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ABSTRACT

In systems biology, analyzing simulation trajectories at multiple
scales is a common approach when subtle, detailed behavior and
fundamental, overall behavior of a modeled system are to be in-
vestigated at the same time. A variety of multiscale visualization
techniques provide solutions to handle and depict data at different
scales. Yet the mere existence of multiple scales does not necessar-
ily imply the existence of additional information on each of them:
Data on a more fine-grained scale may not always yield new details,
but instead reflect the already known data from more coarse-grained
scales – just at a higher resolution. Nevertheless, to be sure of this,
all scales have to be explored.

We address this issue by guiding the exploration of simulation
trajectories according to information about the deviation of the data
between subsequent scales. For this purpose, we apply different
dissimilarity measures to the simulation data at subsequent scales
to automatically discern heterogeneous regions that exhibit deviat-
ing behavior on more fine-grained scales. We mark these regions
and display them alongside the actual data in a multiscale visual-
ization. By doing so, our approach provides valuable visual cues
on whether it is worthwhile to drill-down further into the multi-
scale data and if so, where additional information can be expected.
Our approach is demonstrated by an exploratory walk-through of
stochastic simulation results of a biochemical reaction network.

Index Terms: I.3.8 [Computing Methodologies]: Computer
Graphics—Applications; I.6.6 [Computing Methodologies]: Sim-
ulation and Modeling—Simulation Output Analysis;

1 INTRODUCTION

Systems biology aims at understanding the complex mechanisms
that underlie both normal and defective modes of biological sys-
tems. Besides diverse experimental wet-lab methodologies and
similar to many other areas, computer-aided modeling and simula-
tion has become one of the key techniques in this field of research.
Large amounts of data may thereby be produced, often exhibiting
different behavior on different temporal and/or spatial scales – for
example, different short, medium, and long term behavior within
the generated time series data.

Resulting from complex non-linear interactions among a model’s
components, already the simulation of rather small models may
exhibit dynamic behavior on multiple scales. In particular, this
is the case for stochastic simulations [21], which take the intrin-
sic noise within biological systems into account and lead to rapid
small-scale fluctuations in the trajectories. Here, a thorough analy-
sis needs to be carried out in order to see through the noise and find
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interesting behavior within the data space. Multiscale data analy-
sis becomes even more important when simulating multilevel mod-
els [13], which describe the complex interplay between components
at different hierarchical levels of a system and typically operate at
different spatiotemporal scales. However, the integrated analysis of
data at multiple scales is a challenging task. The challenge lies in
the desire to simultaneously analyze global long term behavior and
detailed short term behavior, while both can hardly be achieved at
the same time.

Formally, we define a scale S as a tuple (G,X) consisting of the
grain G and the extent X [1, pp.55-65]. The grain defines a res-
olution as the lower threshold of observation – everything that is
smaller than the grain cannot be observed on this scale. This is
complemented by the extent, which defines a value range as the
upper threshold of observation – everything exceeding the extent
cannot be observed either. For a visual analysis, the displayable
number of grain-sized fragments in a given extent X÷G is bounded
by the screen resolution. If there are more of these fragments than
available pixels, the trajectory cannot be represented faithfully on
this scale. And even if it is possible to depict all data, the actually
desired information may be hidden underneath it: Strongly fluctu-
ating fine-grained data, such as noise, can superimpose lower scale
behavior up to the point where it can no longer be recognized. This
effect is known as masking [22]. For both problems – the multiscale
challenge and the masking – exist a number of established solutions
(cp., Sec. 2). In essence, most approaches display the data individ-
ually at different scales and link these displays via drill-down/roll-
up to ensure their faithful depiction while still giving access to the
broadest extent and finest grain.

Yet, none of the existing approaches gives consideration to the
question if there even is noteworthy information to display at each
scale. Often, data sets lack fine-grained behavior in certain parts, so
that its interactive exploration through drill-down operations to the
most fine-grained scale is not necessary. Whereas in other parts,
subsequent drill-down operations will unveil new behavior all the
way down to the finest grain. Current multiscale visualizations
do not guide the user in this respect. Regardless of the data, they
generally require an analyst to explore the full data set by always
drilling down to the scale of highest resolution just to be sure that
no more interesting data is hidden there. This is a time-consuming
task, which we strive to improve in this paper.

According to this, we aim to support systems biologists in find-
ing desired information at fine-grained scales without the need
of an exhaustive search. For this purpose, we contribute an ap-
proach that interprets the heterogeneity of simulation results at sub-
sequent scales as an indicator for noteworthy information. Regard-
ing to this, it depicts visual cues where a drill-down to fine-grained
scales may be valuable. As detailed in Sec. 3, our approach com-
prises multiple steps: A calculation step in the data space, which
computes dissimilarities between subsequent scales and aggregates
these values to regions of homogeneity/heterogeneity. The repre-
sentation step in the visual space uses the gathered heterogeneity
information to enhance time-course data visualization. For that, the
heterogeneity with respect to subsequent scales is visualized along-
side the data. The adjustment step in the user interface space (UI



space) allows for an informed drill-down to adjust the scale of the
visualization by providing different interaction facilities.

