling Informa-
tion Visualizations for Depicting Hierarchical Struc-
tures. Journal of Human-Computer Studies, 53:663–
694, 2000.

[26] R. Tamassia and I. G. Tollis. Tessellation Representa-
tions of Planar Graphs. In Proc. of 27th Allerton Con-
ference on Communication, Control and Computing,
pages 48–57, 1989.

[27] J. Thomas. Visual Analytics: a Grand Challenge in
Science. Keynote Talk, InfoVis’05, 2005.

[28] F. van Ham and J. J. van Wijk. Beamtrees: Compact
Visualization of Large Hierarchies. In Proc. of Info-
Vis’02, pages 93–100, 2002.

[29] J. Q. Walker. A node-positioning algorithm for gen-
eral trees. Software – Practice and Experience,
20(7):685–705, 1990.

[30] S. Zhao, M. J. McGuffin, and M. H. Chignell. Elastic
Hierarchies: Combining Treemaps and Node-Link-
Diagrams. In Proc. of InfoVis’05, pages 57–64, 2005.


