
In Situ Exploration of Large Dynamic Networks

Steffen Hadlak, Hans-Jörg Schulz, and Heidrun Schumann

Abstract—The analysis of large dynamic networks poses a challenge in many fields, ranging from large bot-nets to social networks.
As dynamic networks exhibit different characteristics, e.g., being of sparse or dense structure, or having a continuous or discrete
time line, a variety of visualization techniques have been specifically designed to handle these different aspects of network structure
and time. This wide range of existing techniques is well justified, as rarely a single visualization is suitable to cover the entire visual
analysis. Instead, visual representations are often switched in the course of the exploration of dynamic graphs as the focus of analysis
shifts between the temporal and the structural aspects of the data. To support such a switching in a seamless and intuitive manner,
we introduce the concept of in situ visualization – a novel strategy that tightly integrates existing visualization techniques for dynamic
networks. It does so by allowing the user to interactively select in a base visualization a region for which a different visualization
technique is then applied and embedded in the selection made. This permits to change the way a locally selected group of data
items, such as nodes or time points, are shown – right in the place where they are positioned, thus supporting the user’s overall
mental map. Using this approach, a user can switch seamlessly between different visual representations to adapt a region of a base
visualization to the specifics of the data within it or to the current analysis focus. This paper presents and discusses the in situ
visualization strategy and its implications for dynamic graph visualization. Furthermore, it illustrates its usefulness by employing it for
the visual exploration of dynamic networks from two different fields: model versioning and wireless mesh networks.

Index Terms—Dynamic graph data, multiform visualization, multi-focus+context.

1 INTRODUCTION

The need to explore large dynamic networks arises in many fields from
traffic analysis in computer networking to studies of changing inter-
personal ties in social networks. As dynamic networks, we consider
networks in the graph-theoretical sense with a node set V and an edge
set E, as well as sets of node attributes VA and edge weights EW being
subject to change over time. Until today, a whole range of visual-
ization techniques for dynamic networks has been developed, each of
them suited for a certain set of analysis tasks (e.g., overview vs. detail)
and data with certain characteristics (e.g., trees vs. networks, or linear
time vs. branching time). As a visual analysis session is a sequence of
different tasks, a user usually cannot decide for a single visualization
once and for all, but has to switch between different visualizations
to be able to always use the one that is best suited at a given stage
of analysis. The same holds true if the user selects different subsets of
the data for further analysis, as these may have different characteristics
demanding for a dedicated visualization. For example, when concen-
trating at one point during the analysis on a spanning tree of a given
network, this calls for a switch to a tree visualization to exhibit the tree
characteristics of that subgraph.

Furthermore, we consider dynamic networks to be large, if their
number of data items is in the order of magnitude of 100,000’s or
more, where #items = (|V | ∗ |VA|+ |E| ∗ |EW |)∗#time steps. If the dy-
namic networks get that large, they can no longer simply be mapped
to the representation space, as they would clutter the display. Instead,
the number of data items must be reduced in beforehand – either by
reducing the size of the network (the first part of the equation above),
by reducing the number of time steps (the second part of the equation),
or by reducing both aspects of the data. The level of reduction of each
aspect can be chosen so as to reflect the focus of the visual analysis: if
the focus of analysis lies on the network aspect, one may not want to
reduce the network structure, e.g., by clustering, but instead rather cut
down on the number of time steps. Likewise, if the analysis is centered

• Steffen Hadlak and Heidrun Schumann are with the University of Rostock,
E-mail: {hadlak,schumann}@informatik.uni-rostock.de.

• Hans-Jörg Schulz is with the Graz University of Technology, E-mail:
schulz@icg.tugraz.at.

Manuscript received 31 March 2011; accepted 1 August 2011; posted online
23 October 2011; mailed on 14 October 2011.
For information on obtaining reprints of this article, please send
email to: tvcg@computer.org.

around the temporal aspect, this should be left as detailed as possible,
while aggregating the network instead. In fact, as shown in Section 2,
most visualization techniques for large dynamic graphs realize one of
these options or even both to find a balance between them. Yet, this
adds another layer of complexity to the issue of selecting a suitable vi-
sualization technique, as again the analysis focus may change over the
course of the analysis, thus making a switch between different tech-
niques with different foci necessary.

Despite the apparent need for it, a method to perform such a switch
between different visualizations in a smooth and seamless manner is
largely unknown. Most publications focus on individual graph lay-
out and visualization techniques, but very few concern strategies to
interactively shift between them and combine them. Hence, we pro-
pose a mechanism to solve the integration of various visualization
techniques for dynamic graphs, making them available through one
common principle, which we term in situ visualization and which is
described in Section 3. Our approach draws upon well-established
concepts, such as focus+context [23], semantic lenses [6], and por-
tals [37], and thus does not confront the visualization users with an
entirely new paradigm. It enables the user to shift the analysis focus
for individual regions of a visualization to a different one by switch-
ing between visual representations while maintaining the context and
thus supporting the user’s mental map. This is an important aspect
especially for structured data such as networks, as the continuity of
the spatialization used by the underlying base visualization should be
preserved – be it either the structural continuity of the network or the
temporal continuity of a time axis. Our approach achieves this by link-
ing embedded in situ visualizations and contextual base visualization.
Solutions to achieve an embedding even if the selection is small, non-
rectangular, or discontinuous are discussed in Section 4 along with
methods to support the choice of adequate visualization techniques to
embed.

The usefulness of the in situ visualization concept for dynamic net-
works is illustrated by two exemplary use cases in Section 5. Here,
we apply our approach to dynamic networks from two different appli-
cation fields: model versioning and mesh networks. The expert feed-
back given in both cases confirms that the adaptability of the in situ
approach makes it a good fit for these highly interactive analysis sce-
narios, which require to tailor the view to the given data in a number
of subsequent exploration steps.

We finally conclude this paper by discussing further implications of
the in situ visualization strategy and by pointing out future research
directions in Section 6.

Table 1. A categorization of visualization approaches for large dynamic graphs.

time

unreduced reduced
selection abstraction

st
ru

ct
ur

e

un
re

du
ce

d

only suitable for large displays [17] Online Dynamic Graph Drawing [22] Software Cities [45]

re
du

ce
d se

le
ct

io
n

Dynamic Network Visualization in 1.5D [43] TimeRadarTrees [12] Spiral Treemap [48]

ab
st

ra
ct

io
n

BiGraphiXplorer [30] Community Detector [19] Coarsened Difference Graph [2]

2 PROBLEM DESCRIPTION AND RELATED WORK

The problem of visualizing large dynamic networks consists of two
major aspects that must be considered: the graph structure describ-
ing the relations between the elements of the network and their at-
tributes, as well as the temporal domain describing the dynamics of
the network. Each aspect by itself poses a challenge for the visualiza-
tion, be it a high number of nodes and edges, or a multitude of time
steps. Combining both, as it is necessary when visualizing dynamic
networks, aggravates the situation even further, because the limited
screen space does not permit to show both aspects in their full detail.
Current visualization techniques try to find a compromise for what to
show at what level of detail between the huge graph structure on the
one hand and the large number of time points on the other hand.