This novel approach is exemplified with a use case that deals
with the exploration of simulation trajectories from a biochemical
reaction network describing the control of the cell cycle in yeast.
This exemplary data was presented to application experts who used
our approach to investigate it at multiple temporal scales. We report
on their insights in Sec. 4 and summarize their feedback and hurdles
to adoption in Sec. 5. Lastly, current and future research directions
for the presented approach are outlined in Sec. 6.

2 RELATED WORK

In the current literature, multiscale data is handled in the data space,
in the visual space, as well as in the space of the user interface.

In data space, different techniques are used to first extract the
data on multiple scales. The most common approach is a sim-
ple binning into scales of predefined grain – e.g., the duration of
a cell cycle, or time intervals consistent with experimental data
acquisition, such that a comparison with wet-lab results can be
made. This method has the convenient side effect of aligning non-
equidistant time steps, as they occur, for example, in stochastic sim-
ulations [14]. If no semantically meaningful scales exist, abstrac-
tion techniques, such as generalization or aggregation, are used sub-
sequently to create an ordered set of scales from a given data set [2].
A third possible way of isolating data at specific scales is the appli-
cation of filters to the data (e.g., low-pass filters), which is often
used in signal-processing applications. Some recent approaches in
systems biology go even further by actually determining which of
the modeled and subsequently simulated processes exhibit behav-
ior on which scale and then reduce the model to gain only data on
a scale of interest [17]. In general, it can be said that these meth-
ods are useful to counter the masking problem, as the extraction of
individual scales breaks down the overall system behavior into the
long-term and short-term aspects of which it is composed.

Once the scales are separated, they are brought back together in
visual space to nevertheless allow for their integrated exploration.
For this, a number of different options are used, which basically
follow the design space of such visual combinations [10]. The sim-
plest way is the use of two juxtaposed or integrated views (depend-
ing on their linking) [9, 23]. The most complex way is to superim-
pose the two views in such a way, that the masking effect is not rein-
troduced [2, Fig.1]. Yet, a recent study [8] shows that these meth-
ods of composition are less effective than more advanced overlay
compositions, which use a piecewise embedding as a compromise
between these two options [5]. In addition, methods using nest-
ing are also known, which insert depictions of local, fine-grained
features (e.g., outliers or peaks) in a global, coarse-grained visual-
ization [6, 15]. These methods have in common, that they aim to
provide a coarse-grained overview together with a fine-grained de-
tail view through different means of integration – thereby providing
solutions to the multiscale challenge.

To manipulate such visual compositions of multiple scales in or-
der to change the displayed extent and grain, a range of possible
mechanisms can be utilized in the UI space. Standard methods,
such as drill-down and roll-up [2] permit to move back and forth
between different scales, uncovering additional details or gaining
a broader overview putting the details into context, respectively.
For mixed-scale visualizations using nesting or overlay composi-
tion, interactive lens techniques [11, 24] can be used to embed and
manipulate the client visualization on one scale inside or on top
of the host visualization of a different scale. The interaction on
mixed-scale visualizations can be thought of as an unbalanced drill-
down/roll-up, where the scale of a view is not adjusted globally, but
locally. Again, these methods serve to interactively find and fine-
tune a suitable tradeoff between local details and global overview
to resolve the multiscale challenge.

All of these approaches permit to visually access and explore
multiscale data. Yet, none of these techniques asks the question
whether it is actually necessary to explore all scales of that data.
This is an important question, as the straightforward extraction, vi-
sualization, and interactive manipulation of scales does not neces-
sarily mean that there exists new information in each of them. A
drill-down may or may not reveal unexpected details, which are
smaller than the current scale’s grain and therefore hidden just be-
low the lower threshold of observation. A roll-up on the other hand
may or may not yield a discovery of a global trend, which is larger
than the current scale’s extent and therefore hidden just outside the
upper threshold of observation. So, in order to use the established
visualization and interaction methods for multiscale data in an in-
formed way, a user must be made aware of possibly interesting as-
pects on different scales and thus be guided towards them. The
approach introduced in the following section addresses this issue.

3 AN APPROACH FOR MULTISCALE GUIDANCE

In order to eliminate the necessity of extensively exploring the data
at all scales, the main goal of our work is to provide interscale and
intrascale guidance for systems biologists analyzing their simula-
tion trajectories. This means to provide visual cues at which scale
(interscale guidance towards a specific grain) and in which region
of this scale (intrascale guidance towards a specific extent) the tra-
jectory shows deviating and therefore possibly interesting behavior.
To achieve this, we depict where a more fine-grained scale brings in
additional information as compared to more coarse-grained scales.
This indicates potential targets for a further drill-down, but it also
indicates which coarse-grained scale may suffice for communicat-
ing certain behavior of the trajectory. For this purpose, we examine
subsequent scales with respect to heterogeneity between their data.
We interpret heterogeneity between scales as an indicator for note-
worthy additional information at a more fine-grained scale.

