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12.1 Abstract

We introduce a simple and useful view for observing graph streams. They
are viewed as collections of edge events where each edge has associated a set
of time-dependent statistics that include firing rate, recency, and persistence.
The activity rate of any subgraph is expressed as an aggregation of its corre-
sponding edge statistics. Salient subgraphs are detected by isolating through
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time those edges whose activity rate deviates substantially from the activity
rate of the entire stream. These salient subgraphs exhibit some peculiar “herd-
ing” and “straying” behaviors that are humanly interpretable. The vertices
involved in the creation of these salient behaviors cover a substantial portion
of the entire graph stream. This coverage can be subject to both human and
computer verification. All our computations are incremental and are accom-
panied by a visualization platform that integrates dynamic node link views of
“recent” graph substreams with a tape view of the Top-K edge statistics to
provide a compact overview of the graph stream. This platform has also been
coupled to our modular Degree-of-Interest system for a closer investigation of
those patterns found in the overview. We use Twitter data to illustrate our
tools, but our approach is by no means confined to microblog data.

12.2 Introduction

When exploring a data stream it is natural to ask how to relate current
stream snapshots to past snapshots. Depending on the data semantics and the
task at hand different interpretations are possible. For example, in the case of
microblog data (like Twitter) making sense of conversations and discussions
related to a particular topic may entice users to join the discussion. For data
analysts, a usual task is to discern how tweets information patterns spread
with the possible goal of intuitively explaining their findings. In monitoring
traffic scenarios, teasing out those communication patterns that deviate from
a considered normal behavior can be used as proxies for intrusion detection.
In general social networks, identifying influential nodes in a “volatile” graph
stream is of considerably interest. We report here a useful approach to iden-
tify trends and exceptional nodes in a graph stream. The fundamental idea is
to view a graph stream as a collection of “elementary” time-stamped events
whose aggregation through time generates “salient” patterns whose activity
rate is incrementally maintained. We are able to isolate group “herding” and
“straying” as peculiar behaviors that can be subject to both human and com-
puter verification. We quantitatively estimate the overall behavior of the de-
tected salient edges as a convex combination of their “herding” or “straying”
tendencies and their firing rates and recency “profiles”. All our computations
are accompanied by a visualization platform that integrates dynamic node link
views of “recent” subgraphs with a tape view of their Top-K edge statistics
(Figure 12.1). The approach discussed here has been coupled with a Degree-
of-Interest (DoI) based exploration system [2] to provide the user with the
functionality to take a closer look at particular keywords of interest identified
with our novel approach. Currently, such DoI-based systems are not equipped
to operate on the graph streaming setting proposed here.

Our main contributions are:
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• An adaptive and simple approach to graph stream processing that is
based on the “firing rates” of edge co-occurrences.

• Use of the notion of “recency” as a mechanism to measure the decay of
an edge or vertex in a graph stream.

• Isolation of “herding” and “straying” patterns in a graph stream as
proxies of group behavior.

• Quantification of the notion of “persistent” and “statistically salient”
behaviors in a graph stream which can be automatically verified by a
human or a computational agent. This is possible by the incorpora-
tion of an incremental maximal matching where the matching edges are
weighted by the sum of the overall frequency of their endpoints.

• Incorporation of visual cues that correspond directly to the notion of
“recency” and “firing rates”. This is facilitated by coupling a force di-
rected node link layout with an intuitive Top-K tape representing the
most “salient” graph stream elements in a dynamically adjusted time
window.

FIGURE 12.1: Complete view of the graph stream visualization interface
featuring tweets from President Obama’s speech on the U.S. economy on
07/24/2013
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The chapter layout is as follows: Section 12.3 describes related work. Sec-
tion 12.4 introduces the general data model and the fundamental graph stream
statistics on which we base our co-occurrence graph stream processing. They
are: recency, firing rate, and persistence. Section 12.5 describes the decay
mechanisms used to maintain the most “recent” co-occurrence subgraph and
presents the statistical mechanisms to extract the most “salient” edges in the
stream. Section 12.6 describes the visualization of the recent subgraph as an
animated graph visualization and its most salient edges as a collection of time
plots that we call the Top-K Tape. Section 12.7 details the life cycle of a ver-
tex in a graph stream. Section 12.8 describes the different states of the “life”
of a graph stream edge and how they determine the “life persistence” of those
vertices, which have co-occurred prominently in the graph stream. Prominent
edge states are: trending, untrending, not trending, herding, and straying.
Section 12.9 illustrates the application of our approach to the processing of
Twitter data, however this work is by no means confined to microblog data.
Section 12.10 illustrates the coupling with the DoI-based system. Finally, Sec-
tion 12.11 concludes this chapter by outlining possible avenues for further
research.

