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Abstract
Guidance in visual analytics aims to support users in accomplishing their analytical goals and generating insights.
Different approaches for guidance are widely adopted in many tools and frameworks for various purposes – from
helping to focus on relevant data subspaces to selecting suitable visualization techniques. With each of these different
purposes come specific considerations on how to provide the needed guidance. In this paper, we propose a generic
method for making these considerations by framing the guidance problem as a decision problem and applying decision
making theory and models towards its solution. This method passes through three stages: (1) identifying decision
points; (2) deriving and evaluating alternatives; (3) visualizing the resulting alternatives to support users in comparing
them and making their choice. Our method is realized as a set of practical worksheets and illustrated by applying it to
a use case of providing guidance among different clustering methods. Finally, we compare our method with existing
guidance frameworks to relate and delineate the respective goals and contributions of each.
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Introduction
Guidance in visual analytics (VA) has received increasing
attention in recent years. Defined as “a computer-assisted
process that aims to actively resolve a knowledge gap
encountered by users during an interactive VA session”,1

guidance aids users in producing analytic results, generating
new insights, and eventually building new knowledge.2

Despite being a concept recently introduced to VA, the
practice of using different forms of guidance to support
users’ analysis processes has been widely adopted in many
VA systems – from data3 and visualization exploration4,5

to model building6 and reasoning.7 The wide and diverse
usage of guidance validates the usefulness of the concept
and provides a solid foundation for research on guidance
mechanisms. With a clear characterization and a broad range
of applications, recent research extends guidance beyond
resolving knowledge gaps,8 discusses when guidance should
be used,9 and lists the considerations to be made when
designing guidance.2 However, a generic guidance method
for designing and providing guidance across its various
applications and goals is still missing.

Facing this challenge, the main contribution of this paper
is a step-by-step process to derive the practical “how” of
providing guidance. To this end, we reformulate the guidance
problem as a decision making problem and apply decision
support models towards its solution. Our method passes
through the following three stages:

1. Stage 1 identifies the decision points in VA processes
where guidance is needed regarding the data,
algorithms, visualizations, and reasoning.

2. Stage 2 utilizes multiple criteria decision analysis
(MCDA)10 to evaluate the alternatives to choose from
in these decision points in order to generate guidance.

3. Stage 3 uses composite visualizations of multiple
alternatives for inspecting and comparing the resulting
alternatives to guide the users in their decisions.

In addition to its application-agnostic coverage of process,
goals, and conceptual levels, there are various benefits
of utilizing this method to provide guidance. From the
perspective of designing VA systems, our method allows
for quickly realizing and testing if and how guidance might
work for the system. Once realized, it can also be more
easily adapted and re-used in other systems. Finally, any
scoring or ranking metric can be directly included as a
criterion in MCDA models, making it backwards compatible
to existing guidance methods as well as to a wide range
of utility and quality measures for data, algorithms, and
visualizations. From the perspective of using VA systems,
our MCDA-based guidance exposes the criteria and their
weights to the users, which makes the generated guidance
more explainable. It further allows for adjusting these
weights to user- and scenario-specific needs, making the
provided guidance flexible and adaptive. Finally, framing
and presenting guidance consistently through criteria and
weights provides for a uniform guidance experience across
domains and applications.
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Background and Motivation
To explain the rationale behind our guidance method, we
present the research background and motivate the reasoning
behind our method from three perspectives: guidance
for resolving knowledge gaps, generic guidance beyond
knowledge gaps, and guidance through decision support.

Guidance for Resolving Knowledge Gaps
Framed around the concept of knowledge gaps, guidance
supports users in their VA processes to overcome hurdles and
successfully proceed in their analyses. In the following, we
present the research on VA guidance from this perspective
and provide our motivation for a generic guidance method
that goes beyond knowledge gaps.

Background Formally characterized in VA by Ceneda et al.,
guidance is usually framed around resolving knowledge gaps
encountered by users in VA processes.1 These knowledge
gaps can be of different types, either target-unknown, where
the optimal solution of a VA problem is unclear (I-know-
it-when-I-see-it), or path-unknown, where the sequence of
actions to reach a known target is unclear. Guidance can also
be of varying degrees, ranging among orienting, directing,
and prescribing; and lie in different domains, from data and
tasks to VA methods and knowledge management.1 Further
research has brought forth some considerations and tools
for designing guidance. A decision tree was proposed for
deciding if guidance is needed and to what degree.9 Five
key requirements for effective guidance were established –
namely for guidance to be available, trustworthy, adaptive,
controllable, and non-disruptive.2

The conceptual space covers a wide range of approaches
that have proven useful in assisting users to resolve their
knowledge gaps.11 These approaches come in various
guidance degrees and guide users in different domains.
Orienting users towards regions in view space, Gladisch et al.
provide visual cues pointing to where potentially interesting
data points lie based on a degree-of-interest function.12

Orienting users towards different levels of granularity in the
data, Luboschik et al. provide heterogeneity-based guidance
that indicates hidden details at higher levels of granularity
and thus guides users to zoom-in for a closer inspection.13

Directing users in carrying out their analytic tasks, Streit
et al.’s Stack’n’Flip approach provides a guided view of
the user’s analytic workflow and offers subsequent analysis
steps to be taken.7 Orienting and directing users among
VA methods, Müller et al.’s Morpheus guides users through
multiple parameters to choose the best ones for subspace
clustering.6 Directing and in part prescribing user actions in
the space of generated knowledge and insights, the Nugget
Management System from Yan et al. suggests and refines
valuable information (nuggets) based on user interest.14

Motivation The outlined research provides high-level guide-
lines regarding guidance design principles as well as context-
dependent examples of how to guide users in VA. How-
ever, for VA designers to effectively employ the concept
of guidance, a concrete method to produce guidance from
end to end – i.e., from the specification of the guidance
problem through requirements all the way to generating and
presenting guidance to the end user – that is independent of

the guidance domain or scenario is still lacking. Specifically
– How to systematically identify the points where guidance
is needed? How to compute and generate guidance with a
unified underlying mechanism? How to present and adapt
guidance according to the context? These questions motivate
our guidance method that can be used in various guidance
scenarios.

Generic Guidance beyond Knowledge Gaps
The utility of guidance goes far beyond knowledge gaps.
In the following, we present related research in guidance
supporting this perspective and motivating a guidance
design framework that caters to a variety of guidance aims
including, but not limited to knowledge gaps.

Background Collins et al. aptly observed that the goal of
guidance can go beyond resolving knowledge gaps, includ-
ing to inform, to mitigate bias, to reduce cognitive load, for
training, for engagement, and to verify conclusions.8

Indeed, when VA experts have sufficient knowledge to
conduct their analyses, guidance can nevertheless support
them by providing important meta-information, keeping
track of their analyses, and making suggestions to reduce
their cognitive load and improve their efficiency.4,15,16

Furthermore, no matter how knowledgeable a VA expert is,
they might still be subject to various cognitive biases in their
analyses – especially subconscious ones17 – and guidance
can also help to combat these biases through revealing
them and providing suggestions when indicators for bias are
detected.18 Other research has also discussed guidance goals,
such as attention management by guiding users to views
that are currently important,19 supporting user learning and
training with onboarding guidance that walks users through
visualization elements,20 engaging users by prompting them
when they are inactive,21 as well as aiding the verification of
analyses through monitoring of analytical hypotheses.15

Motivation To provide a generic guidance method that is
applicable to a wide range of guidance goals, we need
to base it on a concept that also includes the additional
goals of guidance beyond resolving knowledge gaps, such
as to reduce cognitive load, to mitigate bias, and to verify
conclusions. However, critical challenges lie in not only
finding such concept and establishing its connections with
guidance, but also integrating its existing theories as well as
applications with guidance in order to practically build our
guidance method.

Guidance through Decision Support
To yield the missing end-to-end guidance framework that
is inclusive of the extended set of guidance goals, a new
perspective on user guidance in VA is needed. This is where
decision making theory in general and decision support in
particular come into the picture. In the following, we present
related work in decision support, and motivate our method
for using decision support to design and provide guidance.

Background A large body of decision support research has
focused on a similar set of goals as the one that Collins et
al. proposed for guidance. These include, for example, to
provide important information relevant for the decisions,22 to
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reduce errors and mitigate various biases,23 and to alleviate
mental workload when the decisions are complex.24

Research on Decision Support Systems (DSS) provides
us with useful tools to realize a generic guidance method.
Decisional guidance has been conceptualized in previous
DSS research with when and why to provide deliberate
decisional guidance, how to build it into DSS, and
what consequences it might bring.25 To practically relate
guidance in DSS to guidance in VA, the Handbook on
Decision Support Systems provides a useful overview.26

Its chapter on DSS architectures and types summarizes
the four basic components of a DSS, including language
(input), presentation (output), knowledge (database), and
problem-processing (model) (sub-)systems. Relating these
components to the goals of guidance, the knowledge
components contain important information to inform users
and store expertise that reduces their cognitive load;27 the
problem-processing components structure and model users’
decision making processes, helping users to combat their
biases, and ease their cognitive effort;23 the language and
presentation components also aid users’ mental work, while
promoting users to be engaged in the decision making
processes through interactions.28

Among these four components, those focusing on
problem-processing are particularly relevant to guidance
generation, as they provide a mechanism to analyze decisions
and generate evaluations of alternatives, which is essentially
what guidance does. Multiple criteria decision analysis
(MCDA) is a commonly used approach for problem-
processing.10 It takes multiple quantifiable metrics as
evaluation criteria and evaluates alternative decisions based
on these criteria. As the underlying criteria can be easily
exposed to and manipulated by users, MCDA methods
allow for communicating and potentially even changing the
mechanism providing the guidance.