Our proposed approach comprises of the following steps, which
are discussed in more detail in the following sections:

I. Computing the heterogeneity values between subsequent
scales of a given multiscale data set.

II. Visualizing the heterogeneity values in addition to the data on
a currently selected scale.

III. Interacting with the heterogeneity visualization to perform a
guided navigation across and within scales.

3.1 Computing the Heterogeneity Values
This first step does not directly compute the concrete grains and ex-
tents towards which to guide the user, but instead uses an indirect
approach of computing the heterogeneity between scales as indica-
tor where an in-depth analysis could be worthwhile. As input, this
step assumes a data set with scales Si (1 ≤ i ≤ n,n ∈N,n ≥ 2) or-
dered from coarsest (S1) to finest grain (Sn). These scales are either
inherently given by the data set or extracted through methods, such
as those mentioned in Sec. 2. The computation is then performed
between every pair of subsequent scales Si and Si+1 and consists of
the following 3 steps:

1. Determination of specific points in data space where to calcu-
late the heterogeneity.

2. Calculation of the heterogeneity according to a given metric.

3. Aggregation of the point-wise computed heterogeneity into
intervals.

The last step can be seen as the inverse to the first step: The het-
erogeneity computed at specifically chosen points in data space is
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Figure 1: To determine heterogeneities between subsequent scales
Si and Si+1 we simply map the data points of one scale at the re-
spective other scale (a, b). The calculated heterogeneity values are
aggregated into heterogeneity regions of principally arbitrary size
(c). To provide intrascale guidance, we choose the grain of Si+1 as
the regions’ size. A compact representation is gained by so called
heterogeneity bands mapping heterogeneities to color (d).

turned back into a continuously defined step function covering the
whole data space. While in theory, it would suffice to aggregate
the heterogeneity values between two subsequent scales into a sin-
gle value describing their overall discrepancy, this would only aid
interscale guidance – giving information on whether or not further
drill-down is necessary. For intrascale guidance, it is the splitting
up of the aggregation over multiple intervals or regions, which lets
the user also pinpoint where on a given scale the drill-down will
actually yield additional information and where not.

Determining Data Points At first, we determine specific
points in data space, called calculation points, at which the hetero-
geneity is to be computed. This can be done in multiple ways. For
instance, each data point given at particular scales can be chosen
as a calculation point. Yet at more fine-grained scales, this may re-
sult in a large number of such points. Alternatively, sampling (e.g.,
taking every nth data point) or approximation (e.g., taking charac-
teristic points, such as inflection points or saddle points) can be
used to reduce the number of calculation points. While approxima-
tion captures the characteristics of the data more closely, it has the
drawback of creating non-equidistant intervals based on the data’s
features [25]. Sampling on the other hand may miss crucial data
features. Thus for different models and different types of simula-
tions, this decision has to be made by the user to choose an approach
that fits the data at hand and its generating process. Without loss of
generality and for the sake of clarity, we use every given data point
as a calculation point in the course of this conceptual discussion,
although it may be computationally expensive in practice.

It should be noted that on two subsequent scales, the calculation
points on the fine-grained scale are generally not aligned with those
on the coarse-grained scale. To achieve such an alignment, we use
a straightforward approach that maps the calculation points of both
scales onto the respective other scale (Fig. 1a,b). The data values
at these mapped points are determined through an interpolation ap-
proach (linear, cubic, nearest-neighbor. . . ), again depending on the
type and general behavior of the simulation.

Figure 2: Our metric detects changes in the slope between subse-
quent scales. If slopes of subsequent scales differ in their direction,
a heterogeneity value of 1 is assigned – otherwise 0.

Computing Heterogeneity Values Given the calculation
points and a faithful interpolation method, the heterogeneity is com-
puted in this second step. To actually quantify the heterogeneity be-
tween two calculation points, different metrics can be used. Which
metric to use depends on the current task of the systems biologist
and the application scenario. For example, if absolute data values
are of concern, the metric should be sensitive to value differences
(e.g., absolute differences in Euclidian space). Yet, if trends are in
focus of the examination, differences between the trends of subse-
quent scales should be captured (e.g., SAX-distance [16]). More
sophisticated metrics that detect differences in patterns may also be
useful. Beside these established metrics, we developed a novel met-
ric that is inspired by [12]. For it, the slope of one calculation point
to the next is represented symbolically by its sign: increase = 1,
steady = 0, decrease = −1. If the sign of the slope differs for the
examined subsequent scales, a heterogeneity value of 1 is assigned,
otherwise the heterogeneity is set to 0 (see Fig. 2). While being
computationally inexpensive, this metric captures just enough in-
formation to be used for trend analysis for stochastic event-based
simulation trajectories. It is an example of how metrics targeted to-
wards certain applications can be used interchangeably at this step.
Consequently, we provide an extensible set of different metrics to
the systems biologist – with each of them potentially providing cues
for an exploration at more fine-grained scales.