12.3 Related Work

During the last decade, the visualization of dynamic graphs has become a
quite active and diverse interdisciplinary research field. Recent surveys of the
area [5, 9, 11] discuss in a very comprehensive manner the existing variety of
approaches and insights. We refer the reader to these publications for a more
in-depth treatment of this area. When analyzing time varying graphs, common
approaches are to choose a single point in time in the sense of an animation
(e.g., [4]) or to aggregate longer time spans into a super or union graph [8],
a static structure that can be more easily visualized. A common concept re-
garding the use of animation to visualize dynamic graphs is the user’s “mental
map”. Issues concerning the preservation of the “mental map” are discussed
in [3, 12, 16]. Layout algorithms taking these issues into account are discussed
in [6, Sec.3]. However, these approaches have several limitations. The user has
either to inspect each time point individually or loose the temporal context al-
together. Alternatives show the structure over multiple time points in a single
image to overcome these limitations. They either use small multiples in which
the structure is shown individually for each time point [13, 14, 17] or embed a
representation of time points into the node or edge representation [18, 19, 20].
As they try to convey every piece of information (all nodes, edges, and time
points) they cannot scale to large dynamic graphs.

The research described here can be placed in the context of statistically
driven extraction of salient subgraphs with bounded resources. We concentrate
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on the formulation of a principled approach based on the novel notions of firing
rate and recency distribution. They are the result of viewing graph streams
as time co-occurrence graphs from which only recent and Top-K prominent
subgraphs are extracted and subsequently visualized. To our knowledge such
an approach has not been pursued before.

12.4 General Definitions - Data Model and Statistics

Definition 1 Graph Streams as Co-occurrence Graphs. A graph
stream, on a set of vertices (or nodes) V , is a collection of time-stamped
pairs 〈(x, y), ti〉 where x and y are elements of V and ti indicates a time point
when the pair of vertices x and y co-occur. For each edge e = (x, y), we let
Te,t denote the set of time points (ti ≤ t) in which the pair of vertices x and
y co-occur. The cardinality |Te,t| is the frequency of co-occurrence of the edge
e = (x, y). We denote the collection of co-occurring node pairs up to time t
by Et = {e = (x, y) : Te,t is non-empty}, and the corresponding set of vertices
Vt.

Definition 2 Firing Rates. Following [1], each edge in Et has a firing rate:

fr(e, t) =
|Te,t|

t and its corresponding firing sequence is fr(e) = 〈fr(e, t)〉. The
firing rate of any subset E′ of Et is just the sum of the firing rates of the edges
in E′ up to time t; and its corresponding firing sequence will be denoted by
fr(E′) = 〈fr(E′, t)〉. The firing rate of a vertex x (up to a particular time
t) is the sum of the firing rates of its incident edges up to that time t. With
these conventions, a graph stream is a graph sequence {Gt = (Vt, Et)} with a
corresponding firing sequence 〈fr(Et)〉. We will refer to fr(Et) as the firing
rate of Gt. Note that firing rates can be thought of being analogous to velocities.

Definition 3 Instantaneous Events. An instantaneous snapshot of a
graph stream at time point t is the collection of edges that co-occur at time t.
An instantaneous event is a maximal connected subgraph of an instantaneous
snapshot. In other words, an instantaneous event at time point t is a maximal
connected co-occurrence subgraph.

Definition 4 Average Vertex Firing Rate. The vertex average firing rate
at time point t is the average firing rate of all vertices in the cumulative graph
stream at time t. If there are Nt different vertices in the graph up to time
point t,

AFR(t) =

Nt∑
i=1

FR(wi, t)

Nt
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We let σv(t) denote the standard deviation of the set of firing rates of all ver-
tices in the co-occurrence graph up to time t.

Since the arrival distribution of different edges is in general quite different
we keep track of what we call edge (or vertex) Recency, which is defined as
follows:

Definition 5 Edge and Vertex Recency. If e is an edge in the graph
stream,
Recency(e, t) = 1 if e appears in the graph stream at time t

1

t− tlast
otherwise

where tlast = the immediate previous time e appeared in the graph stream. The
recency of a vertex is defined in an analogous way.