Research also exists on combining VA and MCDA.
To orient decision makers among the multiple alternatives
and criteria, visualizations are commonly used as a part
of the presentation component in MCDA-based decision
methods.29,30 MCDA models have also been integrated
with geographical information systems (GIS) to support
spatial decision-making through encoding the metrics and
results of MCDA models in geographic visualizations.31,32

Particularly, Jankowski discussed the architecture and
implementation of GIS and MCDA through either loosely
coupling them with file exchange module or tightly
integrating the two with a shared user interface and
database.31

Motivation The similar sets of goals of DSSs and guidance
make DSSs a suitable method to provide guidance in support
of any decision making problem – be it which data to look
at, which algorithm to choose, or in which direction to pan.
Particularly MCDA methods are promising in this regard.
However, the critical challenge still lies in how exactly
to map the decision support research to specific steps for
constructing a generic yet practical guidance method. This
is where our work contributes by connecting research in
decision support and VA to build a generic method for
guidance design with concrete steps to follow.

Overview of the Method
This section gives an overview of our guidance method
through decision support. We first conceptualize guidance as
a decision making problem, before structuring our method
based on the decision making process.

Guidance as Supporting Decision Points
When observing situations in VA in which guidance is
needed, it is noticeable that users are often faced with
making decisions among multiple alternatives. These can
be decisions regarding a particular analysis target to pursue
– for example: Which data (sub)set to zoom into? What
aspects of the data to inspect – outliers, clusters, trends?
Which keywords to search for? It can also be decisions on the
particular analysis path that gets the user to a desired target
– for example: What algorithms and parameters to choose
to yield the envisioned clustering? Which direction to pan
to reach a sought data region? What visual encoding to use
to bring out best the patterns in the data? These decisions are
inherent in VA: if no human decisions were required, then the
analyses could be fully automated and neither a human user
in the loop, nor guidance would be needed. Therefore, we
can see the existence of “decision points” as a prerequisite
for needing guidance. Knowledge gaps can then be seen as a
common issue, among many others, that might arise at these
decision points – when users lack the knowledge to make
their decisions in the analysis, guidance can provide it.

This perspective of an analysis workflow as a series of
decisions among multiple analytic alternatives is echoed
in recent research by Liu et al.33,34 They studied how
researchers experiment with different paths when analyzing
data and identified the points where these alternative
paths fork as “decision points”. Their work provides a
fundamental understanding of what constitutes decision
points in analytical work and how analysts reason in their
decisions. However, how to support these decisions with
guidance is an open question. In addressing this question
by connecting decision support systems with guidance, we
provide a novel and tangible path for guiding users.

The concept of decision points also covers the realm
beyond knowledge gaps. At decision points, the users’
preconceptions might lead them to choose certain analytical
paths to confirm their hypotheses (confirmation bias), where
guidance can suggest alternative solutions and mitigate such
biases; or particular analytical decisions might be cognitively
complex and demanding, where guidance can facilitate them
among the space of alternatives and reduce the cognitive
load. Therefore, decision points are a fitting concept to
capture situations for which guidance is needed and can be
provided through decision support.

In short, we extend the guidance concept to decision points
and re-frame guidance as providing users with decision
support when they are faced with decision points in VA.

Structure of the Guidance Method
Our method for designing and providing guidance is based
on this re-framing into a decision making / decision support
problem, whose overall structure is outlined in this section.

We look at decision points in VA from each of the three
stages of decision making processes proposed by Herbert
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Figure 1. The three stages in decision making process by
Simon 35 with illustrated explanations of the three stages.

Simon – intelligence, design, and choice.35

Simon’s model has been widely studied, including in the
context of visualization tasks.36 The intelligence stage
refers to recognizing the conditions calling for decisions, the
design stage refers to the development and evaluation of
the alternatives, and the choice stage refers to choosing the
desired alternative(s) based on the evaluation results. These
three stages are visually presented in Figure 1.

The focus of our method in the intelligence stage is
to detect and assess the decision points where guidance is
needed. This stage starts with an inspection of the context in
which the VA system is being used. This helps VA designers
to systematically understand the conditions under which
guidance might be needed. With the context recognized, we
can then systematically identify the decision points calling
for guidance. Finally, to evaluate if guidance is actually
needed and prioritize these identified decision points, we
assess the need for guidance at each decision point.

In the design stage, the focus is on constructing the
mechanism for guidance generation through developing and
evaluating the alternatives for each decision point that calls
for guidance. Continuing with the assessment of decision
points produced in the intelligence stage, we first aim
to recognize the space of alternatives for each decision point
by specifying the number of alternatives along with a list
of examples to be evaluated. This allows VA designers to
more tangibly consider how to evaluate and present these
alternatives in the later steps. Thereafter, we discuss how
evaluation criteria can be produced for the alternatives.
Finally, to evaluate them, we introduce MCDA and how it
can be applied and adapted to varying guidance degrees.

The main challenge at the choice stage of our guidance
method is to present and adapt the guidance output for each
decision point. The first step in this stage carries over the
results from the design stage by recognizing what data to
present in the guidance output. Combining this data with the
corresponding guidance degree and number of alternatives,
we then consider how to compose the presentation of
alternatives in order to produce a guidance output suitable for
the given guidance scenario. Finally, to allow the guidance
to be adaptive and flexible, we inspect how to adjust the
produced guidance in different contexts.

With the three stages described above, we have outlined
our generic guidance method framed around decision points
on an abstract level. The conceptual connections between the
key concepts in the initial characterization of VA guidance
and our method in are illustrated in Figure 2. In the next three

sections, we further detail the concrete steps in each of these
three stages.

It is worth noting that the following design process
formulates a middle ground that we expect to be applicable
to most, but not necessarily all guidance scenarios. The
reason is that guidance can vary greatly in its complexity
depending on its context. In a simple analytical process with
well-established “best practices”, guidance can be provided
through a manually authored workflow with alternative paths
without designing an elaborate evaluation model. Whereas in
complex analysis settings where the alternatives’ evaluation
criteria are challenging to define or compute, our design
process may have to be reiterated multiple times and the
evaluation model may include more complex considerations
than can be expressed by weights alone. Therefore, the
following description should not be used dogmatically as a
fixed end point of all design considerations, but flexibly as a
starting point from which to tailor a sensible design process
for a guidance problem at hand.

Stage 1: Intelligence – Decision Points
Calling for Guidance
From the perspective of guidance as decision support, it
is vital to first recognize the decision points for which to
provide guidance.

In the following, we illustrate the steps in this
intelligence stage by first articulating the context of
use, then identifying the decision points in such context, and
finally assessing the need for support in each of the decision
points in order to prioritize them when implementing
guidance. These three steps are listed in Figure 3.

Step 1.1 – Analyze the Context of Use
What The context of use captures the conditions under
which a product is used. Analyzing the context of use of a VA
tool provides important information for devising effective
guidance in later steps. For example, the offered guidance
may differ depending on whether a VA tool is being used
within or outside of its intended context of use.

Why Context of use analysis is a prerequisite for designers
to understand when, where, how, and by whom a system
is being used to provide good usability.37 This is also true
for VA systems for which the context of use gives rise to
the “conditions calling for decisions”35 – i.e., the concrete
situations in which guidance is needed. A thorough context
of use analysis helps VA designers to more concretely
identify the decision point (Step 1.2) and assess them (Step
1.3), as well as to build adaptive guidance generation (Stage
2) and presentation (Stage 3) grounded in knowledge about
users, goals & tasks, resources, and environment.

How Context of use is an important concept in HCI that
can be interpreted from various perspectives.38 Hence,
the following considerations taken from Common Industry
Format (CIF) for context of use descriptions (ISO/IEC
25063:2014) provide a least common denominator as a
starting point for analyzing contexts of use,39 but they should
by all means be extended by additional, possibly domain-
dependent considerations if these help to further pinpoint
usage scenarios in which guidance may be needed.
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Figure 2. Adapting the guidance model by Ceneda et al. 1,11 (left) to reflect the stages of decision making processes used in our
method (right). For clarity, we subsumed the components of “history” and “domain” together with “data” and “knowledge” as “input”,
and the three guidance degrees as “output”. Similar to the model by Ceneda et al., 1 the blue elements indicate the guidance
components. Consistent with the colors used for the three stages of decision making in this paper, the orange elements indicate the
intelligence stage, the green elements indicate the design stage, and the purple elements indicate the choice stage.

Intelligence

Context of Use Decision Points Need for Guidance

Components
Types

Probability
Impact
No. of Alternatives

Users
Goals & Tasks
Resources
Environment

Figure 3. The steps in the Intelligence stage and the
corresponding factors considered in each step.

• Users are persons, or decision makers, who directly
interacts with a VA system and steers the analytical
process. Decision makers are prone to use different
decision making styles, depending on their culture,
personality, and training.40 This requires the provided
decision support to accommodate these different
styles. Their level of expertise should also be examined
as decision makers often need support when they lack
knowledge or experience.2

• Goals & Tasks relate to the motivation and execution
of visual analyses. For example, different goals –
explore vs. confirm41 – relate very much to different
degrees of freedom in an interactive analysis and have
thus implications for the degree of guidance needed –
orienting vs. directing.

• Resources capture the boundaries of the analyses to
be run. They include technical limitations such as
computing power and available visualization methods,
as well as virtual limitations such as cognitive strain
and time constraints. Resources delimit the space of
viable alternatives among which to guide users.

• Environment is a multi-faceted factor that includes
technical, physical, social, cultural and organizational

environments. For guidance, characterizing the tech-
nical environment is particularly important – e.g.,
describing how much visual support is already pro-
vided by a user interface.

Notably, context of use is often dynamic and subject to
change according to the purpose of the system and the
progress of development. Especially at an early stage of
the system development, designers might not be able to
articulate all the factors. Thus, the context of use analysis
should be an iterative process and adapt to different usages.

Step 1.2 – Enumerate the Decision Points
What Having established the context of use, we now
enumerate the decision points within this context where
multiple alternatives exist among which a user must choose.