Aggregating Heterogeneity Regions While a single aggre-
gated heterogeneity value cannot guide the user to specific extents
on a scale, the set of all point-wise defined heterogeneity values
may exceed the available screen resolution denying their faithful
representation. Hence, local heterogeneity regions are established
(Fig. 1c), which permit a better localization than a single value, but
prevent an overplotting and thus misperception of too many val-
ues. Heterogeneity regions are intervals in data space for each pair
of subsequent scales, which accumulate the heterogeneity values.
As a suitable region size, we chose the minimum distance of data
points at the more fine-grained of the two subsequent scales. This
way, we assign at least one calculation point and thus at least one
heterogeneity value to each region. To handle the resolution prob-
lem of very fine-grained scales, a region size corresponding to a
minimum screen size (e.g., 2 pixels) can be used as a lower bound.

Once the regions are established, their heterogeneity values are
determined by aggregating the individual heterogeneity values from
each calculation point in a region. This aggregation has to pre-
serve the necessity to explore a heterogeneity region if one of the
included calculation points expressed this through a high hetero-
geneity value. Therefore, we generally determine the value of a
heterogeneity region as the maximum heterogeneity over all calcu-
lation points. If the heterogeneity values express only the existence
or absence of deviations between scales, the weighted average can
be used to indicate how much additional information is likely to
appear – for example, when utilizing our simplified metric.



It is noteworthy that the calculation of heterogeneity values
and their aggregation to heterogeneity regions is freely adaptable.
Each aspect for calculating heterogeneity values can be adapted or
exchanged to tailor the overall approach to different analysis goals
from different applications. Therefore, we provide a set of different
metrics, as well as interpolation and aggregation methods, which
are adjusted to the need of systems biologists. Thus, their interac-
tive adaptation becomes a part of the overall exploration process.
At this point – regardless of the chosen approach – we have ex-
tracted a set of heterogeneity regions H〈i,i+1〉 calculated for each
pair of subsequent scales Si and Si+1. These are to be visualized in
the next step, to communicate them to the user to aid an informed
analysis.

3.2 Visualizing the Heterogeneity Values

This second step deals with the visual representation of the het-
erogeneity regions in conjunction with the actual data. In general,
we map the heterogeneity regions and their values for each scale
to small colored rectangles and align them to form a so-called het-
erogeneity band (Fig. 1d). These bands are stacked on top of each
other in order of their granularity (Fig. 3). In the following, we dis-
cuss different aspects of the heterogeneity visualization, such as the
chosen colors, the number of heterogeneity bands, the visualization
along the multiscale data, and the extensibility of our approach.

Utilizing Different Color Scales In principal, the used color
scale can be freely chosen, but it should clearly separate heteroge-
neous and homogeneous regions. To achieve this, we use a color
scale ranging from white for regions exhibiting no heterogeneity to
a second saturated color for high heterogeneity. This way, highly
saturated regions stick out naturally as prime targets for further
drill-down. The color scale may be applied to the local heterogene-
ity range of each individual heterogeneity band or to the global het-
erogeneity range of all bands. Through choosing a local or global
color scale, the analysis can be guided either qualitatively (local
range: “where” is additional information) or quantitatively (global
range: “how much” additional information).

Reducing the Number of Heterogeneity Bands The hetero-
geneity visualization begs the question, whether always all bands
have to be shown. The upper limit of theoretically necessary bands
to capture heterogeneities between all scales lies at log2(g) with
g being the finest grain. This is due to the fact, that at least a bi-
section of a given grain is needed to ensure possible new behavior
in each interval on each scale. So, for an assumed 1D simulation
trajectory of 1,000,000 data points at the scale of highest resolu-
tion, showing about 20 bands simultaneously ensures the theoret-
ical visibility of additional information at every scale and region
(since 220 > 1,000,000). Yet, oftentimes some subsequent hetero-
geneity bands do not differ very much and can thus be collapsed
into a single band to save screen real estate. For this, we compute
the similarity of subsequent bands by summing the squared hetero-
geneity differences per region and applying a simple, interactively
adjustable threshold to them.

Combining Heterogeneity and Data Visualization Hetero-
geneity bands alone do not show the actual data. Thus, they must
be combined with the data visualization, for which we employ two
commonly used principles: superimposition and juxtaposition.

In the superimposed mode, the heterogeneity bands are enlarged
to fill the available space and the trajectory is plotted on top of them
for a selected scale of interest (Fig. 3a). Superimposition works
only if the data can be visualized by a sparse representation (e.g.,
line plot, scatterplot, etc.), which leaves enough whitespace for the
heterogeneity information to “shine through” and does not interfere
with the used color-coding. In this representational mode, the user
can match the heterogeneity regions in the background with the data

(a) superimposed (b) juxtaposed

Figure 3: The principle design of our visualization approach: Het-
erogeneity bands are stacked and visualized either behind (a) or
next to the data (b). In both cases, saturated colors indicate changes
between the data of subsequent scales. The green dashed horizontal
cursor indicates the scale of the currently visualized trajectory and
the small colored bars to the right show, if the data plot of a scale is
affected by overplotting (red) or not (green).

visualization and identify parts of the plot that may reveal additional
information on other scales than the currently shown one.

If superimposition is not possible, the views can always be juxta-
posed. In this case, the heterogeneity bands are placed in a compact
form below the data visualization (Fig. 3b). By doing so, the het-
erogeneity bands serve as an annotation to the data display. The
user can switch between both modes upon demand.

