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ABSTRACT
Spatiotemporal data often relates to different levels of gran-
ularity in space, time, and data. Yet, bringing these levels
together for an integrated visual exploration across levels
poses a challenge up to this day. With this paper, we aim
to provide a first solution approach to this challenge, which
decomposes the data in its various levels to be able to show
them side-by-side. Based on this decomposition, we derive
a visual exploration approach that consists of a novel multi-
level visualization, adjoined traditional spatial and temporal
views, as well as of tailored exploration techniques for their
concerted use. We exemplify the utility of this approach
by case studies on election and poll data from Germany’s
various administrative levels and different time spans.

Categories and Subject Descriptors
H.5.m [Information Interfaces and Presentation]: Mis-
cellaneous; I.3.8 [Computer Graphics]: Applications

General Terms
Design

Keywords
multilevel visualization, exploratory data analysis, multi-
resolution analysis, spatiotemporal visualization

1. INTRODUCTION
Spatiotemporal phenomena can be observed at various

levels of space (e.g., local, regional, global) and of time
(e.g., hourly, daily, monthly). It is known that a chosen
spatiotemporal frame of observation influences the level on
which phenomena are observed: the price fluctuations of a
single currency over the course of a day occur on a different
level than the incline or decline of a country’s standing in
an annual ranking of world economies at large. So, unless
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the spatiotemporal frame of observation remains fixed, data
is generated on multiple levels. Combined, these levels form
hierarchies of different granularities in space, time, and data.

Since phenomena on different spatial and temporal levels
are not isolated, the analysis of complex behavior requires
to address several levels of granularity simultaneously. The
Visual Analytics roadmap [9, p.82] states explicitly that
therein lies a current research challenge, because such an
analysis spanning multiple levels is not yet supported by
visual analysis concepts for spatiotemporal data that tra-
ditionally focus on individual levels only. The state of the
art in flat 2D map-based representations, as well as in 3D
representations based on the space-time-cube [11] is to allow
for an interactive selection of a desired granularity level at
which to analyze space, time, and data. Current software
tools, such as the Geospatial Visual Analytics Toolkit [2],
reflect this state of the art. The need to investigate mul-
tiple levels side-by-side has furthermore been recognized in
other domains, such as the field of biomedicine [21, 22]. Yet
despite its need, it is so far not sufficiently supported.

Building on first ideas that we presented previously [18],
this paper addresses this challenge by contributing a visu-
alization approach that exposes different levels to the user
for their simultaneous analysis. To this end, we propose a
decoupling of the three aspects of space, time, and data, as
well as of their levels of granularity. This way, the levels
can be shown and explored side-by-side to facilitate their
combined analysis. Their synchronization makes explicit for
which combinations of levels data exists and how it com-
pares to data from other level combinations. We provide
traditional and novel forms of navigation to interactively
seek out and investigate cross-level behavior of interest.

We exemplify our approach with case studies from the
political domain, featuring various election data and voter
sentiment data from polls for three administrative levels of
Germany on three temporal levels. Apart from serving as a
running example throughout this paper, we reproduce some
of the findings we made in the data by using our visual
analysis approach at the end of this paper.

2. SPATIOTEMPORAL MULTILEVEL DATA
The main idea of our visual analysis approach across mul-

tiple levels is already embodied in our multilevel data model.
In accordance with the well-known Triad Representational
Framework [16] of Where (space), When (time), and What
(data), spatiotemporal data items can be regarded as a set
of triples (S, T, v) with S being a spatial reference, T being
a temporal reference, and v being a singular data value. The



references S and T can refer to multiple levels of granular-
ity in space s1, s2, ..., sn and in time t1, t2, ..., tm, e.g., S =
{country code, zip code} and T = {year ,month, day}. For
the same references S and T , multiple data facets v1, v2, ..., vf
may be defined. These data facets are not confined to the
spatiotemporal or even multivariate data models. They can
also be multi-run (stem from different computations), multi-
model (have been gathered w.r.t. different frames of refer-
ence, such as different coordinate systems), or even multi-
modal (stem from different sources) [8]. As such, the data
facets span a much broader range of information sources
than comparable existing concepts, such as the“facets”known
from the field of faceted search [24] or the “entity types”
known from Jigsaw [19]. In consequence, multiple tuples
with the same reference S and T can exist, each of them
with a different data value v drawn from one of the available
data facets. For the remainder of this paper, we only dis-
tinguish between the different domains (space, time, data)
where necessary and otherwise subsume levels of granularity
and facets under the general term “levels”. To distinguish
between the levels and the concrete elements they contain,
we call these elements instances, regardless of them being
spatial values (e.g., zip codes or GPS coordinates), tempo-
ral values (e.g., years or days of the week), or data values
(e.g., parties or candidates).