This problem is captured best by the concept of the visual entity
budget as introduced in [18]. It represents an upper limit for the num-
ber of visual entities to be displayed, which can result from limited
screen space, limited processing capabilities, or the limits of the hu-
man understanding. In order to stay below a given visual entity bud-
get, there are two principal ways to handle large data: either reduce
the amount of data by selecting a smaller subset which is of interest,
or by abstracting the data so that multiple data items get mapped onto
a single visual entity [32]. A selection maintains individual details at
the cost of losing the overview of the whole, whereas an abstraction

preserves the overall characteristics at the expense of the details. In
terms of the compromise between structure and time this means the
more detail of one of these aspects is shown the fewer details can be
shown for the other aspect. If a visualization focuses rather on the time
aspect, more visual entities are allocated for time and less for the struc-
ture, and vice versa. In order to achieve this, selection and abstraction
can be applied independently for both aspects of the data.

As this is such a fundamental property of visualizations for large
dynamic networks and an important decision to make when deciding
for one of them, we use it as a natural classification system for these
techniques, as shown in Table 1. This classification allows us to give a
compact overview of the available techniques, as most visualizations
for large dynamic graphs fall into one of the table cells. The shown
technique in each cell serves as a representative example of a cell’s
specific combination of reducing structure and time. The individual
rows and columns of the table are shortly described in the following.

Unreduced Structure/Unreduced Time: The first row and the first
column keep the structure and the time unreduced respectively, so that
these visualization techniques contain a lot of details. Especially the
combination of both leads to huge layouts for large dynamic graphs.
They are thus only suitable for very large displays, such as display
walls [17] or poster printouts [28], which have the necessary space
and resolution to show them. Otherwise, if only one aspect is left
unreduced, visualizations can be made to fit a regular display by using

a drastic reduction of the respective other aspect – e.g., by selecting
merely a single time point for which to show the full network or a
single node for which to show its complete development over time.

Selected Structure: Selecting only a small part of the network
structure leaves more space for representing the dynamics of this
smaller part. Depending on how small a selection is made, its de-
velopment can either be shown over the entire time line or only for a
reduced set of time steps. The selection can range from just a single
node as in [43] which is thus able to display many time steps, to large
selections which also require a reduction of the time aspect, for ex-
ample by abstracting it [24]. Another often encountered variant is the
selection of only a certain kind of nodes, i.e., only leaf nodes of a tree
for which to show the temporal development [48].

Abstracted Structure: Visualization techniques that abstract the
graph structure of the network and use these abstractions for visualiza-
tion, can likewise abstract away either more or less structural details,
thus giving more or less space to the temporal aspect. An approach
for a rather heavy abstraction of the graph structure is to capture it
with different graph metrics [7, 38], each expressing some structural
property of the graph and plotting them over the course of the en-
tire time line, e.g., in graph complexity plots [30]. Techniques that
abstract away less of the structure are for example graph clustering
techniques [10]. They show only clusters of nodes and their interrela-
tions – either by a layering [19] showing a few time steps at once or by
animating its evolution [21] showing only a single time step at a time.
Clustering and metrics can also be combined by clustering the graph
at first and then computing cluster metrics such as the average number
of nodes per cluster, which are then shown in time-value plots [19].

Selected Time: When cutting down on the number of time points,
many techniques select only a certain time interval or even just a single
time point for which to show the network. Visualizations of single time
points usually make use of animation, which is interactively steered by
a slider on the time axis, with which a user can pick a time point of
interest [20]. Multiple time points from a time intervals can be rep-
resented by multiple small drawings [41] or layers in which changes
between subsequent time steps are highlighted [9]. A wide range of
different layering approaches exist for 2D [46], 3D [8, 26], and even
concentric arrangements [12]. Independent of the representation, all
techniques try to maintain the user’s mental map of the graph structure
as good as possible for which different concepts exist [14, 15, 22, 39].

Abstracted Time: When time gets abstracted, it can be done via
temporal clustering to group sequential time steps that are similar with
respect to some kind of measure, or simply by generating a single large
supergraph over all time steps. Clustering as well as computing the su-
pergraph means to join networks of all time steps to be grouped into
a single graph structure which contains all nodes and edges that ever
existed in the graph. This reduces the time aspect to an attribute value
for each node and edge which can be incorporated into the visualiza-
tion – e.g., the time point a node was created or last modified. One
way to incorporate it is by using the third dimension, e.g., by mapping
a node’s creation time onto its height [45].

Combination: As it was already mentioned, reduction of both as-
pects can be combined to meet the constraints of the visual entity bud-
get. Some techniques actually interweave reduction of both aspects
so that one depends on the other – e.g., by first constructing the su-
pergraph over all time steps (abstraction of time) and then clustering
connected subgraphs which are simultaneously present (abstraction of
structure) as done in [2]. Also, combinations of selection and abstrac-
tion of the same aspect can be observed in some cases. For instance,
the Gephi graph visualization platform [5] allows the user to first select
a time interval (selection of time points) for which then a supergraph
is computed (abstraction of time). Another example are focus+context
techniques for graphs which combine the selection of a focus region
with the abstraction of the context region [32].

The list of given examples is far from exhaustive, but even this se-
lection of visualization techniques gives already a good impression
of their diversity. Furthermore, the classification itself can be used
for a preliminary decision which visualization techniques to use for
a given task. As an abstraction maintains the overview of the data

at the expense of the detail, techniques utilizing it are mostly suit-
able for overview tasks. Whereas a selection preserves details while
trading in the overview, which makes techniques using a selection ap-
proach more suitable for detail-on-demand tasks. So, if for example
an overview of the structural aspect is needed while details of the tem-
poral development shall be explored, a technique from the category
(AS) should be considered. The visualization strategy presented in
the following section draws upon this classification and utilizes it as a
practical concept to integrate different techniques.

3 IN SITU - A NEW APPROACH FOR LARGE DYNAMIC NET-
WORKS

The overview given in Section 2 concerns individual visualization
techniques that all have their individual strengths at showing the graph
structure, the time aspect or a certain compromise between both. In the
light of visual analysis for which not a single best-suited visualization
exists, it is only natural to attempt to patch different visualizations to-
gether that correspond to the local characteristics of the data. This has
already been done for both of the two aspects time and structure in-
dependently. For the structural aspect, several visualizations are com-
bining different representational paradigms such as explicit node-link
representations, implicit space-filling techniques, and matrix views to
better display subgraphs of certain topologies [27, 40]. But also within
one representational paradigm, a local adaptation to different subgraph
structures is possible, as for example different node-link layout types
can be used in concert to better reflect the different topologies of sub-
graphs [3] or by providing interaction techniques for adjusting the lay-
out [35]. Similar ideas were followed in the visualization of temporal
data, where for instance high detailed line plots and bar charts are of-
ten used in an enlarged region of interest and less detailed color coding
for the context [4, 11, 36]. All these approaches share the same idea,
as they adapt the visualization locally, in situ, bringing to bear the dif-
ferent facets of the data. The in situ visualization concept presented
here is a generalization of these approaches which is able to locally
combine visualizations in the structural and in the temporal domain
likewise.

The Visual Analytics Mantra proposes a well established guideline
for iterative visual analysis of large data sets: “Analyse First, Show the
Important, Zoom, Filter and Analyse Further, Details on Demand”
[31]. While the mantra describes this iterative analysis as a series
of computations (“Analyse First”), visualizations (“Show the Impor-
tant”), and interactions (“Zoom and Filter”), it does not relieve the
user of deciding which concrete technique to use at each step. Never-
theless, this choice of different techniques is not to be understood as a
burden, but instead as a powerful opportunity for the user to focus the
analysis on specific aspects of the data. Especially when facing an un-
known data set for which it is not known in beforehand which aspect
may be important and should thus be focused in the visualization, be-
ing able to switch and locally adapt different techniques is extremely
helpful for a swift analysis. In this case, an in situ adaptation is a
powerful tool, as it allows the user to locally reconfigure or switch the
representation.