Both displays feature the same set of additional indicators. A
cursor (green dashed line in Fig. 3) points to the currently selected
scale and its related heterogeneity bands: The heterogeneity band
above the cursor depicts the deviation to the next more coarse-
grained scale, the band below the cursor shows the deviation to the
next more fine-grained scale. The currently selected scale may be
too fine-grained and thus exceed the current screen resolution, re-
sulting in overplotting. In the spirit of the visual uncertainty display
from [7], it is communicated by red indicators next to the bands for
which scale overplotting and thus an information loss occurs. On
the other hand, green indicators signal that a scale is not affected by
the resolution problem. These indicators provide additional cues for
guiding the analysis. For example, to resolve the resolution prob-
lem at a region of interest, further zoom-in reduces the extent of the
currently shown part of the trajectory and thus also the overplotting.

Extending the Visualization Up to this point, our considera-
tions concern multiple scales of a single dimension. Yet, the pre-
sented approach is applicable to further dimensions in the very
same manner. Additional data dimensions can be introduced ei-
ther through multivariate data or through genuine 2-dimensional or
even higher dimensional simulation data, as it is produced, for ex-
ample, by cellular automata simulations [18]. In essence, this is
addressed by computing the heterogeneity for each dimension indi-
vidually, yet jointly displaying them to allow for a back and forth,
and a comparison between them. The heterogeneity bands of dif-
ferent dimensions may guide towards different features in the data.
This extension to further dimensions is illustrated in Sec. 5.

The same approach is used to compute and visualize multiple
heterogeneity metrics at once. As each metric captures specific data
characteristics, it is hard to pick the best metric for an unknown data
set and maybe even without a clear analysis goal, yet. By showing
multiple heterogeneity bands of different metrics (Fig. 3b), the user
can, for example, explore value-based and trend-based metrics and
their respective features in the data simultaneously.
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Figure 4: Within a simulation time series, a repeating pattern at the
more fine-grained scales attracts attention (a) and unveils a faulty
switch within the simulator’s behavior (orange box enlarged in b).

3.3 Interacting with the Heterogeneity Visualization

The first two steps discussed in Sec. 3.1 and 3.2 compute and com-
municate regions on the different scales towards which to guide a
user. This last step is the one, which actually enables the user to get
to these regions and inspect the corresponding part of the trajectory
at any chosen scale. Conceptually, two mechanisms have to be pro-
vided to do so: one to follow the interscale guidance to a specific
scale and one to follow the intrascale guidance to a specific region
on that scale. For the first of the two, the back and forth between
scales, commonly used mechanisms are drill-down and roll-up. For
the second of the two, the steering of the exploration towards a spe-
cific region, a zooming-in and zooming-out into these regions, as
well as a panning from one region to another are simple ways to
support the navigation on a given scale. Zooming has the problem,
that it reduces the shown extent in order to depict the region of in-
terest in more detail. If this is not desired and needs to be prevented
to keep the overview of the entire extent, more sophisticated ap-
proaches, such as a lens with fisheye distortion can be employed.
For both – zoom and distortion – it is important to adapt the het-
erogeneity bands besides or underneath the data plot accordingly,
so that both remain aligned (see Fig. 7d in Sec. 4). This applies
also to the overplotting indicators, which are also adapted instantly.
Likewise, the mentioned green cursor in between the heterogeneity
bands is adjusted according to the drill-down and roll-up operations.

For a more direct access to a region of interest on a scale of inter-
est, this region can also be selected directly from the heterogeneity
bands. This combines interscale and intrascale navigation into a
single interaction to quickly leap from one region on one scale of
interest to another region on another scale of interest.

In addition to these fundamental interaction methods to reach all
parts of the data, interaction should be provided, which allows for
(re-)parametrizing the calculation and visualization steps. These
simply provide interactive handles for the multiple computational
and representational decisions mentioned in the previous steps: For
the computation step, this includes different choices for metrics to
compute, for interpolation methods to use, etc. For the visualiza-
tion step, this involves the switching between global and local color
scales, as well as between juxtaposed and superimposed composi-
tion of the trajectory display and the heterogeneity bands.

The following section will illustrate how these three steps and in
particular the different interaction methods provide the necessary
guidance and the means to follow the guidance.

k1−→ cyclin (1)

cyclin+ cdc2
k2−→ MPFi (2)

MPFi
k3−→ MPFa (3)

MPFa
k4−→ cyclin-P+ cdc2 (4)

cyclin-P
k5−→ (5)

Figure 5: Reaction network graph and corresponding bio-
chemical reaction equations of the example model. (De-
)phosphorylation of cdc2 is neglected. Parameters used for
simulation: k1 = 0.015cdc2tot min−1, k2 = 200min−1, k3 =
k′act + kactMPFa/cdc22

tot min−1, k4 = kd/V min−1, k5 = 0.6min−1

cdc2tot = 105, k′act = 0.018min−1, kact = 180min−1, kd =
{2,3}min−1 (depending on simulation experiment), the volume V
is a relative measure, which is either fixed at 1 or increases expo-
nentially from 1 to 2 (within a time range of 116min) and is imme-
diately reset to 1 afterwards to mimic cell division.