We take this tiered notion of multi-faceted spatiotemporal
data as a basis to separate each of the three aspects into
the levels of granularity they exhibit. So, for example, we
consider years, months, and days instead of a set of dates,
as well as streets and cities instead of addresses, basically
by decomposing S and T in their individual components si
and tj . Principally, this can be thought of as a flattening
of all volume cells at all possible resolutions of the space-
time-cube. The data levels are constructed from each v that
is encountered for the same S and T , such as parties and
candidates as in the above example. The different facets vk
can hold numerical data, categorical data, or nominal data.
If vk contains too many instances v, as it would be the case
for a continuous numerical variable, its instances are binned
into adequately, yet not necessarily uniform sized intervals
as they suffice for a concrete analysis.

It is noteworthy, that for this separation to happen, it is
not necessary that for all spatial and temporal levels, exactly
one corresponding data level exists – it can also be multiple
data levels or none at all. This information is encoded in the
tuples, which we interpret as edges of a multipartite graph.
The nodes of this graph are formed by the instances of each
level, with each level forming one partition of the graph. As
it is characteristic for multipartite graphs, there are no edges
(tuples) that connect nodes of the same partition (level),
but only run between different partitions. For example, no
two years are directly connected with each other through
an edge, but only with instances of places and data values,
each forming an independent set. Our synchronization view
and the visual analysis mechanisms built on top of it are
grounded in this interpretation of the data.

3. VISUAL DESIGN
The above way of perceiving spatiotemporal multilevel

data is reflected in a novel view, called synchronization view.
It realizes the same decoupling of the levels of space, time,
and data to be able to represent and navigate them simul-
taneously. While it provides a way to access the data and

Figure 1: The synchronization view showing mul-
tiple levels of space, time, and data. Each level is
represented by a horizontal band of all instances of
that level. We use the hue of the colors to encode
categorical values, such as parties, and we reflect
quantitative values, such as percentages, through
their saturation. Data tuples are shown as edges
connecting instances on all levels a tuple contains.
Scroll buttons and fisheye-like distortion allow the
user to navigate and explore each level.

get an overview of their multiple levels, adjoined data views
are needed to show the data in their spatial and temporal
context. Hence, we provide a map view and a calendar view
alongside the synchronization view. Each of these compo-
nents of our visual design – the synchronization view and the
data views – are introduced and discussed in the following.

3.1 Synchronization view
Typically, one does not know where in space and when

in time, which data source exhibits behavior of interest.
Searching through all possible level combinations in space,
time, and data is tedious and time consuming. Therefore,
our synchronization view shows all levels of space, time, and
data simultaneously. To this end, it reflects the multipartite
model by aligning all instances of each level in a horizontal
band. To distinguish between different instances in a band,
appropriate labeling and color-coding is applied. The bands
are laid out in parallel and the tuples are shown as edges
connecting the instances from all bands a tuple contains.
This basic setup is shown in Figure 1. It is this connection
via tuples that realizes the actual synchronization, as levels
are shown simultaneously, even though they may never oc-
cur together in a tuple. This is made explicit through the
linking: iff a link is connecting two instances, they co-occur.
This way, yearly data is only linked to the level of years,
while monthly data is connected to both, months and years,
as a month must be part of some year as well.

Constructing a view from the proposed flattening of the
space-time-cube poses a scalability challenge, if the number
of levels or the number of instances per level grow large.
We solve the former by allowing the user to interactively



adapt the number of shown bands by folding those of lesser
interest and by duplicating others of higher interest. For
example, in an investigation on a monthly granularity, bands
of finer temporal scales (weeks, days, etc.) and bands in
space and data that relate only to those finer temporal scales
can be folded. Yet, a band that relates to many other bands
can be duplicated to see its direct relation to more than
two neighboring bands. For the case of a large number of
instances, the user can scroll horizontally through the bands
and apply a fisheye distortion, to maximize only instances
that are currently explored and minimize all others. This is
illustrated in Figure 1 for the spatial level of states.