The aforementioned mathematical framework allows us to formulate ques-
tions related to the “behavior” of either vertices or edges in a graph stream
{Gt} in terms of their associated firing rates. The overall approach consists of
comparing the firing sequence of an edge or a vertex with the firing sequence of
the graph stream in which they reside. We selectively label from the graph
stream, incrementally, those edges (or vertices) whose firing rate is substan-
tially above the Average Firing Rate of the subgraph edges (or vertices).

Definition 6 Vertex Label Select. The label select value of a vertex is a
non-negative integer when its firing rate is above AFR(t). When the value is
positive, it is equal to the number of standard deviations by which its firing
rate exceeds AFR(t).
LabelSelect(w, t) =−1 if FR(w, t) ≤ AFR(t)⌊

FR(w, t)−AFR(t)

σ(t)

⌋
otherwise
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12.5 Recency and Top K Filters

12.5.1 Recency Filtering.

In order to focus on relatively recent subgraphs, we systematically remove
edges and vertices from the graph stream when they have been inactive for
some data-driven time interval. It is based on another time-dependent param-
eter of the graph stream, that we call ScreenT imeCG(t) which is a function
of the processor intake rate and the screen display capacity. The intention
is to have an edge removal control mechanism. Namely, if Recency(e, t) <

1

ScreenT imeCG(t)
, we remove the edge. If all the edges connected to a node

are removed, we remove the node from the recency graph.

12.5.2 Top-K Tape Filtering.

Although the recency graph gives a comprehensive snapshot of what the
graph stream looks like at a particular time, it does not keep a record of past
events. Once a vertex disappears from the recency graph, no record of it is left
in the recency graph regardless of how prominent it may have been. There is
no way to tell how long the vertices have been in the recency graph or whether
and how often they have been labeled. We would like to know not only about
the present state of the data stream but also have a description of important
past events. In order to do this, we introduce the Top-K Tape, which encodes
a window into the past activity of the recency graph.

Let µe(t) be the average edge firing rate for all edges in the co-occurrence
graph up to time point t. Let σe(t) be the standard deviation of the firing rate
of all edges up to time t. If an edge’s firing rate drops below µe(t) + 2σe(t),
the edge is removed from the Top K Tape.

We define the Top-K Tape (Bottom of Figure 12.1) to be the set of all
edges in the recency graph, up to time point t, with firing rate greater than
µe(t) + 2σe(t). The Top-K Tape is represented by a series of horizontal rows
of dots. Each of these rows represents an edge. Each column represents a
separate time point. The tape has a width that represents a number of time
units into the past from the current time. The current time is on the right of
the tape and the most distant time point is on the left. The rows are sorted,
in non-increasing order, according to their firing rate on the overall graph
stream. The Top-K Tape also has two special virtual edges, one represent-
ing the overall Graph Stream Firing Rate, and the other representing the
Top-K Firing Rate. Both of these edges compete for a slot in the Top-K.
These virtual edges are shown in Figure 12.2 in purple at the top row and in
black at the start of the bottom row.
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Definition 7 Edge Persistence. Persistent edges are those edges that have
a high appearance rate for an extended period of time, whereas non-persistent
edges are those edges that may appear in the graph stream in concentrated
bursts, but not enough to be considered persistent. We define edge persistence
to be the average length of contiguous edge lifetime segments. Edges with a
higher persistence value have either longer total lifespans, or a lower number
of contiguous lifetime segments. See next subsection for how these quantities
are displayed in the Top-K Tape.

FIGURE 12.2: Tweets captured during a maritime security conference,
3/2/2015 - 3/4/2015

12.6 Graph Stream Visualization

Based on these definitions, we have designed a visualization platform for
graph streams as shown in Figure 12.1 that integrates two views. First, a
dynamic node link view of “recent” subgraphs that combines an animation
with a special supergraph of the past time points. And second, a tape view of
the Top-K edge statistics serving as an overview of only the K most important
edges within these recent subgraphs for multiple time points.
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12.6.1 Recency Graph Visualization

The visualization of the recency graph as depicted in Figure 12.3 has the
following visual attributes, which are determined by the previously defined
parameters.

Edge Recency Color : Edges in the graph are colored using the diverging
spectral color scheme from Colorbrewer2.org [10]. The color of an edge reflects
its recency value. An edge is colored red when Recency(e, t) = 1. If its recency
value decreases, its color begins to fade towards blue. For nodes, we average
the recency values of all its incident edges and use that value to determine its
color.