4 APPLICATION SCENARIO

Stochastic simulations are of considerable importance for systems
biology. They allow for taking the intrinsic noise into account,
which originates from small variances in the speed of biochemi-
cal reactions, particularly in the case of low copy numbers of in-
volved molecules. Large data sets may thereby be generated, which
typically show different short and long term behavior on multiple
temporal scales and thus need visual support for their explorative
analysis. In this section, we demonstrate results of our approach in
this domain. We start with a motivating example, before we give a
brief explanation of the simulated model from systems biology and
subsequently illustrate the guidance through multiscale trajectories.

4.1 Motivating Example

We start with an example showing the trajectory of a Lotka-Volterra
system [20] describing a predator-prey relation (Fig. 4). Our novel
metric reveals a repeating pattern at the most fine-grained scales
that attracts attention due to its uniformity. A drill-down and zoom-
in to one of those regions exposes a regular staircase behavior
(Fig. 4b), which was identified as a faulty switch during the simu-
lator’s execution. This way, our approach directed the user towards
additional information, which was invisible at the coarse-grained
scales. Thereby our approach helped to discover and fix the previ-
ously unknown bug within the used simulation tool. This motivated
us to take our approach to more complex biological models and
facilitate guidance during their exploration.

4.2 Use Case

Our example model is based on a reaction network by Tyson [19]
describing a simple biochemical control circuit of the cell division
cycle in fission yeast cells. Fig. 5 provides an illustration of the
network and the corresponding biochemical reaction equations. In
short, the model consists of two proteins: cyclin and cdc2. Both
can form the so called MPF complex, which may be either in an
inactive state (MPFi) or in an activated state (MPFa). MPF activa-
tion, i.e., dephosphorylation of the cdc2 subunit, is described by an
autocatalytic process. That means, the more MPFa exists, the faster
the process of activation of further MPF will be. Tyson identified
ranges of certain model parameters where regular oscillations with
bursts of the amounts of inactive and activated MPF complexes can
be observed. In addition, he used the model to analyze the effect of
cell growth on the dynamic behavior by assuming an exponentially
decreasing rate coefficient (k4) of the MPF dissociation process.



Simulating this model generates data describing the dynamic
change of molecule amounts over time. Unlike Tyson, who used
numerical integrations of deterministic ordinary differential equa-
tions, we simulated the model in a stochastic event-based manner
by applying the Gillespie algorithm [4]. As a result of this kind
of simulation, the data easily exceeds a multitude of hundreds of
thousands or even millions of data points and thus does not allow
for visualizing the data in every detail in the limited screen space.
Therefore, it is necessary to analyze the data on multiple scales.

The data comprises one single fine-grained scale containing ev-
ery event of the simulation run. Other scales are merely implicitly
contained. Yet it may already suffice to look for and describe certain
behavior at a coarser grain, while at the same time coarser scales
also reduce the risk of losing important information due to mask-
ing. Hence, we transformed the data into a multiscale data set by
applying low-pass filtering on the simulation data (see Sec. 2). This
iteratively reduces the grain at each scale by a factor of 2 and uses
the average value of subsequent data points for the coarser scales.

4.3 Initial Setup

The initial configuration of the exploration relates to the first two
steps of our approach: the calculation of heterogeneities (Step I)
and their visualization (Step II). In Step I, every data point is also
used as a calculation point to prevent any loss of information, and
a linear interpolation is used for their alignment between scales.
The choice of the latter is motivated by the fact that all of our data
is increasing or decreasing monotonously with no gaps or sudden
jumps that would prevent a linear interpolation. As a suitable met-
ric, we chose our novel metric as we are mainly interested in trends
and thus in changes of the slope. However by detecting changes of
the slope, this metric also detects marginal changes, such as noise.
Therefore, we additionally apply metrics that quantify the change
of the slope (delta of the gradient) and that are sensitive to value
changes (absolute differences). Lastly, we chose an averaging of
heterogeneity regions for the aggregation of qualitative metrics and
a maximum aggregation for quantitative ones.

For Step II, we use the juxtaposition mode for annotating the data
display with the heterogeneity bands. This is due to the fact that we
provide heterogeneity information based on multiple metrics. The
data of the currently selected scale is presented by line plots, as
they are commonly used in systems biology to visualize simulation
traces. The initial scale shown in the plot is the finest scale at which
the data visualization is not affected by overplotting.

4.4 Guided Data Exploration

In several sessions, we explored the simulation data in close coop-
eration with five systems biologists. We summarize these sessions
in the following to illustrate the different exploration courses we
observed. They highlight the usefulness of our heterogeneity visu-
alization for interscale and intrascale guidance. Accordingly, these
sections relate to the interactive exploration Step III of our approach
applied to the use case example. The simulation results visualized
in the following figures comprise roughly 3.6 million data points.