With this view, we gain a first approach for an overview
of all data on all levels of granularity. It relieves the user
from having to choose an appropriate level of granularity to
investigate the data on, before actually seeing the possibly
unknown data. And even if the user already knew the data
and which levels to look at, our approach avoids the need to
switch back and forth between them in case of a comparative
investigation involving data on two or more levels.

To achieve this, we paid a price, though. The separation
of levels has dissolved the common spatial and temporal con-
texts in which a data item would usually be embedded. This
could be a map or a globe for the spatial context, as well as
a calendar or timetable for the temporal context. While the
bands contain all the data, they do not show it in their spa-
tiotemporal frame of reference. Therefore, we add these as
linked data views to complement our synchronization view.

3.2 Data views
The data views aim to present the data in the more con-

ventional ways the user is accustomed to. They address the
spatial and the temporal domain independently by supply-
ing a map view [13] and a calendar view [25] to capture them.
These provide the contexts in which the values are then rep-
resented – usually by color-coding them for the regions of
the map or the time slots in the calendar.

The implications of providing these views are apparent:
they cannot show all the data, as the synchronization view
can. Hence, the user has to choose a spatial level of resolu-
tion to show in the map view, a temporal level of resolution
to show in the calendar view, and a data level to encode in
both views. Since these choices can be made from within
the synchronization view upon inspecting all levels, they are
now informed and no longer based on trial-and-error. We
go even further than selecting a flat level by permitting to
choose a refinement of levels around a particular data item
of interest. In this case, the map and/or the calendar are
shown at a coarser level and only the neighborhood of a data
item in question is then shown at a step-wise higher reso-
lution – e.g., the calendar is shown on a yearly granularity
level and only around a particular date, its year is shown
on a monthly level, its month is shown on a weekly level,
and its week is shown on a daily level. This is illustrated in
Figure 2, which shows the map view and the calendar view
with such a refinement of levels around a particular point in
space and time. This way, we support exploring data items
of interest simultaneously on different levels of granularity
in space and time in the data views as well.

Both data views observe hierarchical dependencies be-
tween the levels. For example, spatial levels often exhibit a
hierarchical dependency expressing the inclusion of admin-
istrative regions – i.e., countries, states, counties. Whereas

Figure 2: The data views show the data in more con-
ventional ways. Here, synthetic data is color-coded
in the views. A map view (a) addresses the spatial
domain and a calendar view (b) addresses the tem-
poral domain. Both views exemplify the refinement
of levels around a particular data item.

levels that organize space in grid squares would be indepen-
dent of these administrative levels, but form a hierarchical
dependency among themselves. In case of such a hierarchi-
cal order among spatial and/or temporal levels, it depends
very much on the semantics of the data if and how they can
be projected onto other levels. This applies to all three of
such possible projections:

• Aggregation of low level data to higher levels can be
done iff an appropriate aggregation function is given.
This is important as aggregating values is highly domain-
dependent with many different methods in existence [4].

• Duplication of high level data at lower levels is pos-
sible iff the data given for the whole also applies to
its parts. For example, this is the case for country-
wide election results that hold true for all parts of the
country and thus also for all states and counties.

• Registration of data between independent levels is
only possible iff adequate mapping functions are given.
For example, to map zip code level data to the county
level and vice versa, one must know how much each
zip code area contributes to each county, because at
least in Germany, they do not strictly nest.

To prevent misinterpretation, the map or calendar in the
view is by default colored gray to mark an invalid choice of
levels if no data is given for their particular combination. If
one wants to project data from one level onto another, our
data views are conceptually able to do this by color-coding
the projected data instead of graying out the level. In this
case, one has to make the user aware of the projection, so
that the projected data is not mistaken as actually collected
data. This can happen easily, for example, when looking
at higher level data (e.g., country level election results) on
lower levels (e.g., county level) one may find that all counties
appear to have voted the same. Yet, in fact merely the over-
all voting result of the whole country has been duplicated
and color-coded in each individual county.