Edge Thickness as Edge Firing Rate: The thickness of an edge encodes
that edge’s present firing rate.

Node Size as Vertex Firing Rate: The size of a node reflects its firing rate.
If a node has a high firing rate, it will be larger on the screen than other nodes
with lower firing rates.

Vertex Label Size: A node is unlabeled if its Label Select value is −1. Nodes
with higher Label Select values are assigned larger fonts.

Visually, nodes with large textual labels are those whose average firing rate
is at least one standard deviation above the overall firing rate of the graph
stream.

FIGURE 12.3: The recency graph of a stream of tweets on Hurricane Irene
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FIGURE 12.4: Speech on the economy by President Obama, 07/24/2013

12.6.2 Top-K Tape Visualization

An edge appearing in the Top-K Tape has the following visual attributes
as shown in Figure 12.4.

Dot Color: As in the recency graph, dot color indicates recency. There is
a direct correspondence between the color of a dot on the tape, and the edge
occurrence it represents in the recency graph.

Dot Size: The size of a dot is a variable controlled by the user to increase
visibility.

Dot Label: The dots at the right-most column are labeled with the two
vertices of the edge they represent. The order of these vertices in the label is
determined by the vertices’ total frequency in the co-occurrence graph. Each
dot label also contains an additional number in parenthesis. This number is
the edge’s persistence value in the co-occurrence graph.
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12.7 Life Cycle in a Graph Stream

The life cycle of a vertex can be described as follows. When a vertex first
appears in the graph stream, it is added to the recency graph. If a vertex is
inactive in the graph stream for too long, then it is removed from the recency
graph. If that vertex appears again in the graph stream, it is treated like
the first occurrence. Otherwise, the vertex becomes labeled when its firing
rate exceeds AFR(t). Note that a vertex can cycle between the two states
“labeled” and “unlabeled” if its firing rate fluctuates between above and below
AFR(t). The life of a vertex in the recency graph is succinctly shown in the
transition diagram in Figure 12.5. Orthogonally, an edge has its own life cycle
in a specially selected Top-K sub-stream, from which we can identify those
vertices which cover prominently a substantial portion of the overall graph
stream. The main mechanism for this identification is based on edge group
behavioral patterns. They include trending, untrending, herding, and straying.
Their details are discussed in the next section.

(Re)Born

Unlabeled Labeled

Leaves Recency Graph

vertex w reappears in dataset

FiringRate(w, t) ≤ AFR(t)

FiringRate(w, t) > AFR(t)

FiringRate(w, t) ≤ AFR(t)

FiringRate(w, t) > AFR(t)

w has no recent edges

w has no recent edges

FIGURE 12.5: Vertex life in the Recency Graph
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12.8 Top K Edge Group Patterns

12.8.1 Trending and Untrending

Definition 8 Trending and Untrending.) The Top-K edges are ranked
in non-increasing order by their firing rate. If an edge increases in rank be-
tween times t and t + 1, we say that edge is trending. Likewise, if an edge
decreases in rank between times t and t + 1, we say that edge is untrending.
Since it may be the case that an edge is trending/untrending, even though its
velocity remains unchanged, we introduce next the notion of significance in
trending/untrending.

Definition 9 Significant Trending.) An edge e exhibits significant trend-
ing if rank(e, t) < rank(e, t+ 1) and fr(e, t) < fr(e, t+ 1).

Trending/Untrending can be detected visually by examining the lifetime
path of an edge in the Top-K Tape. If an edge is trending, it will be shown
by a visual upward line between an edge’s representative dots. If there is
an increase in color while an edge increases in rank, this signifies Significant
Trending. If there is a decrease in color while an edge decreases in rank, this
signifies Significant Untrending (see dashed gray rectangle in Figure 12.2).

12.8.2 Herding and Straying

Edges that commonly co-occur share similar trending/untrending behavior
relative to one another. We introduce the concepts of Herding and Straying
(see light gray square in Figure 12.6).

Definition 10 Herding. Two edges, e and f , are defined to be herding if
diff (rank(e, t), rank(f, t)) = diff (rank(e, t + 1), rank(f, t + 1)), where diff
signifies the difference between two quantities.