Why Decision points are essential for generating guidance
(Stage 2) and presenting guidance (Stage 3), as these indicate
where guidance may be needed. This step generates an
overview of the various decisions users are facing in a VA
tool without yet prioritizing among them, to ensure that
decision points are not overlooked.

How In the early stages of developing a VA solution,
designers might not have direct access to users yet. In
this case, decision points can be listed through a cognitive
walk-through. At later design stages, decision points can
be enumerated by involving users through interviews and
contextual inquiries, possibly following structured protocols
to assess challenging situations.42 In both cases, designers
need to closely inspect each component in a VA tool in order
to comprehensively recognize the decision points.

To do so in a structured way, we propose the use of suitable
task taxonomies for VA. This makes sense, as fundamentally
any task carried out by the user involves a decision – e.g.,
Should I rather filter or sample the data to reduce it? Should
I zoom-in here or there to see interesting details? If there was
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no decision to be made, the user would not have to carry out
the task as the system could proceed by itself.

While many taxonomies exist for visualization tasks,43

the literature is more sparse on VA tasks. After considering
the taxonomies by Gotz and Zhou16 and Heer and
Shneiderman,44 we settled on von Landesberger et al.’s
taxonomy of VA interactions for its universality, high level
of abstraction, and inclusion of analytic reasoning.45 In
particular, the reasoning component captures the implicit
decisions of what the analytical focus is and how to carry
it out, which might change along the course of the analysis.
The inclusion of reasoning component helps to consider
these unexpected and less defined tasks that often occur in
exploratory analytical processes. Slightly adapted to the
context of decision making in VA, it breaks down into
components and types. Components are the aspects of a
VA system to which a task relates:

• Tasks relating to the data component deal with
decisions on which data to use (e.g., subset selection,
filtering) and how to use them (e.g., cleaning,
transformation).

• Tasks relating to the algorithm component deal with
decisions on how to process the data (e.g., which
clustering algorithm) and how to parameterize the
processing (e.g., distance metric, similarity threshold).

• Tasks relating to the visualization component deal
with decisions on which visualization techniques to
use and how to parametrize them (e.g., color mapping
and axis scaling).

• Tasks relating to the reasoning component deal with
decisions on which line of analytic reasoning to follow
to yield insights (e.g., deductive reasoning to “detect
the expected” or inductive reasoning for “discovering
the unexpected”) and how to carry it out.46

Types delineate between the fundamental What to do? and
the subsequent How to do it? of a task. Concretely, these
types are:

• Decisions on the scheme of a task – e.g., What data
subset to analyze? What algorithm to choose? What
chart type to use? These are fundamental decisions for
or against principal options.

• Decisions on the parameters of a task – e.g.,
How to derive that subset? How to parametrize that
algorithm? How to apply and fine-tune the chosen
chart type? These are secondary decisions that follow
from an already chosen scheme and that are needed to
concretize and carry out that first decision.

Step 1.3 – Assess the Need for Guidance
What To help VA designers to assess decision points that
would benefit from guidance and prioritize them accordingly
in the development process, we outline an assessment of the
need for guidance among the decision points.

Why Existing research on guidance emphasizes providing
the right guidance at the right time and making sure the
guidance is non-intrusive.2,8 Hence, it is important to assess
the need for support in each of the decision points to avoid
providing unnecessary guidance that may distract from the

analysis or even disrupt the analysis flow instead of enabling
it. Furthermore, there can be a large number of possible
decision points in a VA system, and to provide guidance for
all of them can be an arduous task. Therefore, the decision
points need to be prioritized to create clear priorities for the
guidance generation (Stage 2) and presentation (Stage 3).

How The need for guidance at the decision points
is influenced by many contextual factors. Hence, such
assessment is ideally done together with the end users to
ensure that it reflects the real-life experience of users through
qualitative methods such as interviews or workshops as
well as quantitative ones like surveys or user performance.
Previous studies in guidance also indicate the potentials of
usage logs from user interactions for inferring the need for
guidance.8 Without direct access to user information or logs,
a cognitive walk-through or an internal expert review can be
conducted to assess the need for support.47,48

We formalize this process through an adapted version
of risk assessment, which identifies and assesses potential
risks at each decision point by quantifying the probability
and impact of getting the corresponding analytic decisions
“wrong”.49 Seeing guidance as a support mechanism to
mitigate the potential risks at each decision point, we utilize
a risk assessment scheme to evaluate the need for guidance.

• The probability of a “wrong” analytic decision is
often characterized by the lack of knowledge, which
can be decided by the various factors in the context
of use. Previous guidance research has also discussed
how to identify such knowledge gaps.2 Other factors,
such as the likelihood of cognitive biases may also
factor into this probability.50

• The impact of getting it “wrong” is likewise
a multi-faceted consideration based on how much
the course and overall outcome of the remaining
analysis workflow depends on this decision and how
consequential a wrong result would be for the domain
decision based on it – e.g., a wrong treatment decision
for a patient would be more dire than a wrong ad-
buying decision for a marketing campaign.

• Evaluating the number of possible alternatives is
another important factor. If there are only a handful
of possible options for a decision points, modern UIs
with Undo/Redo functionality allow to quickly try
them out before deciding for one without the need for
an elaborate guidance scheme. Yet if there are many
possible options, this is no longer viable, increasing
the need for guidance with the number of alternatives.

After analyzing these factors, they can then be combined
to produce the decision points inventory with a priority
ranking. In risk assessment, the factors are usually rated on a
quantitative scale, multiplied together, and combined in the
form of a risk assessment matrix or a risk inventory.49

Stage 2. Design – MCDA to Generate
Guidance
After identifying the decision points and assessing their
respective need for guidance, we now specify the underlying
mechanism that generates guidance for a decision point. To
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Full results
Partial samples
Abstract features
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Design

Figure 4. The steps in the Design stage and the
corresponding factors considered in each step.

achieve this, we draw from the domain of decision support
and propose to generate guidance through multiple criteria
decision analysis (MCDA). MCDA integrates different
criteria to evaluate the alternatives of decisions.51 MCDA
is a useful method for our goal of a generic mechanism
to generate guidance, as any algorithm (e.g., heterogeneity-
based guidance) or metric (e.g., degree-of-interest functions)
can be easily incorporated in an MCDA model as criteria.29

For this stage, VA designers need to go over each decision
point in the previously produced inventory according to the
priority ranking. Additionally, as some of the decision points
might be interconnected – for example, choosing a clustering
algorithm and choosing its settings are often jointly decided,
as they form scheme and parameters of the same decision
– the guidance generation of such interconnected decision
points can also be developed in conjunction.

In the following, we first recognize the space of
alternatives that guidance generation should consider, then
describe how the corresponding evaluation criteria can
be produced, and finally discuss how an MCDA-based
evaluation model can be built using these criteria to generate
guidance. These three steps are listed in Figure 4.

Step 2.1 – Recognize the Space of Alternatives
What Although there might be a great number of available
alternatives at each decision point, many of them may not
be useful or possible to be considered. This step aims to
recognize the space of alternatives that later feeds into the
MCDA model in order to generate guidance.

Why Recognizing the space of alternatives to be considered
by guidance generation is essential for building the
underlying mechanism that generates guidance. Specifically,
the number of alternatives can influence how guidance
should be generated and later presented in Stage 3. Moreover,
recognizing some examples of the alternatives also helps VA
designers to consider them in a more concrete manner and
more easily identify the criteria to evaluate the alternatives.

How To this end, we consider two elements that VA design-
ers should inspect: the estimated number of alternatives and
examples of alternatives. These two elements are considered
under the constraints imposed by the identified context of
use – users’ goals and tasks that govern how open they
are to explore different alternatives; available resources such
as the set of implemented algorithms or the time available
for inspecting different alternatives before having to make
a decision; and the environment such as the available user

interfaces that influence how open-ended the exploration of
alternatives is.

This step differs from the previous ones as we start
to consider which of all the possible alternatives should
feed into the MCDA model and be evaluated. Not all
possible alternatives might be applicable or useful in a
given context of use. And the subset of all those that
are applicable may not be feasible to be evaluated due
to time constraints or other limitations. And all those that
are feasible to be evaluated may still be too many to
then interactively inspect. For example, for a large multi-
dimensional dataset, there can be almost infinite number of
subsets to explore. Many processing algorithms also have
numerous parameters that are continuous and need to be
considered in conjunction. In these cases, corresponding
sampling techniques can be used to produce a reasonable
amount of alternatives under the limitations in the context of
use, such as the computational and cognitive resources.52,53

Additionally, decision strategies that utilize heuristics to
eliminate alternatives, such as Elimination by Aspects, can
already be applied to narrow the space of alternatives.54

To yield a clearer understanding of the practically relevant
subspaces of alternatives, we look at the following:

• The number of valid/useful alternatives for each
decision point, as their number often differs from
the number of all possible alternatives from Step
1.3. Particularly, previous research in decision making
shows that a higher number of alternatives can
significantly improve the decision making quality,55

while too many alternatives can also decrease decision
efficiency and even lead to decision paralysis.56

• Examples of the alternatives illustrate what the
alternatives look like for each decision point, such
as names of different algorithms, different parameter
range, or different encodings to be used for the
visualization. These examples act as a concrete
thinking tool for VA designers to consider potential
alternatives under the contexts of use and later distill
criteria that compare and evaluate them.

Step 2.2 – Produce the Criteria
What The aim of this step is to produce the criteria to
evaluate the alternatives for each decision point. These
criteria will then later feed into an MCDA model and help
to rank the alternatives and generate guidance.

Why To evaluate the alternatives for a decision point, a way
to judge them is needed. As we adopt MCDA models to
calculate the overall evaluation from a set of input measures
in Step 2.3, we need some form of quantifiable metric
or quality measure to do so. It is also consequential for
the subsequent presentation of guidance how these criteria
are produced, as different methods to generate evaluation
metrics may incur varying degrees of uncertainty.