The synchronization view and the data views are mutu-
ally linked, so that interactive selections and adaptations in
one view are reflected in the others as well. This enables
their concerted use for an exploratory analysis of multilevel
data, as it is further facilitated by the interaction concept
presented in the following section.



4. INTERACTIVE EXPLORATION
The newly introduced synchronization view is built so that

it effectively reflects our particular data model. It provides
per-level visualization by aligning the bands and per-tuple
visualization by connecting them accordingly. As such, it ex-
tends well beyond the data views that can only provide tra-
ditional per-level representations. Having the versatility of
the data model embedded in our visualization technique, this
section discusses the different modes of exploratory analysis
that can be pursued by using this view. As a result of this
discussion, we provide a tailored exploration mechanism by
utilizing a combination of two orthogonal modes of inter-
action: the novel tuple-based exploration together with the
common level-based exploration.

4.1 Modes of exploratory analysis
In the spirit of Bertin’s Levels of Information [5], it is

common in the context of spatiotemporal data to define the
analysis interest with respect to its extent:

• point-based extent, e.g., for a particular point in
time and space the associated value instance is sought;

• local extent, e.g., for a contiguous subset of points
in time and space the development of value instances
(temporal decline, spatial spread, etc.) is of interest;

• global extent, e.g., for all points in time and in space
the overall behavior (distribution, global extremes, etc.)
of value instances is to be determined.

In case of multiple granularities, a “point in time and space”
specifies value instances on a variety of levels, as a date spec-
ifies a year, a month, and a day and an address specifies a
country, a state, a county, a city, a zip code, etc. Given mul-
tiple data levels, each combination of temporal and spatial
scale can in addition yield multiple value instances.

Standard methods, such as maps or bar charts, can cope
with this multitude of data only partially: either by reduc-
ing the number of scales (usually by selecting a few scales of
interest) or by reducing the number of data items to show
per scale (usually by summarizing the value instances of en-
tire scales with a few statistical measures). Examples for
the former are map views and calendar views, as we pro-
vide them as well. They permit a user to explore the data
only at a single level (local data extent) – either for one
point in time (point-based temporal extent) and at a sin-
gle spatial level (local spatial extent) in the map view, or
for one point in space (point-based spatial extent) and at a
single temporal level (local temporal extent) in the calendar
view. The latter, the reduction of data items, is for example
done by computing means, quartiles, and maximal values
and displaying them in one box-whisker-plot per scale [6].
This way, all scales can be shown in their global extent, but
at the cost of losing the details of the individual value in-
stances and showing only abstracted summary statistics. So,
in each case the standard methods omit parts of the data
(scales, value instances) to be able to show the rest. An
access to all individual value instances on all scales (global
extent without abstraction) is not possible from within these
visualizations.

In contrast, our synchronization view can be used for such
a global access without abstracting individual values. As
such, it enables a user to follow two modes of exploration
that cannot be pursued with standard techniques alone:

1. It provides a global view of all levels. Based on this full
view, it permits an exploration of levels by making
an informed selection of levels of interest to be shown
in the adjoined traditional views (map and calendar).

2. It presents a global view of all tuples. By this, it is pos-
sible to explore the tuples across all scales directly
in the synchronization view.

The following two sections describe these two modes of ex-
ploration and the particular interaction needed for them.

4.2 Level-based exploration
The level-based exploration steers the selection of the in-

dividually shown levels in adjoined map and calendar views
directly from within the synchronization view. In terms of
interaction, it comprises of the conventional browsing of mul-
tilevel data level by level [7]. This can be thought of as cut-
ting “horizontally” along specified levels through the set of
tuples to yield triples that contain only one spatial level, one
temporal level, and one data level. In contrast to existing so-
lutions, this is not a mere slider or mouse-wheel interaction
performed on top of the data views, but a navigation of lev-
els in the synchronization view that automatically updates
the adjoined views through linking mechanisms. The differ-
ence is the informed choice of a level, as one does not have to
go through all possible level combinations one by one to see
whether they exhibit behavior of interest. Instead, the syn-
chronization view shows all levels simultaneously and the
user can pick level combinations of interest directly based
on what he discovers in this overview. This is not only a
convenient addition to the data views, but mutually bene-
fitting to both data and synchronization views. The reason
is that the power of the synchronization view of showing all
levels comes for the price of a very compact representation
that aligns all levels as 1-dimensional horizontal bands. Yet,
these bands may not fully capture more complex behavior,
such as the spatial or temporal spread of a certain pattern,
which may be identified in the bands, but can more easily
be verified in the data views.