In the following, the in situ visualization strategy is presented as
a means to pursue the Visual Analytics Mantra by a stepwise local
refinement of an initial suitable overview or base visualization. At
each refinement step, it allows the user to select different subsets of
data, then choose an appropriate and desired visual representation for
each selection, and finally to embed these representations right in the
place where the selection was performed. The selection as well as the
visual representation can be altered at any time allowing the analysis
of different subsets by different representations.

3.1 Selection of Data Subsets
In the in situ approach, the selected area within a base visualization
serves at the same time as the selection mechanism and as the drawing
area in which to embed the visualization later on. Therefore, a de-
tached selection mechanism using sliders or input fields for threshold
values would not work in our case and thus an immediate selection
mechanism that works within the base visualization should be used.

Fig. 1. Example showing our in situ strategy. 1: base visualization
showing a node-link layout of the supergraph and multiple embedded
visualizations. 2: in situ visualization showing a complexity plot for the
underlying subgraph. 3: in situ visualization showing a 1.5D visualiza-
tion of the underlying subgraph, connecting links are overlaid in red by
the base visualization. 4: recursive use of in situ visualization to show a
complexity plot for a subgraph selected in a matrix view.

This is usually a rectangular selection tool that can be applied right on
top of the visualization for both aspects – structure and time. Hence,
targets of selections can be either nodes, edges, and subgraphs in the
structural domain, or time points and intervals in the temporal domain.
Since the different visualization techniques all show the data from dif-
ferent perspectives, they allow and forbid different types of selection.
For example, aggregated representations do not allow the selection of
individual nodes or time steps, or even both as it is the case for class
(AA) in Table 1. Yet, they allow the user to select parts of the graph
structure and the temporal domain depending on their characteristics
such as a peak in the number of nodes or edges for which the corre-
sponding time point(s) shall be selected.

More complex selection criteria which are hard to perform inter-
actively via mouse clicks can furthermore be (pre)computed in the
“Analyse (first)” step, so that elaborate statistical measures are readily
available as node/edge attributes for interactive selection. This rather
abstract view on selection for in situ visualization refinement allows
us to perceive the visual analysis process as described by the mantra
as a sequence of such selections: starting from an overview, subsets
of interest are subsequently chosen until a desired piece of informa-
tion is found. This provides a general interface between the different
selection steps, which allows the user to recursively redefine a pre-
vious selection and all other selections that have been defined in its
context will adapt accordingly. Another interesting observation is that
the nestedness of in situ visualizations provides a good sense of their
provenance, as the different steps of their creation are clearly visible.

One challenge, though, is to select suitable and compatible visual-
ization techniques to be displayed inside the selected area in order to
investigate its characteristics and to select further. This issue is dis-
cussed next.

3.2 Choice of Visualization Techniques
As much power as the free choice of visualization techniques pro-
vides to the visual analyst, choosing a suitable one from the many
techniques available remains challenging. It must not only suit the
data to be shown and the selection to be carried out next, but also the
stage the analysis is currently in. For example, an in situ display of an
overview-on-demand inside of a detail view, as it is realized in [29],
would be somewhat counterintuitive in the context of the Visual Ana-
lytics Mantra, which rather proceeds from overview to detail. Hence, it
makes sense to use the mantra to cut down on the number of applicable

visualization techniques. For example, for a selection of only a dozen
nodes, no aggregation and no further selection would be necessary,
as the analysis has apparently already reached a fairly detailed level
on the structural aspect, allowing for techniques from classes (UA) or
(US) – depending on how the temporal aspect shall be treated. Over-
all, three phases can be differentiated and each phase corresponds to a
specific set of suitable visualizations.

Analyse First, Show the Important: In this first phase, there
is too much data, which would not fit in the visual entity budget with-
out being abstracted by mapping multiple data items to a single visual
entity. This is usually done by running analysis methods to determine
sensible abstractions, such as temporal or structural clustering. Hence,
appropriate classes of visualizations for this phase are (AU), (UA), or
(AA) which reflect the abstraction in their visual encoding. As tech-
niques of these classes provide a first overview of the data, we term
them overview techniques.

Zoom, Filter and Analyse Further: After a first abstracted
visualization of the data is given, subsets of interest can be selected
for a more thorough examination. However, a single selection may
not be enough to reduce the data to fit in the visual entity budget, so
that additional abstractions may have to be calculated for this subset
before visualizing it. Classes that can be used for this phase are (AS)
and (SA) from the Table 1. As these visualizations are still abstract
but can display more details because of the selection, we call them
intermediate techniques.

Details on Demand: Through multiple iterations of the
previous phase a sufficiently small subset can be selected so that very
detailed visualizations can be used. This allows the application of
the most detailed visualization techniques contained in the classes
(SU) and (US), depending on which aspect has been drilled-down to
the detail level. If both aspects have been drilled down, techniques
from the class (SS) can be chosen. Accordingly, we name them detail
techniques.

As there exist a large number of possible visualization techniques,
which would be bothersome to pick from a long list, a categorization
of these techniques according to their uses is proposed:

1. Exploration Phase: Overview, Intermediate, Detail
2. Focused Aspect: Structure, Time

This scheme allows for a very space-efficient display of the visualiza-
tion techniques that can possibly be applied after an in situ selection
was made. After a visualization is chosen, it has to be embedded in
the area of the selection, which is detailed next.

3.3 Embedding of the Visualization
Placing a visualization inside another visualization is not uncommon,
even though a local adaption of a view is often not perceived as an
embedding while it could very well be used in such a way. Common
approaches are:

Multiple Coordinated Views: e.g., by placing different visualiza-
tions inside a matrix visualization [34]

Focus+Context: e.g., by using semantic lenses [6] or portals [37]
Overview+Detail: e.g., via transient overlays, as described in [29]

One of the most important requirements for an embedding within a
graph visualization is to preserve the context [42]. This cannot be
guaranteed by multiple coordinated views, which generally arrange
visualizations side by side, or by overview+detail approaches which
just superimpose one visualization with another, leaving only the fo-
cus+context techniques. A second requirement would be the ability
of the approach to cope with the recursive nature of its application,
as it is needed for repeated refinements via selection. While lenses
can be stacked on top of one another, this is far from trivial, as con-
flicts between the different lenses may arise [47]. Whereas for portals,
multiple levels of nesting have been shown to work without such prob-
lems [51]. Hence, we have decided for a portal-based embedding with

some extensions that go beyond the original portal concept, such as
the ability to connect nodes inside and outside of the portal to preserve
the overall graph structure.

Portal-Based Approach: As described in [37], portals are de-
fined as two-dimensional regions of a view showing another view. In
our case, the extent of the selection made in a view corresponds di-
rectly to the region of the portal. That means that the data shown inside
the portal is exactly the data positioned in the region of the base view
now being occupied by the portal. Hence the position, size, and shape
of the portal define the data inside it. This allows the user to change the
data shown inside a portal simply by dragging, resizing, or reshaping
the portal to include or exclude certain regions of the base visualiza-
tion. Additionally, it is also possible to open up multiple portals by
making multiple selections allowing the user to analyze different re-
gions simultaneously using different visualization techniques, as it can
be seen in Figure 1. Making subsequent and multiple selections, and
choosing different views for them provides exactly the needed func-
tionality to carry out the iterative analysis process of going from an
overview to the detail on demand, while at the same time maintaining
the context of each analysis step.