How To yield suitable evaluation criteria, we consider three
kinds of measures based on the context of use and the number
and types of the alternatives for the decision points.

• Measures based on the full results can be used
when they are not too time-consuming to precompute.
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A wide range of such measures are available for
representative data selection,53,57,58 evaluations of
machine learning,59,60 and quality metrics for data
visualization.61

• Previews based on partial results for each alternative
can be used to adapt to more time-sensitive contexts.
Techniques like Progressive Visual Analytics can be
helpful in such context of producing an early partial
result and refining it over time.62

• If the methods above are not applicable due to the
limitations in the context of use, predictive metrics
based on abstract features of the alternatives can also
be used, including data coverage,18 algorithm runtime
predictions,63 and structure-oriented measures for
visualizations.64 This way, no precomputation of the
result is necessary.

• Finally, when the metrics cannot be quantitatively
and automatically produced or when they are too
uncertain and imprecise, human-rated criteria and
rankings can be used instead of computed measures.65

Such human-rated criteria can be generated through
expert-rating or literature review. Many techniques
exist to elicit the criteria and their importance through
comparisons of the alternatives.66 Existing knowledge
acquisition systems, such as AQUINAS, discussed the
considerations of incorporating such comparisons as
knowledge to elicit decision criteria.67

Suitable criteria are chosen based on the identified
contexts of the analysis (e.g., available time to generate
and evaluate alternatives) and the decision point in question
(e.g., algorithmic decision vs. visualization decision). To
not only communicate the alternatives and their computed
“goodness”, but also their trustworthiness, their uncertainty
may also be established and shown as meta-data for each
alternative’s rating.68,69 This is particularly important for
criteria derived from partial or predicted results.

Step 2.3 – Construct the Evaluation Model
What In this step, we combine the produced criteria for each
decision point into an MCDA model to generate guidance.

Why The evaluation model is an important element for
generating guidance, as it forms the mechanism that
produces the ranking among the alternatives that later
enables guidance presentation (Stage 3). Here we consider
how to build different evaluation models according to the
varying degrees of guidance and user control, which allows
the generated guidance to be adaptive and controllable.

How MCDA methods come in various forms – Watróbski et
al. summarized 56 different MCDA methods and discussed
how to choose the corresponding method to support different
decisions.10 Overall, there are three types of models when it
comes to combining criteria in MCDA:

• Functional approaches synthesize quantitative cri-
teria into a single metric with assigned weights and
optional value/utility functions for each criterion.70

• Outranking methods choose, rank, or sort the
alternatives through comparisons between them based
on a set of quantitative or qualitative criteria and
corresponding weights.65

• Decision rules evaluate alternatives based on certain
conditions and logic constraints that are often
formulated as an “if. . ., then. . .” structure.71

To use MCDA models for generating guidance, the
construction of them heavily depends on how the guidance
should be used. Here we present two factors to consider –
degree of guidance and level of user control.

MCDA models can adapt to varying degrees of guidance:

• As functional approaches produce the evaluation
of alternatives as a single metric, they can be used
to filter the alternatives with certain thresholds to
provide orienting guidance, rank the alternatives by
the produced metric to provide directing guidance,
or select the highest ranked alternative to provide
prescribing guidance. For example, the feature subset
selection by May et al. filters and prioritizes features
based on statistical ranking measures.72

• For generating guidance, outranking methods can
be used similarly to functional approaches, except
for their possibility of directly taking in qualitative
criteria. Depending on the specific model that
either ranks or discards alternatives, they can also
either produce a ranking among the alternatives
to provide directing guidance with the ranking
result and prescribing guidance with the highest
ranked alternative, or evaluate if the alternatives are
acceptable to provide orienting guidance by filtering
unacceptable alternatives.

• Decision rules often have the form “if alternative
a is between x and y in criteria c, then a is a
good enough alternative”. Hence, they can be used to
filter alternatives for orienting guidance. For example,
the underlying mechanism of “Show Me” in Tableau
filters out visualizations not applicable to selected data
based on a set of similar rules.73 Decision rules can
also be used to direct users along branching analysis
workflows as directing or prescribing guidance, like
the Stack’n’Flip approach does.7

Guidance can further be controlled explicitly or implicitly
through user input.8 Here we discuss how MCDA models
can be constructed to allow different levels of user control,
including presets with no user control, inferences with
implicit control, and direct input with explicit control.

• To construct a basic MCDA model, the appropriate
weights, value/utility functions, and decisions rules for
the criteria can be preset by the VA designers without
user input, especially when users do not have detailed
knowledge about these criteria and how to weight or
constrain them.

• Furthermore, MCDA methods can also be controlled
through implicit inference from user interactions.
This is done through inferring some of the elements
in the MCDA models based on user preferences
produced by certain interaction patterns, such as
mouse movement and user-generated materials.8,74 In
functional approaches, value/utility functions can be
elicited from a partial ranking of alternatives,75 and
weights can be elicited from the users’ evaluation on
the importance of the criteria.76 Decision rules can
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Figure 5. The steps in the Choice stage and the
corresponding factors considered in each step.

also be flexibly modified, for example by inferring
additional rules such as “if condition c occurs, then
alternative a is more preferable than alternative b”
from user choices made in the past.

• Experienced users who have abundant knowledge
about these criteria and alternatives can also be
exposed to the underlying evaluation mechanism
and afforded with explicit and direct control of
the elements in MCDA models. For functional and
outranking approaches, this includes the criteria,
their corresponding value entries, their weights, and
optionally the value/utility function. For decision
rules, this includes access to the rule set. Explicit
control is also an important function for debugging
guidance that does not work as expected.

Stage 3: Choice – Multiple Alternative Views
for Guidance Output
After the alternatives have been evaluated, users need to
closely inspect and compare them in the context of their own
domain knowledge and make their choices. To this end, the
generated guidance must be communicated to the users for
them to interact with and provide feedback to.

In the following, we summarize the considerations in
presenting guidance in ways that enable users to visually
inspect, compare, and reason with these alternatives.
While research has indicated a potential for providing
guidance through other modalities than visual output (e.g.,
using vibrotactile feedback77) these approaches are still
experimental at this point and require special hardware.
Therefore, we focus on the visual channel to communicate
guidance in this work, as it currently stands as the main
modality for guidance in VA. We first recognize what data
regarding the alternatives to visualize. We then discuss how
to compose the guidance presentation based on the previous
considerations. Finally, we summarize how the provided
guidance can be adapted to user interaction and feedback.
These three steps are listed in Figure 5.

Step 3.1 – Recognize the Data to Present
What This step aims to specify what information/data about
each alternative is relevant for users’ choices and should thus
be presented.

Why What data to present depends on the available results
produced at Stage 2 and decides the content and level of
detail with which to present each alternative in Step 3.2.

Hence, this step connects the guidance generation stage with
the following step of guidance presentation.

How In the previous design stage, we have generated
and evaluated the alternatives through MCDA. This process
produces different types of data:

• The main output of the design stage is the
evaluation of the alternatives, which is the essential
data element for presenting guidance. For orienting
guidance, this is a list of all acceptable/valid
alternatives for the concrete analysis decision at hand.
For directing guidance, this is a subset of the top-k
best alternatives among the acceptable ones given as
a ranked list to indicate the priorities among them.
For prescribing guidance, this is the highest ranked
alternative from that top-k list.

• The different criteria on which the evaluation model
was based can also be shown. This can help users in
understanding the characteristics of each alternative
and uncover how the evaluation was generated. Yet,
VA designers will need to consider if the users have
the relevant background to interpret these criteria to
avoid confusion or information overload.

• Some of these evaluation criteria might have been
produced from full or partial results precomputed
for each alternative during Step 2.2. Presenting
these results can help users to inspect the detailed
differences between these alternatives. For example,
visualizing the resulting subsets after data selections
can help users to gain an overview of the differences
among these selections. Techniques known from
comparative visual analysis, such as algorithmically-
enhanced visual comparison, can further aid this
inspection by deriving difference metrics.78

Step 3.2 – Compose the Presentation of
Alternatives
What Having described which data to present for each
alternative, we then need to visually compose that data in
order to display the guidance. In this step, we outline how
to compose views of multiple alternatives based on the
considerations we have made in the previous steps.

Why Visualizing for guidance differs from other visual-
ization in its fundamental characteristics of presenting and
aiding the decision among multiple alternatives, such as
the different levels of details and varying guidance degrees.
Therefore, we outline the considerations for composing such
visualizations that adapt to various characteristics of the
guidance scenario at hand.

How To visually present and compare the alternatives for
VA decisions, multiple presentations of these alternatives
need to be composed in a unified view. Techniques
that combine multiple visualizations have been widely
studied and given different names, such as coordinated
and multiple views,79,80 composite visualizations,81 and
visual comparison techniques.82 However, to visualize for
guidance, different data and numbers of alternatives need to
be presented and varying guidance degrees call for dissimilar
presentations. Therefore, additional considerations need
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Figure 6. Abstracted illustrations of the guidance presentation according to varying prominence of guidance (VA – Visual Analytics,
G – Guidance), signification of guidance, and level of detail.

to be made in terms of presenting multiple alternatives.
Abstracted examples of the following considerations are
illustrated in Figure 6.

The prominence of guidance refers to how visually
noticeable the provided guidance is in comparison to the
existing VA elements, which can range from being almost
invisible and implied in the order of the options provided to
users to a dedicated visualization of the options that is added
to the existing VA system. Here we discuss the prominence
of guidance by considering the visual relationship between
guidance and the original VA system.

• With low prominence, guidance can be implicit
without introducing any visual encoding or element.
This can be done through prioritizing or constraining
the alternatives provided to users – e.g., re-ordering
the alternatives in a drop-down menu or hiding
undesirable alternatives.83 To provide such implicit
guidance, only the final evaluation from MCDA
models is needed to rank the alternatives or eliminate
alternatives under certain threshold.