4.3 Tuple-based exploration
The tuple-based exploration presents a new way of ex-

ploring multilevel data: tuple by tuple. It can be thought
of as the orthogonal counterpart to the level-based explo-
ration, as it cuts “vertically” along a specified tuple through
the set of levels. This exploration mode is motivated by the
fact that multilevel patterns are not to be found on indi-
vidual levels. Or as it has been observed and formulated in
the mid-nineties by Ahl and Allen [1, p.76]: “What makes
levels interesting is the relationship between them.” This
relationship is encoded in the tuples that connect the levels
in our multipartite data model. To find out all there is to
know about this relationship, one must explore all tuples.
Unfortunately, often the sheer number of tuples makes this
a challenging undertaking, as they are too many to display
them all at once without creating clutter and also to browse
through all of them one by one. This is the downside of pro-
viding a detailed global view and we aim to solve this issue
by two mechanisms: sorting and pinning.

The basic assumption that underlies both is that the user
is not just looking at the tuples in general, but has instead a
partial idea of what interests him. This can be either a rela-
tive interest (e.g., all tuples exhibiting a high voter turnout



in recent years) or an absolute interest (e.g., all tuples relat-
ing to a specific party in the years 2004 and 2005).

The relative interest can be translated into a partial
sorting order for tuples. If the user looks for multiple crite-
ria, these have to be prioritized to express in which the user
is foremost interested – e.g., the user wants to sort first for
high voter turnouts and only if values coincide, the more re-
cent shall precede earlier tuples. Once sorted according to a
user’s criteria, the browsing would start with tuples of high-
est interest to the user – in the example, this would be the
tuple with the highest voter turnout, from the most recent
year if there were multiple tuples with the same turnout.
This way, it is unlikely that the user will have to browse all
tuples to explore the relations of the levels with respect to his
particular interest. It is obvious that this method stands and
falls with the availability of suitable sorting methods. While
sorting is trivial for numerical levels and ordinal levels, in
particular the sorting of spatial levels and nominal data lev-
els is challenging. Usually, different application domains
employ different orderings that are targeted towards their
specific exploration tasks. This makes it hard to provide a
general ordering strategy. So, we acknowledge that other
application scenarios may require other ordering strategies,
and we assume a simple north-east to south-west ordering
for the geospatial domain and an alphabetical ordering for
nominal data values in the context of this conceptual dis-
cussion. In the synchronization view, we show any sorting
order (e.g., temporal first, then by value) and its direction
(ascending, descending) in a small box at the top-right side
of each band. Once, such an intra-level ordering has been
determined, it is conceptually also possible to automatically
determine an inter-level order that helps to show patterns
among tuples more clearly [14, 15].

The absolute interest can be translated into fixing or,
as we call it, pinning certain instances on some levels. In
the above example, the specified party on the data level
“party” and the years 2004 and 2005 on the temporal level
“year” get pinned. This results in a filtering of tuples to only
those that contain these instances and thus cutting down on
the large number of tuples in a data set. The browsing of
tuples would then only encompass those that run through
these particular instances. Furthermore, pinning works also
on the data levels, so that data instances of interest can be
pinned to narrow down the number of tuples to those of all
times and places that instance occurred. If the number of
tuples is still too large, pinning can of course be coupled
with sorting to impose an additional order on the tuples.

To reflect the tuple-based exploration in the adjoined data
views that show only selected temporal and spatial levels, we
utilize the aforementioned refinement of levels around a data
item of interest to mimic showing the tuple across multiple
levels in the otherwise flat display. The views are linked,
so that the browsing of tuples in the synchronization view
will update the adjoined views by moving the refined region
around to reflect the currently viewed tuple. On the other
hand, a simple click on a region in the map view or on a day,
month, or year in the calendar view will trigger a pinning of
the clicked instance on the appropriate spatial or temporal
level in the synchronization view.

The interplay of the views and their use together with
the described interaction concept are brought to life in the
following section, which presents our realization of them.