Certain edges that are herding across multiple subgraphs, may break away
from their herd. An edge, e, is said to be straying at time point t (refer
to light gray rectangle in Figure 12.4) if e was herding with at least h other
edges at time point t− 1 and e is not herding with any edge at time point t.

12.8.3 Pattern Identification

At any time, an edge participates in a combination of Trending/Untrending
and Straying or Herding patterns, as defined in the previous subsections. The
possible transitions between these patterns can be formalized by a set of fi-
nite state transitions (Figure 12.7). These patterns can be used to generate
summaries for a graph stream.
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FIGURE 12.6: Tweets from the day following the Walter Scott shooting,
4/9/2015 - 4/12/2015

Definition 11 Pattern Score. If an edge is Trending/Untrending over a
time interval tpattern, we assign it pattern points equal to its net difference
in rank during tpattern. If an edge is Herding, we subtract points equal to the
number of edges it is herding with. If an edge is straying, we add to its pattern
score points equal to the size of the herd it strayed from.

If an edge’s score is strictly greater than 1, we place the edge into our data
summary. At this point, we verify if the summary is meaningful, in the sense
that it provides a large edge cover of the graph stream.

12.8.4 Verification and Evaluation

One useful concept involved in analyzing a graph stream is persistence. The
Top-K Tape records the history of recency and firing rate over time. However,
for longer data sets, the Top-K Tape may become too long with respect to
screen capacity, and not viable to view in its entirety. Thus, we would like
to summarize the graph stream via patterns that we observe over the Top
K Tape’s lifetime. These patterns (Trending, Untrending, Herding, Straying)
can be used to generate a collection of edges that represent a summary of the
Top-K Tape.

In early implementations, we had a human recording these events by hand.
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Appears in Top-K

Trend Untrend

No Trend

Leaves Top-K

Appears in Top-K

Am I in a herd?

Herd Stray

Leaves Top-K

Increase in rank Decrease in rank

No change in rank

Below µ + 2σ
Below µ + 2σ

Below µ + 2σ

Node moves with herd

No

Yes

Moves from herd

Moves to herd

Below µ + 2σ

Below µ + 2σ

FIGURE 12.7: Parallel life cycles of a Top-K edge
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Later, we automated the process to have a computer agent record these pat-
tern occurrences. To compare the two approaches, we needed to develop a
verification metric for a summary of a graph stream. We defined a summary
to be a collection of vertices. A “good” summary would be a collection of
vertices that covers a large portion of the graph stream. A “great” summary
would be a minimum vertex cover for the entire graph stream. With this in
mind, we defined a normalized metric to compare pattern summaries. As find-
ing a minimum vertex cover is NP -Complete, we will instead use a maximal
matching, which has a 2-approximation ratio to the a minimum vertex cover.
However, in extremely large graph streams (in terms of number of vertices and
edges), even taking the approximation may be too expensive. We take a dif-
ferent approach by incrementally taking the union of several smaller maximal
matchings.

Algorithm 1 Incremental summary ratio calculation algorithm

Data: graphStreamt, the graph stream up to time t
Result: Normalized Summary Ratio VertexCover = {}

for each time point t do
Let TK be the set of edges in the Top-K at time t
ACOVER = approxCoverViaMaximalMatching(TK)
VertexCover = VertexCover ∪ ACOVER
record numberOfVerticesCoveredBy(VertexCover) /
numberOfNodes(graphStreamt)

end for

We incrementally construct a cover by selecting a maximal matching for
the subgraph induced by the members of the Top-K Tape at the current time
point t. We union the maximal matching of this subgraph with our running
vertex cover. We record the ratio of coverage size over the total number of
vertices (see Algorithm 1).

Complexity. Ultimately, our proposed approach to graph stream process-
ing depends on

• the graph stream edge arrival rate,

• the processing speed of the available computing platform, and

• the amount of RAM buffer space available, for incrementally maintaining

– A fixed number of cumulative vertex graph stream statistics that
include vertex firing rate and their most recent active timestamps.

– The statistically selected Top-K edges and the corresponding new
set of vertices used to extend our greedy maximal matching cover
ratio.

Assuming that the processing speed ps is at least twice the graph stream
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edge arrival rate, and that the available RAM is O(|Vt|) we can process any
graph stream Gt = (Vt, Et) in the worst case in time O(|Vt|). This conforms
to the semi-external model of computation. However, in the arguably realistic
scenario where, at each time point t, the size of each instantaneous subgraph
is bounded, we can incrementally update the Top-K Edge buffer in time pro-
portional to its size.