Extending Portals to In Situ Visualizations: Portals have
the limitation that they are defined to be completely independent from
their base visualization. This may suffice for unrelated data items
within a data set, but it does not go far enough for graph visualization,
where complex relationships must be maintained even across multi-
ple levels of nesting. Therefore, we have relaxed the strict compart-
mentalization of the portals in order to allow for a mutual adaptation.
These relaxations are portal awareness (the base visualization know-
ing about the portal and its contents), context awareness (the portal
knowing about the base visualization and its contents), and overlays
(the base visualization being allowed to draw on top of the portal).

Portal Awareness: As portals may interfere with the existing
edge routing in the base view, it is of importance for the base view
to have information about the portal firstly as a whole to be able to
reroute edges around the portal, if they do not lead to nodes within
it. Secondly, the base view should also be aware about the layout of
the data inside of the portal, as it is certainly different from the origi-
nal positioning in the base view and thus requires an adaptation of the
connections leading to them. Otherwise, after opening up a portal, it
would no longer be possible to determine to which nodes inside of a
portal the edges lead. This modification is illustrated by red links in
Figure 1 connecting the nodes of the base visualization with the relay-
outed nodes in Selection 3 and the correct row of the matrix.

Context Awareness: Similarly, it makes sense for the portal to
have knowledge about the surrounding base visualization. This allows
the visualization within the portal for instance to take the positions
of connected “outside nodes” into account when computing a layout.
This makes sense when, for example, nodes that are connected to the
base view are automatically laid out at the border of the portal, fac-
ing the right direction, so that connecting it to the base view will not
require to route edges all the way around the portal or across it. The
visualization of Selection 3 of Figure 1 for instance placed all nodes
with connections to the base visualization on the right side to mini-
mize their edge lengths. Another example is to align the orientation
of a time plot with the orientation of the time axis in the base view,
making it easier to follow the time axis.

Overlay: To achieve the tight interlinking and connection
between parent and portal, it is finally necessary, to extend the portal
concept in another aspect: originally, portals manage their drawing
area themselves with no interference from the parent. Yet, to provide
continuous links between both, we allow the parent to overlay the
portal with additional graphics, such as edges. This is exemplified by
the red links visible in Figure 1.

Apart from a local adaptation of the visualization, these in situ vi-
sualizations can be used in a number of possible ways. One would
be, for example, to manually group elements through them. In an

animated node-link layout which shows changes over time, these el-
ements would always be kept together inside the in situ visualization
and be treated as a meta node by the layout of the base visualization.
This would allow the user to manually cluster graphs and observe their
changes as well as the changes between these clusters over time.

4 PRACTICAL CONSIDERATIONS FOR THE IN SITU STRATEGY

The in situ strategy as described in Section 3 is a generic approach
to combine different visualization techniques. Yet, to apply this ap-
proach in practice, a number of functional issues have to be solved –
from the handling of arbitrary selections and the different possibili-
ties to deal with higher space demands for an embedded visualization
than is actually available, to the user support for choosing appropriate
visualization techniques.

4.1 Selection of Data Subsets

Generally, there are multiple ways of making selections of data. Even
as our in situ strategy works best with immediate selection mecha-
nisms which directly draw selections into the visualization there are
a multitude of possible realizations. These are ranging from simply
defining arbitrary selection regions via drawing with the mouse to the
possibility to patch selection regions together by adding and subtract-
ing multiple smaller areas. As a result these selected areas can differ
in a number of aspects such as shape and connectivity. Yet, they all
visually describe subsets of the data that have to be extracted before a
visualization showing this subset can be embedded. For instance, in a
node-link layout all nodes and edges that are completely contained in
the selected area will be extracted. However, this may lead to ambigu-
ities in some cases: in a treemap which shows the child-parent-relation
through nesting the nodes it is not clear if to extract all nodes within
the selected area or only the leaves as only these are actually visible
and thus explicitly selected. To resolve this problem, approaches for
refining the selection are necessary.

In Situ Approach: First, this problem can be solved by directly
using our in situ strategy. Therefore, this decision is delayed by ex-
tracting all items at first, visualizing them, and allow the user to refine
the selection within this visualization. For instance a tree visualiza-
tion mapping the depth of the nodes directly to the layout enables the
user to easily select distinct levels of that tree for further, recursive em-
beddings. Thus our strategy in itself already brings with it the means
to hierarchically refine the selection without the need for additional
mechanisms. However, this approach increases the nesting depth of
embedded visualizations resulting in a faster decrease of the available
screen space for these visualizations.

Filtering Approach: Another solution is to interactively define
selection mechanisms that select from all items contained in the
selected region only those of interest. This definition can be facilitated
by detached mechanisms such as sliders or input fields allowing the
user to specify more concretely what to include in the selection and
what not to include. Another way to specify more concretely what
to select is to temporarily embed an in situ visualization which is
specifically chosen to be able to refine the selection, before releasing
it again and continuing the visual analysis with the selection made.
This procedure allows us to save screen space but it leads to in situ
visualizations which do not necessarily show all underlying data
items anymore, as they have been refined. As this violates the original
mechanism of the in situ visualization, it has to be signalized to
the user that a filtered and not the complete subset is shown in the
embedded visualization. We include for instance a small icon on
top of the embedded visualization which also serves as a button for
temporary showing the filter definition allowing the user to redefine
the selection.

Which solution to use is left to the choice of the user. The made
selection is the basis for calculating an appropriate drawing area for
embedding the visualization of the selected subset.

(a) Inscription (b) Layout Adaptation (c) Selection Adaptation (d) Eccentric Positioning

Fig. 2. Different adjustment strategies for embedding rectangular visualizations in arbitrary shaped selections of a node-link visualization: (a)
inscribing the largest rectangle of a desired aspect ratio, (b) adjusting the layout by relocating all unselected nodes to positions outside of a
circumscribed rectangle, (c) adjusting the selection to encompass also any empty space that can be gathered around it, and (d) eccentric placement
in a more suitable spot with additional connections to the original selection to maintain the relation.

4.2 Embedding In Situ Visualizations

The greatest concern for a visualization of large data sets is the avail-
able screen space. Thus, our in situ strategy tries to use the space as
efficiently as possible by not arranging visualizations of subsets side-
by-side in multiple linked views, but by embedding them so that each
data item is shown only once on the screen and does not increase the
overall space demand. Therefore, our in situ strategy utilizes the se-
lected area within a base visualization as the drawing area in which to
embed the visualization. Yet, while data selections can be of arbitrary
shape, visualizations tend to be optimized for a rectangular drawing
area. Besides the shape there are also a number of aspects complicat-
ing this embedding, including aspect ratio, size and connectivity. In
the case of multiple selections having been defined in the base view
where each shall be analyzed for itself these aspects can be accompa-
nied by overlapping selection areas. This raises the challenge of find-
ing suitable drawing areas for an embedding of visualizations despite
the possible differences between selection area and visualization. For
the sake of brevity, the following discussion assumes non-overlapping,
contiguous selections of arbitrary shape in a node-link visualization
and rectangular visualizations to be embedded. Solutions for cases in
which these assumptions do not hold, will be sketched at the end of
this section.

The general approach to solve this problem is an adjustment of the
selected region. The smaller this adjustment is, the closer the embed-
ding will be to the actual selection made. For example, inscribing the
largest rectangle into the selection as a drawing area for an embedding
allows a full realization of the in situ property. Yet, the more aspects
have to be taken into account, the less likely it becomes that a suitable
drawing area can be found in situ. The three adjustment strategies
described in the following are discussed along this line: from inscrip-
tion, and adaptations of layout or selection, to eccentric positioning
as a last resort – and thus ranging from in situ to ex situ.