5. IMPLEMENTATION & CASE STUDIES
The realization of such a novel visualization concept, which

deviates in many aspects from established representations
in the field of geovisualization, cannot be done without user
feedback along the way. Hence, we included users through-
out the process of developing our approach, as this is an es-
tablished way in visualization design to prevent from build-
ing ad-hoc solutions [12, 23]. When involving users and
gathering their feedback, it is important to do so in the con-
text of data they can relate to. Since we wanted to include
the opinions of a diverse group of people and prevent tailor-
ing our prototype to a specific application domain, we chose
a number of different, yet related data sets that most people
have some basic knowledge about – various election results
and voter polls from Germany. In the following, we describe
the design of our implementation, give a description of the
data used, and reproduce some cross-level findings that were
made in the data while test-driving our visualization.

5.1 Implementation based on user feedback
Our implementation relies on Java 6 with the standard

Java2D functionality for the synchronization view and the
calendar, as well as on the ApacheTM Batik SVG Toolkit
for the rendering of the map view. It implements the multi-
partite data model and transforms input data to this model
by partitioning it into levels and instances. The exploration
strategies make heavy use of this data model for their fast
interactive realization. For example, it would be very cum-
bersome to implement a pinning on the original data items
(e.g., on full dates or addresses).

From the early stages on, eight users from different de-
partments including a domain expert from the political sci-
ences gave iterative feedback on our realization. Four out
of these eight users had some prior exposure to information
visualization. In short sessions, we let them use our visu-
alization in various configurations and setups. Afterwards,
we led structured interviews with them to evaluate their ex-
periences with the prototype. To rule out learning effects,
we slightly distorted the real data by a random process, so
that the data was still reasonably realistic, yet no partic-
ipant could thus claim prior knowledge of it. Besides the
free exploration of the data, we had two recurring tasks to
be solved by each participant with each presented setup: a
generic overview task and a specific localization task. The
two main aspects that we investigated with their help were
the view setup (i.e., whether additional spatial and tempo-
ral views are needed and whether they should be simultane-
ously visible or be shown one by one) and the tuple-based
exploration (i.e., how the ordering affects the utility of the
tuple-based exploration and which orderings to provide).

With respect to the first design question, one user summa-
rized the feelings of most participants as he does not“want to
miss any of these views as they all have their benefits.” This
underlines that besides our synchronization view, both data
views are necessary as a simultaneous display of the miss-
ing spatial and temporal contexts. Having then been given
a simultaneous display of both types of views, many par-
ticipants highlighted the importance of the synchronization
view as a central element of the view setup, despite having
to master the learning curve attached to such a novel view.
One participant stated that “the synchronization view pro-
vides a good way to coordinate the analysis.” In this way,
the back and forth between the views seems to be a powerful



feature, as it allows for switching seamlessly between a more
general overview and more detailed views of the data.

The benefit of the ordering of bands in the synchronization
view was also highlighted, even if it only vaguely reflected
a user’s partial interest. The reason is that because an or-
dering forms blocks of similar tuples, they can thus easily
be skipped in bulk when browsing them. So even if the tu-
ples, which are the most interesting to a user, are not sorted
to the very top, the user can fast-forward through the ones
of lesser interest and quickly reach them. The possibility
to freely switch the ordering at any time was received very
well by the participants: “Being able to change the order in
which the data is represented makes it very easy to find ex-
traordinary features in the data.” Our domain expert valued
the idea of scrolling through the tuples in a particular order
and thus seeing the relations between the different aspects
of the data within a single view: “Normally, we can only
see a couple of data aspects, but never all of the data we
have gathered. Their interplay is then often only captured
within statistical evaluations of the data. Yet, having the
possibility to really see this interplay together with the data
within a single visualization is a very promising feature.”

In addition to the user feedback, we also collected design
insights from projects having similar aims, such as the SO-
LAP interface by Beaulieu and Bédard [3] or the early use of
Polaris for exploring hierarchical data [20]. Altogether, this
has helped us to put our conceptual design and our concrete
implementation design on a broader basis.