• In existing techniques, guidance is most commonly
embedded in VA systems through visual encoding,
such as color, highlighting, and animation on top of
the existing user interface.12,84 The final evaluation
produced by the MCDA models can be used to
encode embedded guidance. The evaluation criteria
and computation results can be provided on demand
to help users understand the provenance of guidance.

• With high prominence, guidance can be expanded
into additional views in VA systems to provide further
details,18,85 or to structure steps for users to follow.7

For MCDA models, the evaluation and criteria can
be communicated through an individual visualization
or table and helps users to fully understand the
underlying mechanism of the provided guidance. The
full or partial results computed for each alternative can
also be visualized for users to compare them in detail.

To guide users through multiple alternatives, the
signification of guidance can help to convey the relationships
between alternatives and shift the focus to the important
ones. For example, in Voyager, a “specified view” is put on
top of other “related views”, signifying a higher relevance of
the “specified view” to the context of use.4 Here we discuss
the signification of guidance through the three guidance
degrees – orienting, directing, and prescribing.

• For orienting guidance, the alternatives should be
visualized with the same visual importance and
avoid implying any preference. However, there might
still exist some underlying relationships between the
alternatives that can help users to orient among
them. For example, when the users are branching
out into different paths of analysis, the logical and
chronological relationships between alternatives can
be indicated through new alternatives branching out
from previous ones.85,86

• For directing guidance, the key consideration is the
underlying preference among the alternatives. Such
guidance can be encoded in the order of which
the alternatives are ranked, especially when they are
presented as a list, where the linear order already
implies a ranking of the elements – whether this
is intended or not (cf. position bias).87 To further
emphasize the ranking, color, textual information, size,
and/or animation can be used to indicate the preferred
alternatives and the ranking among them.8

• For prescribing guidance, users are guided through
a process where they can only accept the suggested
alternative and navigate back-and-forth between
different steps. However, additional alternatives can
still be useful to show so that users better understand
the context in which the prescribed alternative is
generated. In this case, the additional alternatives
can be presented in a de-emphasized way without
interactivity to indicate that they are not available to
be chosen and only shown as contextual information.

The level of detail of each alternative can be influenced
by many factors. For example, the available screen size and
mental resource in context of use limits the level of details
of presented alternatives. A higher number of alternatives
may also limit how detailed each alternative can be shown.
And the preferred alternative in directing guidance or the
suggested alternative in prescribing guidance may be shown
in greater detail. In the following, we discuss which options
we have to accommodate different levels of detail.

• At the highest level of detail, the alternatives can be
individually instantiated and then combined. This is
often used to present a list or a grid of alternatives,
similar to visualization spreadsheets.88

• When there are more alternatives, especially with
some form of underlying relationships between them,
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their individual visualizations can be combined into
one visualization – either a larger visualization,89 or
an ensemble visualization for showing general patterns
and trends among the alternatives.90

• At the lowest level of detail, each alternative can be
abstracted to an individual data point. The relevant
metrics of each alternative can be abstracted in a single
visualization or be directly encoded in the display of
the alternatives using scented widgets.84

Additionally, these different levels of detail can also be
combined to provide more adaptive and contextual guidance
– the higher ranked or more important alternative(s) can be
shown in greater detail with other alternatives abstracted into
another visualization on the side, and more details about the
abstracted alternatives can still be provided on demand when
users hover over, zoom in, or select an alternative. In case the
number of alternatives becomes too large to be shown at the
desired level of detail, ensemble-based methods can be used
to subsume multiple alternatives using a few representative
exemplars.91

Step 3.3 – Adapt to User Feedback
What In this final step, we consider how to adapt the
provided guidance and its underlying MCDA model to user
feedback to ensure the guidance is adaptive and controllable.

Why The MCDA models in our guidance generation come
with different means of criteria production and allow for
different types of user input, enabling them to take user
feedback into account. Using this possibility of adapting the
guidance to the specific demands of data, task, and user fully
enables the benefits of MCDA models.

How As users interact with VA systems, many of their
interactions can be recorded and analyzed as user feedback
to adapt the provided guidance accordingly. To this end,
the different components of guidance design must take
into account the possibility of implicit (inferred) or explicit
(input) user feedback. Making users aware of adaptations
due to feedback is essential for them to make full use of
the provided guidance – the occurrence and origin of an
implicitly inferred adaptation should be communicated to
users to avoid confusion, and the availability of direct control
should likewise be signified.

Here we discuss three general perspectives on how
guidance can be adapted to user feedback corresponding
to the overall goals of the three stages of our method
– considering whether or not guidance should be present
as determined during the intelligence stage, the
generation of guidance at the design stage, and the
presentation of guidance at the choice stage.

• Presence of guidance: To ensure the provided
guidance is non-disruptive, it should be possible for
users to override the pre-determined need for guidance
(Stage 1) by turning it off when not needed. Such
mechanism can be directly accessed by the users
through interactive elements on the user interface or
prompted by user interactions.

• Generation of guidance: To provide adaptive and
controllable guidance, the evaluation model pre-
determined in Stage 2 can be interactively adapted.

This can for example be achieved by including
interaction metrics as criteria in the models themselves
(e.g., the interaction history)12 to automatically update
the evaluation results based on user actions. Another
option is for users to directly manipulate the models
when they have the expertise to do so.

• To adapt the presentation of guidance to different
contexts of use, the elements in the previous steps in
this stage can also be made flexible – the guidance
degree and detail level can be increased or decreased
accordingly when users need more or less guidance.
Such change can also be either made directly or
inferred from the user interaction logs.

Worksheets for Applying the Method
Passing through the intelligence, design, and
choice stages, we have provided a step-by-step method
to design guidance for decision making in VA. In doing
so, our method establishes a unified, reusable, and widely
compatible guidance mechanism that generates transparent,
adaptive, and consistent user guidance.

To provide concrete means that allow VA designers to put
our method into practice, we developed a set of guidance
design worksheets to accompany our method. We chose the
format of worksheets, as they are accessible, flexible to be
edited for different contexts, and well-suited for generating
ideas and pen-and-paper prototypes especially in early
design stages. Design worksheets are also a common in many
aspects of visualization, such as visualization design,92,93

teaching and learning,94 and creative ideation.95

To produce the worksheets, we went through a series
of internal and external iterations to refine their design. In
the beginning, we iterated on the worksheets three times
internally. We started out by drafting the outline of each
stage and step of our method on the worksheets. Then we
went through a round of discussions that generated a list of
improvements. After implementing them, we filled out the
worksheets ourselves for a use case scenario of clustering
analysis, and refined the worksheets based on this trial.

After the internal iterations, we went through a series
of external iterations held in a workshop format. Three
workshops were individually conducted with three experts
and lasted around 90 minutes each. Two of the experts
were VA researchers with experience in designing VA
systems, and the third was a researcher in Data Visualization
and Human-Computer Interaction. The workshops were
semi-structured and consisted of three parts: introduction,
method walk-through, and follow-up questions. We started
the workshops with a short introduction to the overall
concept and examples of guidance in VA, the structure
of our proposed method, and a basic example of MCDA.
In the method walk-through, we first asked participants to
identify the context of a VA system that they designed or
used. Thereafter, they were asked to identify the decision
points that were relevant to the users’ workflows in the
intelligence stage, develop a guidance generation
mechanism for one important decision point in the design
stage, and formulate the presentation of the alternatives in
the choice stage. Finally, we ended the expert workshops
with follow-up questions that we prepared and adapted with
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Intelligence Goal

Deliverable

1. What is the context of use for the Visual
Analytics system?

2. What are the decision points in the analysis?

3. How much support do users need in each
decision point?

Design Goal

Deliverable

1. Choose a decision point, and consider what
are the alternatives to choose from?

2. How to produce the criteria for evaluating the
alternatives?

3. How to combine the criteria into an
evaluation model?

Choice Goal

Deliverable

1. What information/data about each alternative
is relevant for users' choice?

2. How should the information about the
alternatives be presented?

3. How to adapt the guidance to user feedback?

Figure 7. The abstracted worksheets accompanying our method correspond to its three stages, with three steps in each stage.
Each worksheet consists of a title indicating the design progress, goal, and deliverable of the corresponding stage. For each step,
the primary question to answer is presented with the keywords underlined. A prompt for each step outlines what the VA designers
should achieve, and detailed instructions are provided to explain some of the key concepts.

the observations from the method walk-through. In these
questions, we focused on what could be improved in the
worksheets and if the participants saw the benefits of using
our method to formulate guidance.

Overall, the participants were all able to follow the
steps in the worksheets, despite having some troubles
articulating some of the key concepts. The two VA experts
successfully identified a guidance problem in a VA system
they previously designed and came up with a guidance
solution with our worksheets, while the visualization expert
was able to follow a set of pre-filled worksheets and
provided some suggested improvements on the method and
worksheets. In particular, they suggested to further clarify
some of the key concepts in the method and emphasize
the connections between the steps. Specifically, in the
intelligence step, the meaning of the VA components
– “data”, “algorithm”, “visualization”, and “reasoning”, as
well as the types of knowledge gap – “which (scheme)”
and “how (parameter)” can be challenging to delineate. We
made revisions accordingly to produce our final worksheets.
To clarify the key concepts, we added explanations to the
worksheets. We emphasized the connections between the
steps in the prompts to make the worksheets easier to follow.

The abstracted worksheets are shown in Figure 7. The
detailed worksheets can be found at https://vis-au.
github.io/guidance/.

Use Case Example and Prototype

To provide a practical example, we present a use case
based on our guidance method. To this end, we apply our
worksheets on a scenario of cluster analysis and design
an initial prototype through our method using existing
visualizations and MCDA tools.