Inscribing in the Selection: The most obvious strategy is cer-
tainly to inscribe the largest axis-parallel rectangle into the selection,
as it is shown in Figure 2(a). For its computation, algorithmic ge-
ometry provides algorithms, such as the O(n log2 n) divide&conquer-
algorithm from [13]. These algorithms are fast enough to quickly de-
termine whether a large enough inscribed rectangle exists or not. Usu-
ally, even simpler heuristics can be used, as it is not of outmost impor-
tance to find the largest inscribed rectangle, but a rectangle that is large
enough. In case no such rectangle can be determined, the adaptation
has to move on to one of the next strategies.

Adaptation of the Layout and/or the Selection: This strategy
tries to establish a rectangular drawing area which is larger than the
inscribed rectangle. The first way of achieving this is by defining such
a larger rectangular region on top of the selection and then modifying
the layout of the base visualization by “pushing” all unselected nodes
out of the boundaries of the rectangle and by “pulling” all selected

nodes inside. This is illustrated in Figure 2(b) and realized as a force-
directed approach that places an invisible node at the center of the
rectangle, which repels all unselected nodes inside of the rectangle and
attracts all selected nodes on the outside. The limits of this approach
are obvious, as it can only be applied if the node positions are not used
to encode any attribute, as for instance the Semantic Substrates [44]
do. Additionally, to maintain the mental map, the transformation of
the layout should be animated to help a user identify and match nodes
before and after the layout adaptation.

The second way to achieve a larger rectangular drawing area is to
start with the inscribed rectangle and extend it outwards in all four
directions until it hits an unselected node. This way the layout remains
preserved, but at least none of the empty space around a selection is
wasted. It is exemplified in Figure 2(c).

Both ways achieve a larger rectangular area than by simply inscrib-
ing a rectangle. They do this at the cost of slightly violating the in situ
principle, as they use more drawing space than the selection actually
grants them. Yet, they are still overlapping the original selection to
a large extent, thus making the immediate connection between both
nevertheless obvious.

Eccentric Positioning: This strategy positions the drawing area
for the in situ visualization somewhere in the base visualization but in
contrast to the previous strategies not on top of the selection, as shown
in Figure 2(d). Therefore, the position of the largest empty rectangle
is computed – e.g., with a fast matrix search as proposed in [1]. Then
the visualization can be embedded there and linked via connector
lines to the original selection. This approach clearly violates the in
situ principle, yet it may be necessary to resolve an otherwise fruitless
attempt to find enough screen space for an embedding. Additionally, it
allows the comparison of the same subset with different visualization
techniques as well as with the base visualization.

Even though these adjustment strategies have been illustrated for
the example of node-link representations, they can be either applied
directly or with slight modifications to other types of visualizations
as well. Yet, as their realization depends on the concrete visualiza-
tion technique, not every technique allows for all three strategies to
be used. If inscribing a rectangle or adapting the layout/selection are
not possible, at least an eccentric positioning can be used. This is ob-
viously the case for visualizations in which data items overlap, e.g.,
Beamtrees [50], and where thus no designated space can be reserved
for embedding a visualization. The only exception to the applicability
of eccentric positioning are space-filling representations which do not
leave any free space outside of the selection to use for an embedding.

Dealing with the possibility of overlapping or discontiguous selec-
tions is relatively straightforward. Overlapping selections which shall
be analyzed for themselves are subtracted from each other so that only
the regions which one selection inhabits individually are used for em-
bedding. Discontiguous selections can be handled in a number of

ways: through a layout adaptation with a rectangular area in which
all items from the selections are pulled together, via an eccentrically
positioned rectangle which is connected to all of the selections, or by
dealing with each selected region by itself and connecting the found
rectangles with lines indicating their relation. Besides these two is-
sues, it can also occur that a non-rectangular visualization shall be
embedded, e.g., a radial one such as the TimeRadarTrees from Ta-
ble 1. In this case, other shapes can be used as well – e.g., inscribed
circles or polygons.

As a result of the recursive embedding of visualizations and the
limitations of the above described approaches these embedded visual-
izations can be rather small. To make enough room for an embedding
in these cases, additional techniques are needed for increasing their
sizes. Each embedded visualization can of course be treated as a small
window by itself, which permits to zoom and pan independently of
the base visualization, allowing the user to analyze the enclosed parts
of the data and embedded visualizations in more detail. The draw-
back of this independence is the inability to maintain the context, as
connections to nodes within the embedded visualization can no longer
be drawn if these nodes are invisible when only a zoomed-in part of
the data is shown. Hence other methods are needed, that allow the
user to locally increase the drawing space of an embedded visualiza-
tion within the base visualization while simultaneously preserving the
context. One example of such a method is the fisheye distortion as it is
introduced in [23]. As our strategy allows us to combine very different
visualization techniques there are different demands to a fisheye trans-
formation. For instance, when applying fisheyes to node-link layouts
the topology of the graph has to be preserved, calling for a Topologi-
cal Fisheye View [25] in case of a node-link representation or for the
Balloon Focus technique [49] in case of a Treemap. Additionally, the
recursive nature of our in situ strategy has to be taken into account as
well. The Variable-Zoom [42] or the Continuous Zoom [16] serve this
purpose, as they allow us to combine different fisheyes along a given
hierarchy. They only differ in how the magnification factors are calcu-
lated, which the variable-zoom does independently for each level and
the continuous zoom accumulates from the lowest level. This yields
a more stable interaction with the variable-zoom, as changes only oc-
cur locally in a single embedded view and have no influence on the
parent view – yet to enlarge a deeply nested view, each level has to
be enlarged separately. In contrast, the continuous zoom just needs to
enlarge the view of interest however deeply nested it may be, because
the bottom-up accumulation of magnification factors resizes all par-
ent views as well. As this significantly reduces the effort of enlarging
embedded views, our implementation uses the latter approach.

4.3 Rendering In Situ Visualizations

Before rendering the selected data into the determined drawing area
the user has to select a suitable visualization technique. However,
the sheer number of different visualization techniques and their dif-
ferent properties and uses demand for a solution that supports the user
in the process of choosing a suitable technique. This is where the
classification introduced in Section 2 comes in as a helpful tool, as
it gives a high-level overview of all possible visualization techniques
for dynamic networks. Hence, we use a thumbnail version of Table 1
as a first selection menu for choosing the class of interest, depend-
ing on whether time or structure is in the analysis focus. Then, in a
second step, only techniques of the chosen class of visualizations are
presented to choose from. Yet, this free choice approach requires the
user to know when a visualization of which class could and should be
used. In Section 3.2 we therefore proposed a procedure based on the
visual analytics mantra allowing the user to choose a technique by the
phase of the analysis such as overview or detail and then decide for
an aspect. Hence, we include a second alternative selection menu by
transforming this procedure into a menu structure for a more guided
access to the visualization technique. Therefore, the user can decide
between free and guided access to the visualization techniques. If a
technique is selected that turns out not to be suitable due to extensive
visual clutter, it is always possible to switch to a different technique or
to enlarge the selected region and with it the embedded visualization

by using any of the methods described above.
After a technique is chosen and the data is visualized in situ, the