4.4.1 Interscale Guidance

To start the exploration process with a maximum number of data
points right from the beginning, the initial view is set to the finest
scale at which the visualization is unaffected by overplotting. This
also prevents from depicting oversimplified behavior, which is re-
sponsible for large heterogeneity values at the most coarse-grained
scales. In our use case, we thus typically select one of the mid-
range scales to start with, from which a roll-up presents a more
abstract view. Conversely, to gain a deeper understanding of the
more detailed, local aspects of the simulated model, a drill-down
from this initial scale to more fine-grained scales is needed. With-

(a)

(b)

(c)
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Figure 6: Trajectory of MPFa from a simulation with k4 = 2min−1,
i.e., kd = 2min−1 and the cell volume V = 1 is constant (a). Our
metric reveals equally distributed changes in slope throughout the
whole trajectory (b) suggesting the existence of noise. A second
metric quantifying slope changes bares the same behavior (c). A
third metric (d), which is sensitive to value changes, reveals only
marginal changes at more fine-grained scales.

out guidance to noteworthy points in the data, this becomes a time-
consuming task, which might not even reveal further information.

For example, in a simulation experiment with a constant dissoci-
ation rate coefficient k4 = 2min−1, i.e., without taking the growing
cell volume into account, the amount of active MPF increases lin-
early at the beginning and reaches afterwards some kind of noisy
steady state (Fig. 6a). Since the current scale of the view is an
intermediate one, further drill-down to investigate this behavior is
possible. Yet at the same time, the overplotting indicator at the side
of the multiscale view in Fig. 6b shows the user that a drill-down
to more fine-grained scales would also hide some information due
to the limited screen resolution. While this can be alleviated by ad-
ditionally zooming-in, the question is, whether there is worthwhile
information to be found there to justify taking all these steps to see
the data on a more fine-grained scale? The heterogeneity bands of
our novel metric reveal many slope changes at more fine-grained
scales throughout the whole trajectory (Fig. 6b). However, these
changes seem so equally distributed across the entire trajectory and
their number decreases at more fine-grained scales, suggesting that
at these scales solely noise can be observed. To quantify the slope
changes, we subsequently apply a slope-sensitive metric, which
measures the change of the gradients and maps it linearly to the
interval [0 . . .1], where 0 stands for having the same gradient and
1 stands for having opposite gradients by 180◦. The corresponding
heterogeneity bands bare nearly the same behavior as our metric did
(Fig. 6c) and thus underscore the first hypothesis. Finally, the abso-
lute difference metric reveals that all changes detected by the first
two metrics are of a very small amplitude and nearly no changes ap-
pear at the more fine-grained scales (Fig. 6d). Moreover, this metric
shows that all major changes appear only at coarse-grained scales.
Therefore, beyond a single drill-down into an arbitrary region to ob-
serve and confirm the hypothesis of noise, no further examination
needs to be done and the initially selected scale suffices for data
representation. However, a roll-up to more coarse-grained scales is
useful to get an overview of the longer term behavior of the trajec-
tory, which is undisturbed by the noise found on the medium scales.

Taken together, the explored simulation results suggest that
stochastic perturbations are too low to transiently activate MPF (cf.
[19, Fig. 3b]) and thus the stochastic model also needs to take the
dynamic volume change into account to capture the system’s be-
havior of regular oscillations.



4.4.2 Intrascale Guidance
Besides pointing the user to a scale of potential interest, it is also
crucial to guide to interesting areas within a given scale to reduce
the effort of finding desired information in this regard as well.

For example, the amount of MPFa shows a regular, oscillating
pattern in a simulation experiment comprising a volume-dependent
rate coefficient k4 (Fig. 7a). Our metric reveals an uneven distri-
bution of slope changes at fine-grained scales, which suggests the
presence of noise again. Although noise detection is generally re-
duced in the regions of steep peaks (indicated by gaps in the het-
erogeneity bands), the metric indicates heterogeneities at the most
fine-grained scales in those regions (orange arrows in Fig. 7a). As
this may be due to noise, as it would be normally detected, we ad-
ditionally apply the absolute difference metric in combination with
a local color scale to get more indications for interesting behavior
(Fig. 7b). This metric shows that the corresponding changes clearly
differ from the surrounding ones and therefore initiates the explo-
ration of those peaks in more detail. Without guidance, this would
require to zoom-in to the trajectory and to navigate towards the re-
gion of interest by repeatedly panning the visualized data section.
Hence, interaction techniques in terms of interscale and intrascale
guidance are used to navigate to those regions more directly.

The first steps are to drill-down to the most fine-grained scale and
to expand the visualized region at a peak by switching to the fisheye
view (Fig. 7c). As still no noteworthy behavior can be spotted due
to strong overplotting, the next step is to select the region of interest,
such that the extent of the trajectory is reduced and thereby the
fluctuating behavior at the top of the peak becomes visible (Fig. 7d).
Without any indication that it is there, this behavior is likely to be
overlooked as it is only visible at the most fine-grained scales.