In the following, we describe how we apply each step
in our guidance method in this use case, illustrate the

developed prototype along the steps, and present the users’
workflow after implementing the guidance. A set of filled
worksheets was completed along the process and can be
found in the supplementary materials. For the prototype, we
first drafted early iterations through pen-and-paper mockups
and then implemented the prototype in Python. We utilized
Bokeh for the visualizations, scikit-learn for the processing
algorithms, and Scikit-Criteria for the MCDA methods. The
prototype is available at https://vis-au.github.
io/guidance/.

Stage 1 – Intelligence

We start our guidance design through a context of use
analysis. The users in our context of use are epidemiologists
who have domain knowledge about the diseases under study
and knowledge about different VA methods. As the outcome
of their analyses will inform future medical treatments and
impact patients’ lives, they also tend to be less risk-taking
in their decision making styles. Their goal is to explore and
identify different types of patients for the same disease. To
achieve such goal, the epidemiologists go through a series
of tasks – they first clean the data and visualize them along
some important features to first see if there are already
some patterns in the patients. To further bring out these
patterns, they then utilize dimension reduction and clustering
algorithms to abstract the features and cluster the patients
in different groups. During this process, they will need to
experiment with different algorithms and parameters, then
visually observe which set of results helps them to identify
and determine the patient groups based on their expertise.
As for resources, they often have limited manpower and
computing power for a specific project before it proves
promising. The environment that epidemiologists work in is
usually a lab with desktop computers, where they can often
be distracted with other ad-hoc tasks and experiments to run.
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Table 1. A list of decision points we recognize in the use case of clustering analysis through the 4 components – data, algorithm,
visualization, and reasoning, as well as 2 types – which (scheme) and how (parameter) that we discussed in Step 1.2.

Type Data Algorithm Visualization Reasoning

Which Data dimensions to use Dimension reduction and clus-
tering algorithms to apply

Encoding of visualization
to apply

Insights to uncover

How Deal with missing data Parameterize the algorithms Spec the visualization Combine other components

Table 2. Example inventory ranking the decision points’ need for guidance for the use case of clustering analysis. We assessed the
factors on a scale of 0 to 3 in their severity and multiplied the three factors to produce the final assessment.

Decision Points Potential of Wrong Decision Impact Alternatives Final Assessment

Clustering Algorithm (Which) 3 3 2 18
Data Dimension (Which) 2 3 3 18
Clustering Parameters (How) 3 3 2 18
Visualization Specifications (How) 2 2 3 12
Dimension Reduction Parameters (How) 3 2 2 12
Dimension Reduction Algorithms (Which) 3 2 1 6
Visualization Encoding (Which) 2 2 1 4
Missing Data (How) 3 1 1 3
Order of the Algorithms (How) 3 1 1 3
Insights to Discover (Which) 1 3 0 0

With the context analyzed, we then go through the four
components of the users’ VA process in order to identify for
which decision points guidance is needed. In the context of
high-dimensional medical data, the epidemiologists would
need to start with selecting the data dimensions to use and
dealing with missing data that often appear in the medical
context. With the data prepared, they then need to choose and
parameterize the algorithms, such as dimension reduction
and clustering, for grouping patients into different types.
Finally, to uncover the patterns and insights from these
computations, their results then need to be presented in
visualizations with appropriate encodings and specifications
to help epidemiologists visually observe these results and
infuse their domain expertise. During these processes, the
epidemiologists would also need to reason about how to
combine the available data, algorithms, and visualizations
together in order to uncover the insights they set off to seek.
These reasoning decisions also govern exploratory analyses
where the epidemiologists might go back and forth iteratively
to try other alternatives, such as changing the included
data dimensions after an initial exploration of the clustering
results. The decision points are summarized in Table 1.

Based on the context and the identified decision points,
we then assess these decision points according to the three
factors of guidance need on a scale of 0 to 3 – with “0”
to signify the factor as “not important at all” and 3 to
signify the factor as “extremely important”. We multiply
the factors and rank them from high to low to yield the
final assessment (see Table 2). We chose to include 0 as
the lowest point on the scale and to multiply the factors,
as we consider if any factor in the assessment is 0 (not
important at all), then there is no need for guidance at the
corresponding decision point. For the data component, which
data dimensions to use is a particularly important decision,
as it directly impacts the final results of the analysis and
some of the following decisions, such as which clustering
algorithm can be used for the corresponding data types. For
the algorithm component, different clustering algorithms and
different numbers of clusters produce various stratifications

of the patient cohort – each capturing a different property
or insight into the disease. However, which clustering
algorithms to explore and which sets of results are likely to
contain reasonable stratifications are not known beforehand,
and the epidemiologists would have to experiment with
many of them to find the “needle in the haystack”. This is
where guidance becomes particularly helpful to point them
in the directions of the most promising clustering results
and achieve their goals of identifying patient types. For
the visualization component, clustering results (i.e., cluster
membership of data items) are often encoded through colors
in scatterplots, while the specifications can be more complex
with different color palettes, sizes, and inclusion of other
facilitating elements, such as centroids and convex hulls.
Finally, as the goal of the analysis is clearly defined as
finding different groups in patients, the reasoning decisions
are less of a concern in this context of use.

Stage 2 – Design
From the inventory of decision points, we have ranked
the decision points and obtained the following three
decision points with highest priority: clustering algorithms,
parameters, and data dimensions. For the purpose of
exemplifying our method, we focus on the two decision
points of clustering algorithms and parameters, as these two
decisions are interconnected and their guidance should be
developed in conjunction.

The first step in this stage is to recognize the space
of alternatives. The number of alternatives among the
clustering algorithms is often not very large. For example,
in the overview of clustering methods in the Machine
Learning package for Python, scikit-learn, 11 algorithms are
listed.96 In our context of analyzing clusters of patients, the
epidemiologists need to directly manipulate the number of
clusters to explore the different resulting stratifications of the
cohort of patients. Therefore, we focus on the 5 algorithms
with “number of clusters” as an available parameter – K-
Means, Spectral Clustering, Ward Hierarchical Clustering,
Agglomerative Clustering, and BIRCH. In our context, there

Prepared using sagej.cls



14 Information Visualization XX(X)

a

b

e

d

c

f

Decision points of clustering algorithm and
number of clusters, where users can directly
make their decisions.

Table of the weights and criteria for
the generated guidance, where the
weights can be controlled by users to
adapt the guidance accordingly. 


Table of the evaluation in clustering
algorithms with the highest ranked
one highlighted, orienting users with
the results and directing users to the
corresponding algorithm. This table will
update accordingly when a different
number of clusters is chosen.


Visualization of the evaluation in
number of clusters, orienting users
with the results and directing users to
explore numbers of clusters with higher
evaluation results. This graph will
update accordingly when a different
clustering algorithm is chosen.


Visualization of the highest ranked
clustering algorithm, directing users'
attention to this enlarged view. This view
will be changed to the selected algorithm
when users choose a different algorithm in
the dropdown menu to the left.


Visualizations of the other
clustering algorithms,
orienting users among the
possible alternatives. 


Figure 8. The annotated prototype for the use case with guidance produced based on our method. (a) prompts users for their
analytic decision; (b) shows the criteria underlying the decision and how they are weighed; (c) and (d) show the results of
computing the criteria for the different decisions – the different clustering algorithms and the different numbers of clusters,
respectively; (e) previews the outcome of the highest-ranked decision; and (f) previews the outcomes of other alternatives.

are often not many different types of patients for the same
disease, so the range for the number of clusters is also
limited. Therefore, we set the range for the number of
clusters from 2 to 10.

To produce the criteria, the evaluation of clustering
algorithms and parameters are often based on similar metrics.
In our case, the extrinsic measures based on a ground
truth of actual class labels are not available. Therefore,
intrinsic measures such as Silhouette Coefficient, Davies-
Bouldin Index, and Calinski-Harabasz Index can be used
to evaluate the separation and consistency of the clustering
results.97 These measures need to be calculated based on
actual clustering results, but clustering the full dataset can
take too much time due to the limited computing power.
Therefore, we produce these metrics with a small but
representative sample of the full dataset, while users can also
change the sample size according to their needs. As we run
these different algorithms on the sampled data, we can also
measure their runtime.

To construct the MCDA model, we then consider the
degree of guidance and level of control. As the users in
our context have some knowledge regarding the algorithms
and would like to explore alternative results, we decide to
apply primarily directing guidance with additional orienting
guidance to help. To provide directing guidance, the
aforementioned criteria then need to be combined and
some form of preference or recommendation should be
derived from the evaluation. We combined the multiple
criteria with through weighted sums. The weights of each
criterion were set based on our experiences in working
with epidemiologists. Additionally, as the users in our
context are able to understand the generated results and
metrics, we then orient the users by presenting the clustering

results and corresponding criteria from each algorithm and
parameter. This helps to trace how the directing guidance
was generated and orient users among the alternatives
with detailed information. For allowing users to adapt the
guidance to their specific needs, we present the underlying
weights of each criterion and enable the users to manipulate
the weights when they are not content with the provided
guidance.

Stage 3 – Choice
To present the guidance, relevant data to be presented need
to be recognized first. We present the produced results
based on sampled data for each alternative, including the
data points and their predicted class label. Furthermore,
we present the meta-data including the evaluation criteria –
specifically Silhouette Coefficient, Calinski-Harabasz Index,
Davies-Bouldin Index, and runtime.