connections between base visualization and embedded visualization
have to be maintained. In case of a graph visualization this means to
maintain connections between nodes, and in case of a time visualiza-
tion this means to maintain the orientation and order of the time axis
from the parent view. Especially connecting edges from a node-link
base visualization with an embedded visualization of a different form
raises some questions which need special approaches to deal with them
– none of which is complicated, yet each of them has to be specifi-
cally considered in one way or another. An example for an embedded
graph view would be the connection with a matrix representation, as
a matrix offers not just one possible location to connect with a node,
but actually four of them: at the beginning and the end of a node’s
row and column – basically on all four sides of the visualization. Our
solution to this issue is to connect to the two closest borders of the ma-
trix and thus only to either end of the corresponding row and column.
When embedding a time visualization into a node-link representation
the edges leading to the time visualization can be split and connected
with each time point generating a 1.5D visualization similar to the
technique shown in cell SU of Table 1. Yet, a high number of con-
nections can result in extensive clutter on top of the embedded portal
preventing the analysis of the selected subset. Therefore, additional
techniques such as edge bundling, transparency and highlighting of a
subset of the connections are necessary to cope with possible visual
clutter. However, maintaining connections should not be underesti-
mated, as it is an effort well worthwhile: connections are important
for path-based analysis tasks and can be used for edge-based naviga-
tion.

As an example of how an actual implementation of the in situ visu-
alization can look like and what it is capable of, the next section will
step through two use cases using our in situ visualization tool.

5 USE CASES AND USER FEEDBACK

In this section we demonstrate our in situ visualization by utilizing it
for the analysis of two dynamic networks from different application
areas and by reflecting feedback from experts of these areas. The first
network stems from the area of model versioning, the second from the
field of mesh networks.

5.1 Model Versioning
In biology, graphs are used to model different kinds of biological sys-
tems. An important case of biological modeling is to establish mod-
els of biochemical reaction networks, where the nodes correspond to
chemical compounds and reactions and the edges link the compounds
to their respective reactions in which they take part. Due to new in-
sights from experiments in the laboratories, these models are subject to
continuous development and adjustment. Thus, it is important for the
scientific community to track these model changes to support their re-
finement and the construction of new models. State-of-the-Art model
repositories such as the BioModels Database [33] are thus equipped
with versioning systems which keep track of the structural changes of
the models, very much like an SVN system does for program code.
As these changing model structures are nothing else than time-varying
networks, we coupled our in situ visualization with the recently devel-
oped BiVeS Framework (see http://bives.sf.net) which pro-
vides specialized version control for biological models.

In the following we use one of the larger example data sets that
ships with the BiVeS download, which has 162 nodes and 236 edges
at 227 time points in 15 branches. Additionally, with each node two
attributes are associated. The first attribute is describing a parameter
which is used for initializing simulations of this model. The second at-
tribute, shared also by the edges, specifies if a node or edge is present
in a version. Altogether, this data set sums up to 127,120 data entries.
At the beginning, we have to choose an appropriate base visualiza-
tion as an overview of the data set. Already at this first step, we can
freely decide how to choose the visualization in order to show either
the temporal aspect or the structural aspect of the data – each allow-
ing for a different analysis focus. By using a base view focusing on

Fig. 3. Visualization of the revision graph of a biological model. The base visualization is showing the branching temporal aspect as an overview,
whereby color corresponds to the structural complexity of each model revision. Two selections are made on a number of consecutive time steps of
branch7, each showing a supergraph visualization of these model revisions. A fisheye is utilized to enlarge these selections. An initial simulation
parameter for this model is mapped on the color of the nodes. Nodes of interest are selected and thus substituted with a time-value-plot – in two
cases using eccentric positioning.

the temporal aspect, as shown in Figure 3, it is now possible to get a
good overview of the complex temporal development of the model. It
can be seen, that multiple versions of this model have been branched
out, generating their own time line with revisions to only that partic-
ular branch. The structural aspect of the model at each revision is
reduced to a numerical graph complexity value that is color-coded at
the individual time steps. It is clearly visible that the structural com-
plexity of the model is increasing over time on all branches, before
it then remains nearly constant at the end. To discover what exactly
has changed in between the different versions, a more detailed view is
needed. We open up this detailed view as an in situ view by making
a rectangular selection on branch7 and switching to a graph view
inside that selection. It displays the supergraph of the model over the
selected revisions. To take a look at details of the individual nodes, we
can select them and embed detail views – in this case time-value-plots
showing the initial simulation parameter. It is clearly visible from the
plots that in different revisions of that model, different parameter set-
tings have been tried in order to adapt the behavior of the model to
fit the natural behavior of the biological system it encodes. A second
selection at the end of that branch confirms this finding.

When starting on the other hand with an overview of the structural
aspect as the base visualization, it is possible to support the search for
a specific revision. If for instance all versions containing a specific
reaction have to be found, we can select this specific reaction in the
supergraph of the base visualization and embed a view showing the
branching time of the versioned model. The following example, which
is roughly at the factor of 10 larger, shows that the in situ strategy
scales up to such larger data sets as well.

5.2 Mesh Networks

In mesh networks each node corresponds to a network device, which
can be routers, hubs, workstations, etc., and each edge describes a con-
nection between two such devices. These connections can be estab-
lished wirelessly or via cable, resulting in different connection qual-
ities. If some of these connections fail, entire subnetworks can be
cut off depending on the resilience of the network topology. This
is a problem especially of wireless connections for which the qual-
ity can be subject to change at any time depending on factors such
as interferences or even the current weather. To maintain the com-

munication between all network nodes, it is important for the oper-
ators of such networks to find weak points in the network topology
in beforehand so that the network can be enhanced at these points
by establishing new physical connections. One such network is op-
erated around the city of Rostock, Germany by the Opennet Initiative
(see http://www.opennet-initiative.de) a free commu-
nication platform established 2005. It is based on wireless connections
between the participants to improve the overall network quality.

The Opennet Initiative logs all connections and tries to identify the
said weak spots of the infrastructure in order to find ways to improve it.
For this example, we used the logs of only one day (01/16/11), which
contains 239 nodes and 960 edges with one parameter describing the
changing connection quality over the course of 1,440 time points (one
for every minute of that day), which sums to 1,382,400 data entries
overall. Due to the geography of the city, the nodes of this network
are very irregularly distributed: there are dense clusters of nodes in
the inner city and in the villages around Rostock, whereas in between
there are no nodes and thus only sparse connections.

Already at the first step of the analysis, one can choose between two
very different perspectives by focusing either on the temporal aspect
or on the structural aspect for the overview in the base visualization.
On one hand, by focusing on the time and showing the graph structure
merely as a complexity value we are able to select time intervals of
low structural complexity, which are especially of interest, as it is at
these times where not enough redundant connections are present and
bottlenecks emerge.

On the other hand, by starting with an overview of the structural as-
pect using a supergraph view as the base visualization all connections
available during that day can be shown for a more thorough analysis.
As the network nodes have geographical positions, these can be used
to layout the graph as it is done in Figure 4. The connection quality
is color-coded onto the edges. While this allows for a very natural
orientation in the network, the dense clusters make a detailed visual
analysis difficult. Yet, our in situ strategy makes it possible to change
the representation of the clusters to another one which better reflects
the structure, as it is done for the three villages around Rostock using
different in situ visualizations and the available empty space around.
However, for a detailed view of the city center, where no additional
space is available, different adaptations have to be used such as fish-

Fig. 4. Visualization of the Opennet mesh network on 01/16/11. The
base visualization shows the network overview on top of a map. Node-
link and matrix visualizations are embedded to better reflect the struc-
ture of spatially clustered subgraphs in the villages around Rostock. The
overlay capability of the in situ strategy is used to maintain the connec-
tions across different representations. Individual nodes of interest are
shown in even more detail in further embedded in situ views.

eye transformations or eccentric positioning. The reliability of the in-
dividual nodes can then be inspected with further in situ detail views,
as it is done in the view embedded at the bottom left: a 1.5D view
is shown with the time axis running vertically. In this example it be-
comes clear that this node was only online for two very short periods
of time around noon and midnight of that day, making it rather unre-
liable. Yet, the connection of the village with the mesh network did
not break up, because the other connecting route on the right side was
of good average quality throughout the day, as it can be seen from the
time-value-plot thumbnails.