5.2 Data description
The used data for the user-driven design, for all exam-

ples and screenshots in this paper, as well as for the follow-
ing case studies is based on various data sources. It con-
tains German election data compiled from different online
sources, such as the statistical offices of the states, as well
as poll data from different institutes taken from the website
http://www.wahlrecht.de/umfragen and reaching back as
far as 1998. Overall, this data consists of 16 levels struc-
tured in three hierarchical time levels (years, months, days),
three hierarchical space levels (countries, states, counties),
and ten data levels covering different results and aspects of
elections. This data is comprised of the percentage achieved
by each party in elections and polls, and its delta of per-
centage points as compared to the last election/poll. Addi-
tionally, we have included the voter participation numbers
for elections where they were available. Election results are
available on country, state, and county level, while polls are
only available on country level and for a few selected states
at selected time points – e.g., a week before a state election.

Elections and polls are conducted on a specific date, which
is encoded as a temporal reference in their tuples. Yet their
results remain in effect until the next election or poll yields
a new outcome – i.e., a country is governed by the leading
party/coalition until a new election is held, and journalists
refer to the most recent poll until a new poll is published.
Hence, we chose to extend the data from the actual day they
were gathered to the entire time interval until the next elec-
tion/poll comes into effect. When a tuple is selected in the
synchronization view, all other data instances are connected
to it, if its date lies within the interval in which they are
valid. For data that is truly given for specific dates, their
extension into intervals and their connection would not be
performed and the tuples are simply shown as they are.

Figure 3: Investigating the largest increase in voter
popularity for each poll in the synchronization view.
All data levels (all polls) are sorted to show the in-
stances of largest increase gained by a party on the
left side. A clear pattern emerges there: across all
polls, the Green party (green) has the largest in-
creases among all instances. When looking at the
dates of these polls, one can notice that they are
from shortly after the Fukushima disaster.

5.3 Case studies
Through the exploration of this election data, we revealed

two interesting patterns of voter behavior, which would be
cumbersome to find without our approach. These patterns
relate to two events in recent years: the Fukushima Dai-
ichi nuclear disaster (temporal effects) and the Stuttgart21
railway project controversy (temporal and spatial effects).

The first example concerns the change of voter sentiment
and is depicted in Figure 3. The shown synchronization view
contains monthly or weekly poll data collected by different
survey institutes. As each data level is derived from a dif-
ferent data source, it constitutes an instance of multi-modal
data. All data levels relate to the country level only, which is
why all other spatial levels have been folded away. The data
levels encode the party with the highest increase in voter
popularity since the last poll. They are sorted in descend-
ing order of percentage points of each increase. If instances
coincide, these are sorted in descending order of the time
points they are associated with. From this sorting, a clear
pattern emerges on the left side of the synchronization view.
It shows the biggest increase for the Green party throughout
all the different polls, with a huge jump of up to 8 percentage
points in the Allensbach poll (bottom band). Pinning indi-
vidual value instances reveals that these polls were all taken
shortly after the Fukushima disaster on March 11, 2011.

To confirm this finding, we re-order the data bands with
respect to time only and we pin the year, month, and day
to the date of the Fukushima disaster. According to the de-
scribed extension to intervals, the pinned date connects to
all prior polls, as March 11, 2011 falls into the respective
intervals for which these poll results are considered valid.
The result of this adaptation can be seen in Figure 4. The
calendar view shows the increase in voter popularity from
the weekly poll results of the first band, the Infratest poll.
One can observe in the synchronization view that the dis-



Figure 4: Effect of the March 11, 2011 Fukushima
Daiichi nuclear disaster on German voter behav-
ior. The synchronization view shows a strong in-
crease in popularity for the oppositional Green party
(green) in polls following the disaster. This trend
was only broken after the ruling parties themselves
announced to end nuclear energy production in Ger-
many. The calendar view shows this period of time
(4 weeks) for the weekly Infratest poll from the first
band in the temporal context of 2011 at large.

aster took a few days to arrive in the political debate, as
the Emnid poll (second data band from the top) still shows
the largest increase for the governing party (blue) for March
13, 2011, two days after the disaster. But as the temporal
sorting of the data levels already hints at and as browsing
through the tuples with the tuple-based exploration con-
firms: the popularity of the Green party increases steadily
over the next weeks. This was most certainly due to an in-
creased support for their stance against nuclear power. After
four weeks, the impact of the event became weaker, which
can be explained with the fact that the ruling parties in Ger-
many followed suit and decided to abandon nuclear power,
so that the Green party lost its edge over them.