Next, we consider the degree of guidance and level of
detail to produce the guidance presentation. For both of
the decision points of clustering algorithms and parameters,
we primarily apply directing guidance. Therefore, the
preferences among the alternatives need to be signified
accordingly. In the view of the produced results, we signify
the ranking of the alternatives by highlighting the highest
ranked one. Additionally, the evaluation table and figure of
the algorithms and number of clusters also help to orient
users among the alternatives by listing the alternatives and
the evaluation results. For the level of detail, the number
of alternatives for clustering algorithms is limited to the 5
algorithms that have “number of clusters” as a parameter.
Therefore, they could all be presented in detail with the
produced results and criteria. For the “number of clusters”
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parameter, we have 9 alternatives ranging from 2 to 10
clusters. We decide to visualize their evaluation results as a
line chart on the side, where the users can hover over the data
points to inspect the underlying criteria. The prototype with
guidance is presented in Figure 8.

Finally, we adapt the provided guidance to user feedback.
For the presence of guidance, we allow users to manually
enable or disable the guidance elements (evaluation and
ranking of alternatives), especially when users do not need to
inspect or do not understand these detailed criteria. This also
influences the presentation of guidance – with the evaluation
table and figure that provide orienting guidance hidden, the
system only provides directing guidance by indicating the
highest ranked algorithm with its enlarged size.

Use Case Example with Guidance
After the guidance implementation, users enter their analysis
with clear priorities and supporting information for the
two decision points. For the algorithms, the enlarged view
(Figure 8.e) and highlight color (Figure 8.c) guide users’
attention to the highest ranked algorithm at the first glance.
The detailed evaluation metrics (Figure 8.c) that generated
the underlying guidance support the comparisons between
the algorithms with important knowledge, while encouraging
users to consider different alternatives. For the number of
clusters, the evaluation chart (Figure 8.d) also indicates how
this decision point might influence produced results with the
selected algorithm, guiding users to compare and consider
different numbers of clusters for their analysis. Moreover, as
users change the number of clusters, the guidance is updated
accordingly to encourage users to consider how different
combinations of algorithms and numbers of clusters might
impact their analysis. With the implemented guidance for the
two decision points, we bring out several benefits to users
that address important challenges they might encounter.

First, the direct presentation of alternatives (Figure 8.e/f)
makes users aware of the decision points and their potential
impacts on the results of the clustering analysis, encouraging
users to explore the space of alternatives.

Second, the visual cues of color and size (Figure 8.c/e)
indicate the highest ranked alternative, guiding users towards
it. Meanwhile, how the underlying mechanism generated
this ranking (Figure 8.b/c/d) is shown to support the
trustworthiness of the provided guidance.

In addition, the presented visualizations (Figure 8.e/f) and
evaluation criteria (Figure 8.b/c/d) allow the users to easily
compare the alternatives, reason about them in a way that is
grounded in the metrics, externalize their decision making
process, and construct their evaluations, which in turn
reduces their cognitive load. The possibility of manipulating
the underlying criteria (Figure 8.b) enables users to adapt the
guidance to their expertise and context of use, making the
guidance design adaptive, flexible, and controllable.

Relations to Existing Guidance Frameworks

To put our step-by-step design process in the context of
existing research, this section discusses its commonalities
and differences with four guidance frameworks that are
closely related to ours:

Figure 9. The requirements for guidance design from Ceneda
et al. 2 (in blue) and Collins et al. 8 (in red).

• Collins et al.’s 2018 paper collects a range of
highly useful thoughts, arguments, models, and
building blocks capturing guidance from its different
perspectives of goals, requirements, roles, tasks,
implementation, and evaluation.8 The common theme
underlying this paper is that of an “intelligent guide”
or an “artificial intelligence-guided visualization”.

• Ceneda et al.’s 2020 paper introduces a framework for
making design decisions on guidance functionality to
be provided during visual-interactive data analysis.2

It details aspects such as the requirements and goals
of guidance, the knowledge gaps it addresses, the
generation of guidance, and the users’ feedback.

• Pérez-Messina et al.’s 2022 paper proposes a
typology of guidance tasks that connects the concept
of guidance – its degrees (orienting, directing,
prescribing) and the knowledge gap it addresses
(target unknown, path unknown) – with user tasks
(mainly search tasks).98 This typology is not a design
framework in itself, but it supports guidance design
with a nuanced abstraction of guidance tasks.

• Sperrle et al.’s 2022 paper describes a syntax to
specify guidance functionality on the implementation
level.99 Its compact notation and low overhead allow
for rapid prototyping of guidance, which makes it a
good fit for iterative guidance design.

In the following, we will discuss these frameworks
and our guidance design method with regard to common
requirements and different contributions to guidance in VA.

Common Requirements for Effective Guidance
What makes for “good” guidance in Visual Analytics?
Ceneda et al. state five requirements for “effective” guidance
– available, non-disruptive, adaptive, trustworthy, and
controllable.2 Collins et al. includes similar requirements
for “intelligent” guidance with different wording – effective,
adapted to the context (contextual), white-box, and right
timing and mode (see Figure 9).8 Note that effective
means in this case that the provided guidance should be
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“easily accessible” and “avoid distraction or obscuring the
current visualization”. This corresponds more closely to the
requirements of available and non-disruptive from Ceneda
et al., than to their overall goal of “effective” guidance.

A requirement that has received a lot of attention in
guidance research lately is that of providing adaptive
guidance, as it is called by Ceneda et al. This requirement
appears under the name contextual guidance in Collins et al.,
emphasizing that guidance “should be adapted to the context
of the user analysis process”. Sperrle et al. cast this notion
of adaptive guidance into a dedicated framework,100 used
it in complex guidance scenarios,101 and built their recent
guidance syntax around it.99

Furthermore, Ceneda et al. discuss the importance of non-
disruptive guidance. This notion can also be found in Collins
et al.’s requirement of providing guidance at the right time
and in the right mode, which explicitly discerns between
synchronous guidance that may disrupt and intervene with
the analysis process, and asynchronous guidance that can
be used or ignored as needed. The task typology by Pérez-
Messina et al. makes prominent use of this distinction in
their framework as well.98 Interestingly, neither Collins et al.
nor Pérez-Messina et al. connote disrupting or synchronous
guidance necessarily as improper or inadvisable, but instead
highlight the importance of making an informed and explicit
choice about it. After all, guidance should never be followed
blindly and it is thus important that guidance is provided
explicitly and noticeably.

Our Method Many elements of the guidance design method
presented here were purposefully included to meet these
requirements. Hence, it is not surprising that a certain
overlap exists, for example, between the considerations in
Stage 1 – Intelligence and the first two steps in Ceneda et
al.’s design framework. Through identifying and evaluating
the decision points in a structured manner, we ensure the
guidance is available when it is needed, yet non-disruptive.
Furthermore, our underlying MCDA models can adapt to
different guidance degrees and levels of user controls,
making the produced guidance adaptive. As our method
emphasizes the possibility of exposing the MCDA model to
users, we also enable the produced guidance to communicate
essential information about its trustworthiness and to act as
a white-box through revealing the underlying mechanism.
Finally, through adapting the guidance presence, generation,
and presentation to user feedback, we further strengthen the
ability of provided guidance to be easily controllable.

Different Contributions to VA Guidance
All mentioned frameworks address guidance from their
own distinct perspectives and therein make different
contributions to VA guidance that range from conceptual
models to designing and ultimately implementing guidance.
A summary of these contributions is given in Table 3.

Conceptualizing Guidance From its inception, guidance
in VA was likened to a car navigation system for visual-
interactive analyses.1 This metaphor is picked-up again by
Collins et al., who point out the gap between this aspiration
and the reality of current guidance functionality.8 As the
main issues causing this gap, they identify that existing
guidance models – particularly Ceneda et al.’s original

guidance characterization – are rather abstract and too far
removed from practice to be useful. The paper then goes on
to alleviate this issue by extending and detailing different
aspects of guidance – e.g., task abstraction, user roles,
implementation, and evaluation – to make the concept more
actionable. In particular the aspect of task abstraction is then
revisited in more detail by Pérez-Messina et al.’s typology.98

Designing Guidance While the conceptual papers describe
the tools for providing guidance (e.g., requirements, tasks,
building blocks for implementation and evaluation), they
do not detail how to use them to get from an identified
knowledge gap to a suitable guidance solution. These more
procedural concerns are addressed by Ceneda et al.’s 4-step
framework for guidance designers in which they propose
a sensible order in which to make the different necessary
considerations for arriving at guidance solutions.2 As this 4-
step framework aims to anticipate user problems at design
time, it has only limited possibilities to adapt to changing
user needs as they emerge at runtime during exploratory,
open-ended analysis sessions. Consequently, Sperrle et al.
call this a theoretical design process and instead propose a
strategy-centered guidance design in which various different
guidance strategies are developed at design time and then
chosen dynamically as needed at runtime.99

Implementing Guidance Having a guidance design – i.e.,
all questions regarding the why, when, what, and how of
guidance are answered – still does not realize the thus
specified guidance in code. To that end, Collins et al. provide
a high-level discussion on guidance implementation (e.g.,
sources of information, computational processes, interaction
modalities) using an input-compute-output structure.8 These
can help to further detail the design considerations into
implementation considerations, but it still does not lead to
actual code. The framework from Sperrle et al. takes the
next step in tackling this last mile bridging specification
to implementation of VA guidance.99 By expressing their
guidance strategies through a declarative grammar, they
are able to automatically generate guidance functionality
from the specification. This narrows the gap between design
and implementation considerably, leaving open only the
implementation of the frontend for showing the guidance and
interacting with it.

Our method As can be seen, all existing frameworks have a
particular focus in their contributions to VA guidance, and so
does our method:

• Conceptualizing Guidance: Our method reframes
and extends the common notion of “guidance for
knowledge gaps” to “support for decision points”.

• Designing Guidance: This new perspective on
guidance allows us to re-structure the guidance design
process along the decision making process.

• Implementing Guidance: Our framework is first
and foremost a method for design and not for
implementation. That being said, the use of existing
decision support systems – in our case the MCDA
models from Scikit-Criteria – may serve as a viable
way to use off-the-shelf implementations to generate
guidance.
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Table 3. Comparisons of our work with selected papers on guidance design in VA. • indicates the corresponding work includes the
element as a main focus, while ◦ indicates the work discusses the element without detailing specific processes or tools.