5.3 User Feedback

The previous sections described two use cases utilizing our in situ vi-
sualization. In this section the results of a first user study are presented.
Therefore, we performed a qualitative user study with 13 participants
including nine experts from both domains and four visualization ex-
perts. The user study started with a brief introduction and training
phase with our in situ visualization as well as a multiple coordinated
views system, both using the same techniques. The multiple coordi-
nated views system was simulated by opening a new window for each
selection made. After the training phase, the participants were asked
to complete a couple of tasks, e.g., identifying unreliable access points
in the Opennet network or comparing the model structure of two dif-
ferent versions of a biological model. During the user study they were
encouraged to think loud and comment what they like and dislike for

both systems. The following lists noteworthy observations from this
user study:

Most candidates preferred to start with our in situ visualization as
they felt it was more intuitive and flexible. The data I want to see is
where it is was stated by multiple candidates. Especially for the Open-
net data set, they appreciated the direct embedding as it maintained the
spatial relations between the nodes and thus supporting their orienta-
tion in the data. Generally, the overlay of connections between base
and embedded visualization was highlighted by many participants as
this also supported them in maintaining their overview. They also fa-
vored the lens like behavior where no switching from one view to an-
other is necessary allowing them a fast exploration of the data. One
participant compared multiple views and in situ to the interaction with
mouse and touch pad: it just feels more immediate. Yet, some of the
candidates felt a bit overwhelmed by the freedom our in situ visualiza-
tion provided them and indicated that they need more training to use
its full potential.

Overall, all candidates liked to see the detailed view of the selected
data next to the selection. However, some complained that they want
to see both the embedded view as well as the base visualization as
they were unsure if both views really show the same data and there-
fore preferred the eccentric positioning of the detail views. Also, when
comparing different parts of the data, many participants used the ec-
centric positioning to move detail views of these parts closer together
creating their own multiple views arrangement.

In general, our in situ visualization and multiple coordinated views
performed equally well. Identification tasks were solved slightly faster
with our in situ visualization whereas multiple views performed better
when comparing different subsets of the data. Yet, almost all partici-
pants said that they want to have the choice at any moment to switch
from multiple views to in situ and vice versa.

While these results are far from being statistically conclusive, they
already indicate that our in situ visualization represents a useful com-
plement for common approaches such as multiple coordinated views.
It also highlights the importance of eccentric positioning which can be
a possibility to combine the intuitive access to the data given by in situ
visualizations with the comparability of multiple coordinated views.

6 CONCLUSION

In this paper, we have presented a flexible strategy for the visual ex-
ploration of large dynamic networks. For giving a compact overview
of the available techniques we introduced a new classification based
on how they approach the two major aspects of dynamic graphs –
the graph structure and the temporal domain. This classification has
shown how diverse the field of dynamic graph visualizations is and that
it is unreasonable to try to unify them into a one-view-fits-all visual-
ization that serves analysis needs in the structural and in the temporal
domain equally well. To resolve this problem we proposed a novel
strategy, the in situ visualization, which not only allows to combine
different existing techniques but also to support the mental map dur-
ing visual analysis proceeding from an overview all the way to the
details. In addition, it allows the user to shift seamlessly between dif-
ferent analysis foci and visual representations at any time. Limitations
regarding the available screen space can often be resolved by employ-
ing standard algorithms and heuristics from algorithmic geometry or
by using distortion techniques. The resulting scalability of our strategy
was shown in two different use cases.

As the last use case dealing with mesh networks has already demon-
strated that our strategy handles networks with spatial references well,
it remains to be investigated whether our strategy can be even extended
for spatio-temporal data. Another useful extension would be a method
for predicting if a prospective visualization will be visually cluttered
as this can support the choice of a suitable technique.

ACKNOWLEDGMENTS

We thank Ron Henkel and Till Wollenberg for their valuable input con-
sidering the use cases. This work was funded in part by the DFG grad-
uate school dIEM oSiRiS and the FFG project #385567 InGenious.

REFERENCES

[1] A. Aggarwal and S. Suri. Fast algorithms for computing the largest empty
rectangle. In Proc. of Symposium on Computational Geometry, pages
278–290, 1987.

[2] D. Archambault. Structural differences between two graphs through hi-
erarchies. In Proc. of Graphics Interface, pages 87–94, 2009.

[3] D. Archambault, T. Munzner, and D. Auber. TopoLayout: Multilevel
graph layout by topological features. IEEE TVCG, 13(2):305–317, 2007.

[4] R. Bade, S. Schlechtweg, and S. Miksch. Connecting time-oriented data
and information to a coherent interactive visualization. In Proc. of Con-
ference on Human Factors in Computing Systems, pages 105–112, 2004.

[5] M. Bastian, S. Heymann, and M. Jacomy. Gephi: An open source soft-
ware for exploring and manipulating networks. In Proc. of International
AAAI Conference on Weblogs and Social Media, 2009.

[6] E. A. Bier, M. C. Stone, K. Pier, W. Buxton, and T. D. DeRose. Toolglass
and Magic Lenses: The see-through interface. In Proc. of Conference on
Computer Graphics and Interactive Techniques, pages 73–80, 1993.

[7] D. Bonchev and G. A. Buck. Quantitative measures of network complex-
ity. In D. Bonchev and D. H. Rouvray, editors, Complexity in Chemistry,
Biology, and Ecology, pages 191–235. Springer, 2005.

[8] U. Brandes and S. R. Corman. Visual unrolling of network evolution and
the analysis of dynamic discourse. Information Visualization, 2(1):40–50,
2003.

[9] J. Branke. Dynamic graph drawing. In M. Kaufmann and D. Wagner,
editors, Drawing graphs: Methods and models, chapter 9, pages 228–
246. Springer, 2001.

[10] R. Brockenauer and S. Cornelson. Drawing clusters and hierarchies. In
M. Kaufmann and D. Wagner, editors, Drawing graphs: Methods and
models, chapter 8, pages 193–227. Springer, 2001.

[11] D. Brodbeck and L. Girardin. Trend analysis in large timeseries of high-
throughput screening data using a distortion-oriented lens with semantic
zooming. In Poster Compendium of IEEE Symposium on Information
Visualization, pages 74–75, 2003.

[12] M. Burch and S. Diehl. TimeRadarTrees: Visualizing dynamic compound
digraphs. Computer Graphics Forum, 27(3):823–830, 2008.

[13] K. L. Daniels, V. Milenkovic, and D. Roth. Finding the maximum area
axis-parallel rectangle in a polygon. In Proc. of Canadian Conference on
Computational Geometry, pages 322–327, 1993.

[14] S. Diehl and C. Görg. Graphs, they are changing dynamic graph drawing
for a sequence of graphs. In Proc. of Graph Drawing, pages 23–31, 2002.