12.8.5 Holes

Another useful pattern is what we call a hole. A hole at time point t
occurs when the number of edges with velocity greater than µe(t) + 2σe(t) is
less than the number of edges with velocity greater than µe(t+ 1) + 2σ(t+ 1).
As the number of edges included in the Top-K is dependent on the velocity
distribution of the graph stream, a hole signifies a change in the mean and
standard deviation of this distribution.

12.9 Twitter Data Sample Results

In order to test our graph stream abstraction, we created an implementa-
tion to process Twitter data. We provide to the Twitter API a set of query
words and obtain a collection of time-stamped tweets containing the input
keywords. We first remove non-alphanumeric words, stop words, convert all
letters to lowercase, and use a stemming algorithm [15] to represent words with
similar stem by the same representative. Each word in a tweet is mapped to
a vertex in the graph stream. If the set of words in a tweet is considered or-
dered according to their order of appearance in the tweet, it makes sense to
consider two words w-connected by a tweet if they are separated by no more
than w tweet words. The subgraph corresponding to a tweet is the graph
with vertices consisting of all words in a tweet and edges drawn between all
pairs of w-connected words. These cliques of w-connected words become our
instantaneous events (see definition 3).

The TwitterMap interface has several customization options for exploring
a given dataset. The user has the ability to pause/resume the incoming graph
stream for more detailed observation. They can also change the speed at which
tweets are read into the system, and the rate at which tweets will decay after
they have been processed in the system. In addition to this, the user can
control the number of labels present in the recency graph, and the visible size
of both the nodes and the edges within the Top-K Tape. We remove query
words from the analysis via a toggle button.
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12.9.1 Sample Results

Figure 12.2 shows tweets recorded during a major international conference
on “Maritime and Cyber security” under the query [maritime, security], on
03/02/2015 through 03/03/2015. Figure 12.4 shows a tape segment recorded
during a speech by President Obama on the subject of economic reform, un-
der the query [president, obama] on 07/24/2013. Figure 12.6 shows tweets
recorded the days following the police shooting of an unarmed African Amer-
ican man under the query [walter, scott] on 04/09/2015 through 04/11/2015.
Each of the shown tape segments differ from one another in terms of the
resulting visible color scheme and the types of visible Top-K patterns.

These visible patterns give us an intuitive way to visually describe the
graph stream over this time window. For example, the Obama tape segment
has

• few straying word pairs (light gray rectangle in Figure 12.4),

• heavy herding (light gray rectangle in Figure 12.4), and

• little color variation (both rectangles in Figure 12.4).

The fact that most of the word pairs are not changing in rank shows that
the conversation is dominated by a set of common words (see Figure 12.4
dashed dark gray rectangle). There are few straying words (see Figure 12.4
light gray rectangle) most likely caused by a group of select tweets being heav-
ily retweeted during this time window. This may be a characteristic of large
live public events where many commentators are sharing their views over so-
cial media. We can also notice that the highest ranked words are also negative
in connotation. We see word pairs such as “morally wrong” and “bad eco-
nomics” ranked at the top of our view.

We can contrast the Obama set with the Walter Scott set. One may notice
that the Walter Scott set features

• a varied color palette (dashed gray rectangle in Figure 12.6),

• large size herding (light gray rectangle in Figure 12.6), and

• a group of word pairs ranked above the Top-K purple virtual edge line
(see top of Figure 12.6).

The varied color palette shows that this conversation exhibited a more
diverse collection of activity patterns than the Obama speech set. The word
pairs have more time between their occurrences, and thus we see more of the
color scale (see light gray rectangle in Figure 12.6). The heavy herding tells
us that this conversation is also dominated by several groups of words with
similar behavior, most likely due to several tweets being heavily retweeted
in this time frame. The group of words above the Top-K purple virtual line
indicates that this particular set of words recently had a spike in activity (see
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top of Figure 12.6). We see that these word pairs are focused on the victim,
Walter Scott, and his wife Stephanie.

The security tape segments exhibit the following characteristics

• varied color palette (see entirety of Figure 12.2),

• a mix of both straying and herding (notice the contrast between straying
in the dashed rectangle and herding in the dashed oval in Figure 12.2),

• the black virtual edge is visible (see bottom left of Figure 12.2), and

• a relative lack of rank stability (light gray rectangles in Figure 12.2).