The behavior of rapid small-scale fluctuations found within the
exploration process can be explained by the strong competition be-
tween activating (Reaction 3) and dissociation events (Reaction 4)
at the turning point of the peaks. The steeply increasing amount
of MPFa activates more and more MPF complexes, but at the same
time also increases the speed of the dissociation reaction. Finally,
the dissociation overturns the activation (i.e., by becoming faster
than it), which leads to a rapidly decreasing amount of active MPF.
In this way, our approach pointed to noteworthy information at fine-
grained scales, that finally suggest a correct working stochastic sim-
ulation faithfully reproducing the reaction network behavior.

5 DISCUSSION

When reflecting on the conceptual limitations and evaluating our
approach with system biologists, its generality and the interchange-
ability of the employed computational methods turn out to be the
most important aspects to address.

In case of the conceptual limitations, noise poses a problem to
our approach, which is inherent in its design: Noise could either
be falsely detected as a noteworthy heterogeneity information and
obfuscate the actual regions of heterogeneity, or actual regions of
interest could falsely be disregarded as noise. This is a known prob-
lem of its own, which is not specific to our approach. Yet, it nev-
ertheless has to be addressed by us to aid the user in dealing with
data having unknown noise characteristics, as it would be the case
in an exploratory scenario. Here, the interchangeability comes into
play, as it not only permits for exchanging heterogeneity metrics
for alternatives, but also to use and display multiple such metrics in
conjunction. Since different metrics are sensitive to different char-
acteristics of a signal and thus prone to pick up different kinds of
noise, their joint use for the exploration alleviates this problem al-
ready to a large degree. Fig. 7a and 7b are examples, how different
metrics help to distinguish noise from noteworthy information.

Interestingly, it was exactly this generality that makes for a
large part of the capabilities and potentials of our approach, which
sparked most discussions with the systems biologists. The variety
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Figure 7: Trajectory of MPFa from a simulation with kd = 3 and
dynamic cell volume (a). Our slope-based metric reveals an uneven
distribution of heterogeneities for finer grains with heterogeneities
at the peaks (arrows). A metric sensitive to value changes reveals
a clear differentiation from surrounding areas at those scales (b).
Applying a fisheye lens preserves a distorted overview (c). Only a
drill-down to the finest grain and following magnification at those
areas reveal fluctuation at the top of a peak (d).

of different metrics and the understanding of their individual effects
took a while to communicate. Yet, the learning effort was lowered
by the fact that every application partner could easily load his or
her own data from simulations they conducted themselves. The
familiarity with the shown data eased them into the approach, as
they could experiment with the different metrics and see first hand,
which known aspects of the data they picked up on and which not.
Using the extension for two-dimensional data (cf. Sec. 3.2), we
were even able to accommodate the needs of those colleagues who
work with cellular automata simulations to examine spatial phe-
nomena. An example of such a two-dimensional simulation trace is
given in Fig. 8. Quick access to the different metrics via keyboard
shortcuts (e.g., next metric, previous metric), as well as the over-
plotting indicator next to the heterogeneity bands were introduced
following the suggestions from our application partners.

The overall feedback from our partners from the systems biology
domain, as well as from collocated medical experts and engineers
working with multiscale data on the same project, was outright pos-
itive. Our approach fills a clear gap in the current state-of-the-art of
simulation software, which usually provide a mere line plot for tra-
jectory visualization – if at all. Our software will be made available



Figure 8: Our approach applied to 2D multiscale data gained from
cellular automata simulation of lipid rafts at the cell surface.

for the JAMES II simulation framework [3]. This integration with a
plug-in-based simulation software, which allows for replacing sim-
ulation engines, will enable users to re-simulate regions of interest.
This way, a more fine-grained view can be gained locally by a more
precise, yet also more time-consuming simulation run on demand.

6 CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to guide the analysis of
multiscale data to regions, where the behavior of the data devi-
ates between subsequent scales. These regions are captured through
heterogeneity metrics, added as overlay or annotation to the exist-
ing data visualization, and used for a guided and thus less time-
consuming exploration of the data. This approach was motivated
by and devised in collaboration with domain experts from systems
biology, where large quantities of data are generated and require ef-
ficient ways for their analysis. Through its rich set of parameters, it
spans a broad range of applications in the field of systems biology.

Currently, we are exploring this range in particular for data from
high-throughput wet-lab experiments, such as high-resolution mi-
croscopy images and clustered heatmaps of gene expression data.
While our approach was developed with the commonly used rep-
resentations from systems biology in mind, it is general enough to
envision its application to other representations in a similar vein. In
this regard, we are currently adapting it to higher dimensional data,
as well as to different multivariate visualization techniques, such as
parallel coordinates, adjacency matrices, and treemaps.

As different data from different domains lead to different anal-
ysis questions, other – possibly novel – heterogeneity metrics, ap-
proximations, and interpolations have to be investigated in future
work to faithfully capture the desired differences between scales.
For example, extremely noisy data requires metrics, which take the
results of a preceding noise analysis into account, so that even for
data with a low signal-to-noise ratio, distinct exploration targets can
be extracted. Yet, additional metrics also increase the burden on a
user to choose those applicable to the given data and suitable to
capture the behavior the user looks for. To aid the user in choos-
ing a fitting metric, enhancing the visual interface with statistical
information promises to be a valuable first step in this regard.
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