[15] S. Diehl, C. Görg, and A. Kerren. Preserving the mental map using fore-
sighted layout. In Proc. of Joint Eurographics IEEE TCVG Symposium
on Visualization, pages 175–184, 2001.

[16] J. Dill, L. Bartram, A. Ho, and F. Henigman. A continuously variable
zoom for navigating large hierarchical networks. In Proc. of IEEE Con-
ference on Systems, Man, and Cybernetics, pages 386–390, 1994.

[17] J. Ellson, E. R. Gansner, E. Koutsofios, S. C. North, and G. Woodhull.
Graphviz and Dynagraph – static and dynamic graph drawing tools. In
M. Junger and P. Mutzel, editors, Graph Drawing Software, pages 127–
148. Springer, 2003.

[18] N. Elmqvist and J.-D. Fekete. Hierarchical aggregation for information
visualization: Overview, techniques, and design guidelines. IEEE TVCG,
16(3):439–454, 2009.

[19] T. Falkowski, J. Bartelheimer, and M. Spiliopoulou. Mining and vi-
sualizing the evolution of subgroups in social networks. In Proc. of
IEEE/WIC/ACM International Conference on Web Intelligence, pages
52–58, 2006.

[20] C. Friedrich and P. Eades. The Marey graph animation tool demo. In
Proc. of Graph Drawing, pages 396–406, 2001.

[21] Y. Frishman and A. Tal. Dynamic drawing of clustered graphs. In Proc.
of IEEE Symposium on Information Visualization, pages 191–198, 2004.

[22] Y. Frishman and A. Tal. Online dynamic graph drawing. IEEE TVCG,
14(4):727–740, 2008.

[23] G. W. Furnas. Generalized fisheye views. In Proc. of Conference on
Human Factors in Computing Systems, pages 16–23, 1986.

[24] M. Gaertler and D. Wagner. A hybrid model for drawing dynamic and
evolving graphs. In Proc. of Graph Drawing, pages 189–200, 2006.

[25] E. R. Gansner, Y. Koren, and S. C. North. Topological fisheye views for
visualizing large graphs. IEEE TVCG, 11(4):457–468, 2005.

[26] S. Hadlak, C. Tominski, H.-J. Schulz, and H. Schumann. Visualization
of attributed hierarchical structures in a spatio-temporal context. Interna-
tional Journal of Geographical Information Science, 24(10):1497–1513,

2010.
[27] N. Henry, J.-D. Fekete, and M. J. McGuffin. NodeTrix: A hybrid visual-

ization of social networks. IEEE TVCG, 13(6):1302–1309, 2007.
[28] B. W. Herr, W. Ke, E. Hardy, and K. Börner. Movies and actors: Mapping

the internet movie database. In Proc. of Information Visualisation, pages
465–469, 2007.

[29] M. R. Jakobsen and K. Hornbæk. Transient visualizations. In Proc. of
Australasian Conference on Computer-Human Interaction, pages 69–76,
2007.

[30] M. John, H.-J. Schulz, H. Schumann, A. M. Uhrmacher, and A. Unger.
Exploring time-varying hypergraphs. In Poster Compendium of IEEE
Conference on Information Visualization, 2009.

[31] D. A. Keim, F. Mansmann, J. Schneidewind, and H. Ziegler. Challenges
in visual data analysis. In Proc. of Information Visualisation, pages 9–16,
2006.

[32] Y. K. Leung and M. D. Apperley. E3: Towards the metrication of graph-
ical presentation techniques for large data sets. In Proc. of International
Conference EWHCI’93, pages 125–140, 1993.

[33] C. Li, M. Donizelli, N. Rodriguez, H. Dharuri, L. Endler, V. Chelliah,
L. Li, E. He, A. Henry, M. Stefan, et al. BioModels Database: An en-
hanced, curated and annotated resource for published quantitative kinetic
models. BMC Systems Biology, 4(1):92, 2010.

[34] A. MacEachren, D. Xiping, F. Hardisty, D. Guo, and G. Lengerich. Ex-
ploring high-D spaces with multiform matrices and small multiples. In
Proc. of IEEE Symposium on Information Visualization, pages 31–38,
2003.

[35] M. J. McGuffin and I. Jurisica. Interaction techniques for selecting
and manipulating subgraphs in network visualizations. IEEE TVCG,
15(6):937–944, 2009.

[36] P. McLachlan, T. Munzner, E. Koutsofios, and S. North. LiveRAC: Inter-
active visual exploration of system management time-series data. In Proc.
of Conference on Human Factors in Computing Systems, pages 1483–
1492, 2008.

[37] C. Olston and A. Woodruff. Getting portals to behave. In Proc. of Sym-
posium on Information Visualization, pages 15–25, 2000.

[38] M. Pohl and S. Diehl. What dynamic network metrics can tell us about
developer roles. In Proc. of Cooperative and Human Aspects of Software
Engineering, pages 81–84, 2008.

[39] H. Purchase, E. Hoggan, and C. Görg. How important is the “mental
map”? An empirical investigation of a dynamic graph layout algorithm.
In Proc. of Graph Drawing, pages 184–195, 2007.

[40] S. Rufiange, M. J. McGuffin, and C. Fuhrman. Visualisation hy-
bride des liens hiérarchiques incorporant des treemaps dans une ma-
trice d’adjacence. In Proc. of Conference on Association Francophone
d’Interaction Homme-Machine, pages 51–54, 2009.

[41] P. Saraiya, P. Lee, and C. North. Visualization of graphs with associated
timeseries data. In Proc. of IEEE Symposium on Information Visualiza-
tion, pages 225–232, 2005.

[42] D. Schaffer, Z. Zuo, S. Greenberg, L. Bartram, J. Dill, S. Dubs, and
M. Roseman. Navigating hierarchically clustered networks through fish-
eye and full-zoom methods. ACM Transactions on Computer-Human
Interaction, 3(2):162–188, 1996.

[43] L. Shi, C. Wang, and Z. Wen. Dynamic network visualization in 1.5D. In
Proc. of IEEE Pacific Visualization Symposium, pages 179–186, 2011.

[44] B. Shneiderman and A. Aris. Network visualization by semantic sub-
strates. IEEE TVCG, 12(5):733–740, 2006.

[45] F. Steinbrückner and C. Lewerentz. Representing development history in
software cities. In Proc. of Software Visualization, pages 193–202, 2010.

[46] A. Telea and D. Auber. Code Flows: Visualizing structural evolution of
source code. Computer Graphics Forum, 27(3):831–838, 2008.

[47] C. Thiede, G. Fuchs, and H. Schumann. Smart Lenses. In Proc. of Sym-
posium on Smart Graphics, pages 178–189, 2008.

[48] Y. Tu and H.-W. Shen. Visualizing changes of hierarchical data using
treemaps. IEEE TVCG, 13(6):1286–1293, 2007.

[49] Y. Tu and H.-W. Shen. Balloon Focus: A seamless multi-focus+context
method for treemaps. IEEE TVCG, 14(6):1157–1164, 2008.

[50] F. van Ham and J. J. van Wijk. Beamtrees: Compact visualization of large
hierarchies. In Proc. of IEEE Symposium on Information Visualization,
pages 93–100, 2002.

[51] A. Woodruff, C. Olston, A. Aiken, M. Chu, V. Ercegovac, M. Lin,
M. Spalding, and M. Stonebraker. DataSplash: A direct manipulation
environment for programming semantic zoom visualizations of tabular
data. Journal of Visual Languages & Computing, 12(5):551 – 571, 2001.