Paper Contributions to VA Guidance
Conceptualizing Designing Implementing

Collins et al. (2018) 8 • ◦
Pérez-Messina et al. (2022) 98 •
Ceneda et al. (2020) 2 •
Sperrle et al. (2022) 99 • ◦
our method • •

In this way, our method combines a new way of thinking
about guidance with a matching way of designing guidance.
To bridge the gap between theory and practice, we provide
the worksheets as practical tools to be used for guidance
design and we root our method in the MCDA approach for
which a wide range of libraries and packages in different
programming languages are available to jumpstart guidance
generation without much additional overhead.

Discussion of Limitations
Throughout this paper, we have boldly called our design
method a “generic” approach to providing guidance. In many
regards, this statement holds true: Our method does not apply
only to a single guidance domain or use case. It can be used
to provide both types of guidance: assisting with unknown
analysis targets and analysis paths. It is also not tailored to a
particular guidance degree or constrained to a certain input.

Nevertheless, our guidance design method relies on a
particular understanding of what guidance is and what it is
not. It furthermore makes assumptions about the guidance
problem that, if not met, limit the applicability of our method.
These two aspects are briefly discussed in the following.

Scope of our Method
The most common notion of guidance is that of an
enhancement to an underlying unguided visual analysis
process. Despite this agreed-upon intuition on what guidance
means in the field of visualization and visual analytics,
its delineation remains complicated. For example, it is not
unreasonable to argue for any of the following to be forms of
guidance:

• overview and detail visualization – e.g., a minimap
providing information about the larger context of a
currently inspected view region;

• intrinsic emphasis effects102 – e.g., directing the
viewers’ attention to outliers in the data simply by
choosing a scatterplot for showing the data;

• context-sensitive help103 – e.g., providing a tooltip
with additional information when hovering with the
mouse cursor.

Following this line of thought, any mechanism that
provides additional information (minimap, tooltip, labeling,
help texts, etc.) can be understood as an instance of
informing guidance devised to resolve knowledge gaps. Any
visual encoding that draws the reader towards the important
aspects of the data can be understood as a form of directing
guidance. Yet, if these are indeed instances of guidance then
where does the plain and unguided interactive visualization

end and where does guidance begin? After all, visualizations
are in themselves tools to resolve knowledge gaps about
the data. Otherwise, if everything about the visualized data
was already known, why visualize it or even perform visual
analytics on it? In that sense, any effective visualization
design should be done in a way that guides the users’
attention towards the salient parts of the shown data and
provides details on demand. Yet, our design framework is
clearly not meant for general visualization design. Hence, it
does not cover any of the above examples very well if one
wants to consider them as guidance.

Assumptions Underlying our Method
Even if the scope of guidance to be provided fits the
understanding of an enhancement to an unguided base
visualization as discussed above, our method is not
necessarily ideal for designing guidance in all cases. The
reason is that our method is targeted to solve guidance
problems characterized by three assumptions.

The first fundamental assumption made by our framework
is that all guidance problems can be framed as decisions
in need of decision support. To back this assumption, we
made the argument that all user tasks involve decisions as
otherwise there was no need for the user in the first place.
Hence, we reasoned that any task in need of guidance can be
equated with a decision in need of decision support. This is
true for many high-level analytic tasks. However, guidance
for low-level tasks may not necessarily involve a decision
making component. For low-level tasks, guidance is often
provided to simply reduce interaction costs by automating
particularly tedious aspects of the task in a prescribing
manner. For example, interactive snap-to-grid brushing aids
in precisely anchoring brushes at grid points, effectively
taking over and guiding the hand in moving the mouse cursor
towards the exact pixel spot once getting close to it.104 Using
the aforementioned analogy of a car’s navigation system,1

this functionality could be likened to the self-parking feature
of some cars as a means to navigate those last few meters.

The second fundamental assumption of our design
framework is that the decisions to be supported can
be identified during the design phase of a VA system.
Supporting this assumption, we have argued that our
framework can and should be applied iteratively, so that
crucial decisions in need of support are recognized as early
as possible at different stages of the design cycle. Yet in
particular for decisions identified in the very early stages of
designing a VA system, it can be hard to already formally
grasp evaluation criteria for an MCDA model as it is still
unclear at this point what makes one alternative preferable
over another. In these cases, the framework from Ceneda et
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al. might work better as a first design iteration to bootstrap
the iterative process.2

The last assumption is that a dedicated decision support
mechanism can be put in place before a decision needs
to be made. Yet, it is the very nature of exploratory
visual analysis to try new analysis paths and approaches
in order to discover the unexpected in the data. This is
likely to lead to new and unforeseen analysis situations
for which no preconceived guidance mechanism exists. Yet
it is exactly these uncommon analysis situations in which
guidance would be needed most. This conundrum is not
specific to our design method, but shared with all existing
design frameworks. The idea of guidance strategy templates
proposed by Sperrle et al. that fit a wide variety of different
concrete guidance situations – even those that were not
explicitly anticipated when formulating them – might be a
viable way to circumvent this problem in the future.99

Conclusions
In this paper, we introduced a generic guidance design
method through decision support. To this end, we re-
framed guidance as supporting decision points, presented
and detailed our generic guidance method through three
steps for each of the three stages in the decision making
process, and produced a set of flexible worksheets through
internal iterations and expert workshops based on our
method. Additionally, we developed an initial prototype with
the produced worksheets to exemplify the usefulness and
applicability of the method and discussed our method in the
context of existing general research on VA guidance. With
both theoretical and empirical insights, this work expands
the concept of guidance in VA with decision making research
and provides a practical guidance method covering the end-
to-end process of producing guidance in VA.

As for future work, the discussion of relations between
ours and existing frameworks make it obvious that a “nested
model of guidance design” akin to Munzner’s nested model
for visualization design is almost within reach.105 By
applying the different frameworks at the different levels
of such a nested model – e.g., Pérez-Messina et al.’s task
typology for the task abstraction and Sperrle et al.’s Lotse
guidance library or our MCDA models at the algorithm
level – it should be possible to realize a nested design
process specifically for VA guidance. Likewise, different
aspects of Collins et al.’s considerations for evaluating
guidance could then be related as validation measures to
the different levels. For example, their suggestion to do user
studies with “complex information seeking tasks” could be
used to validate the guidance design, while the “metrics
for automated monitoring” could be useful to benchmark
the algorithmic implementation of the guidance generation.
Filling in the still missing pieces to complete this picture –
e.g., a data abstraction for guidance in VA to complement the
existing task typology – pose formidable research challenges
in this direction.
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10. Watróbski J, Jankowski J, Ziemba P et al. Generalised
framework for multi-criteria method selection. Omega 2019;
86: 107–124. DOI:10.1016/j.omega.2018.07.004.

11. Ceneda D, Gschwandtner T and Miksch S. A review of
guidance approaches in visual data analysis: A multifocal
perspective. Computer Graphics Forum 2019; 38(3): 861–
879. DOI:10.1111/cgf.13730.

12. Gladisch S, Schumann H and Tominski C. Navigation
recommendations for exploring hierarchical graphs. In
Proceedings of the International Symposium on Visual
Computing (ISVC’13). Springer, pp. 36–47. DOI:10.1007/
978-3-642-41939-3 4.

13. Luboschik M, Maus C, Schulz HJ et al. Heterogeneity-based
guidance for exploring multiscale data in systems biology.
In Proceedings of the IEEE Symposium on Biological Data
Visualization (BioVis’12). IEEE, pp. 33–40. DOI:10.1109/
BioVis.2012.6378590.

14. Yang D, Xie Z, Rundensteiner EA et al. Managing discoveries
in the visual analytics process. SIGKDD Explorations
Newsletter 2007; 9(2): 22–29. DOI:10.1145/1345448.

Prepared using sagej.cls



Providing Visual Analytics Guidance through Decision Support 19

1345453.
15. Jo J, L’Yi S, Lee B et al. ProReveal: Progressive

visual analytics with safeguards. IEEE Transactions on
Visualization and Computer Graphics 2019; 27(7): 3109–
3122. DOI:10.1109/TVCG.2019.2962404.

16. Gotz D and Zhou MX. Characterizing users’ visual analytic
activity for insight provenance. Information Visualization
2009; 8(1): 42–55. DOI:10.1057/ivs.2008.31.

17. Dimara E, Franconeri S, Plaisant C et al. A task-based taxon-
omy of cognitive biases for information visualization. IEEE
Transactions on Visualization and Computer Graphics 2020;
26(2): 1413–1432. DOI:10.1109/TVCG.2018.2872577.

18. Wall E, Blaha LM, Franklin L et al. Warning, bias may occur:
A proposed approach to detecting cognitive bias in interactive
visual analytics. In Proceedings of the IEEE Conference on
Visual Analytics Science and Technology (VAST’17). IEEE,
pp. 104–115. DOI:10.1109/VAST.2017.8585669.

19. Wang Baldonado MQ, Woodruff A and Kuchinsky A. Guide-
lines for using multiple views in information visualization.
In Proceedings of the Working Conference on Advanced
Visual Interfaces (AVI’00). ACM, pp. 110–119. DOI:10.1145/
345513.345271.

20. Stoiber C, Ceneda D, Wagner M et al. Perspectives
of visualization onboarding and guidance in VA. Visual
Informatics 2022; 6(1): 68–83. DOI:10.1016/j.visinf.2022.02.
005.

21. Conati C, Hoque E, Toker D et al. When to adapt:
Detecting user’s confusion during visualization processing. In
Proceedings of the Workshop on User-Adaptive Visualization
(WUAV’13). CEUR Workshop Proceedings, pp. 17–24.
URL https://ceur-ws.org/Vol-997/wuav2013_

proceedings.pdf.
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