The second example is shown in Figure 5 and presents our
findings regarding the controversial railway and urban de-
velopment program Stuttgart21. Even though it concerned
mainly the German state Baden Württemberg, it sparked
debate and grassroots protests all across Germany. The
county election in Stuttgart and the state election for all
of Baden Württemberg held in 2009 and 2011, respectively,
reflect the strong discontent of the local population with this
project. This can be seen in the synchronization view, where
we pinned the state and county, as well as the date of the
2009 county election in Stuttgart. The synchronization view
shows a similar pattern to the first example: the winner of
the county election held on that date was the Green party
that opposed the project (first data band). This was not
directly reflected in the state election two years later (sec-
ond data band, the instance on the right side of the selected
one) where the Christian Democratic Union (CDU, shown in
blue) that traditionally governs the state received the most
votes. Yet, its impact can be seen in the change of voter
popularity (third data band, the instance on the right side

Figure 5: Effect of the controversial governmental
development project Stuttgart21 on local voter be-
havior in the German state Baden Württemberg.
The synchronization view shows the gains of the
Green party (green) in response to the project’s
start of construction. The map view indicates a
similar trend in Stuttgart’s neighboring counties
where oppositional citizens’ action committees (or-
ange) won the elections in the same period of time.

of the selected one) where the Green party had the largest
increase of 12.5 percentage points. Together with a loss on
the side of the CDU, this actually led to the situation that
the CDU could not form a majority coalition. Instead, the
Green party formed a coalition and is now heading the state.

Another interesting observation can be made in the re-
maining band (fourth data band), which is a duplicate of
the first data band, but differently sorted. The first band
was sorted first by space (alphabetical by county names) to
bring together all of Stuttgart’s elections and second by time
to have these elections line-up in ascending order from ear-
liest (left) to latest (right). Yet, the fourth band is sorted
first by time to bring together all county elections of the
same date and second by space (ascending by each county’s
distance to Stuttgart) to have these elections line-up in as-
cending order from those closest to Stuttgart (left) to those
farthest from Stuttgart (right). It can be seen from the or-
dering of the fourth band that on the day of county elections
in 2009, numerous counties close to Stuttgart have voted op-
positional citizens’ action committees (shown in orange) into
office. While it can only be hinted at by the linear arrange-
ment of the band, this observation can be verified in the map
view. This effect is hardly coincidental, as it is very strong
around Stuttgart and decreases with distance, so that it is
very likely also a consequence of the Stuttgart21 project.

6. CONCLUSION AND FUTURE WORK
Discoveries and findings, which are based on a multitude

of levels, are very difficult to make using traditional ap-
proaches alone. With our synchronization across space, time,
and data levels, we provide a first handle on the problem
of visually exploring spatiotemporal multilevel data. This is
made possible by a versatile graph-based data model for cap-
turing and aligning information on multiple levels. The visu-



alization built on top of this data model passes the model’s
versatility on to the user to use it for interactively explor-
ing data on multiple levels simultaneously with tailored ex-
ploration approaches. It does so by flattening the dimen-
sions of the space-time-cube into bands that only show value
instances that actually occur and connecting them if they
co-occur. This effectively removes the “empty” cells of the
space-time-cube and only shows those that actually contain
data. As a result, we yield a very compact overview visual-
ization that permits a global exploration of multilevel data.

In future work, we aim to compact our synchronization
view even further in order to lower the interaction cost for
investigating the data in its entirety. This can principally be
done in two ways: by reducing the number of levels and/or
by reducing the number of tuples. Yet at the same time,
we want to preserve all of the information necessary for the
current exploration. Since no preconceived overall reduction
can achieve this, we plan to tie the reduction to the interac-
tive exploration modes and show all information related to a
current level/tuple under investigation while hiding others.
This would couple the reduction of levels with the level-
based exploration, so that levels are automatically folded
away if they do not co-occur in any tuple with the currently
selected level. Likewise, the tuple-based exploration would
be used to reduce the number of shown tuples – e.g., by
bundling all tuples into ribbons that have no value instance
in common with the currently selected tuple. The result
would look similar to a Sankey Diagram [17] or a Parallel
Sets visualization [10], but with the tuple currently under
scrutiny and all related tuples being shown as individual
lines. These future additions promise to even further im-
prove the utility of our multilevel visualization approach.
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