The varied color palette still signifies that this conversation has a more
diverse activity set of patterns than the Obama speech set (see dashed oval
in Figure 12.2). The visibility of the black virtual edge is indicative of a rise
in system acceleration (i.e., increasing velocity in a small period of time).
Observe that the word pair “security funding” strayed away from its herd
(see dashed rectangle in Figure 12.2), signifying a change in the focus of the
conversation.

12.10 Degree-of-Interest-based Visual Exploration

The previous sections have looked at the big picture of graph streams.
Once the viewer is familiar with that big picture, the question remains what
else is there? Are there further interesting characteristics that are drowned
out by the most prevalent features? This can be seen in the recency view in
Figure 12.3, where the two most common keywords “hurricane” and “irene”
are dominating the visualization making it very hard to take a closer look at
the other identified keywords. In this section, we take a closer look at these
“undercurrents” of the graph stream.

The method we apply for doing so is based on Degree-of-Interest (DoI)
functions. We can use these functions to capture those aspects that interest us
in the graph stream and increase the DoI of the involved nodes and edges, while
at the same time decreasing the DoI of nodes and edges involved in aspects
that are not of interest to us. Using the modular interface for specifying DoI
functions that we have previously presented [2], we can zero in on features of
interest in a step-by-step fashion depending on what we find in the process.

As a starting point, we use Figure 12.3 that shows the recency graph of the
tweets from 26-AUG-2011 with the two dominant keywords “hurricane” and
“irene”. We then define a DoI function that assigns a low DoI to these two
keywords (see DoI-module A in Figure 12.8), as well as to keywords with very
low firing rates (see DoI-module B in Figure 12.8) to cut down on the clutter.
The result of these removals can be seen on the right side of Figure 12.8.
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FIGURE 12.8: The first step of the DoI definition: Building a DoI func-
tion that removes the dominant keywords by manual selection (DoI mod-
ule A) and edges of low firing rate (DoI module B) by assigning them
low DoI values. The result can be seen on the right side. doi1(xi) =
min({inv(select(xi)), inter(firing rate(xi)))})

FIGURE 12.9: The second step of the DoI definition: Enhancing the DoI
function by adding a structural propagation (DoI module C) that distributes
high DoI values to neighboring nodes. The result can be seen on the right side.
doi2(xi) = min({inv(select(xi)), props(doi1(yi))})
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FIGURE 12.10: Additional results of the DoI function previously defined
in Figure 12.9 for two time points: 27-AUG-2011 (top) and 29-AUG-2011
(bottom).
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Smaller patterns emerge now and we can already see from this figure that
people were scared, president Obama was on the news, and that there were
many tweets about staying safe. One can also see a number of swear words
that appear frequently in the context of the hurricane tweets. A secondary
analysis using the Linguistic Inquiry and Word Count (LIWC)1 confirms that
these tweets are overwhelmingly emotionally negative with a 37.9 score on
emotional tone. Scores below 50 denote emotional negativity, scores above 50
denote emotional positivity [7]. To put this score in context, according to the
LIWC website the average score on emotional tone in social media lies at
63.35.

This first step allowed us already to form a more differentiated picture
than the original image. The drawback of the defined DoI function is that
it only focuses on keywords that occur often, but neglects those words that
appear in the context of these frequent keywords – i.e., words that are not
as frequent by themselves but regularly tweeted alongside the frequent words.
These contextual keywords can help to further derive meaning from the ob-
served structures. Hence in a second step, we add them back in by applying
a structural propagation of the DoI values derived from the first step to their
neighboring nodes, which is depicted as DoI-module C in Figure 12.9. Since
this propagation also adds the keywords “hurricane” and “irene” back in, we
have to subtract them again as shown by DoI-module D in Figure 12.9. The
result of applying this revised DoI function is depicted on the right side of
the figure. While at this point, it does not generate additional insights, one
can clearly see that certain keywords are now shown with more context –
e.g., “obama” is now connected with “president” and “americans”, and the
hurricane apparently “approaches” the “east” “coast”.

Prepared in such a way, we can now take a look at later time points using
the very same DoI function to examine the patterns that lie beneath the overall
Twitter hype around “hurricane” “irene”, which we filtered out. Figure 12.10
shows two time points: 27-AUG-2011 (top) and 29-AUG-2011 (bottom). In
the snapshot from 27-AUG-2011, one can see a pattern surrounding the “cat-
egory” of the “storm”, as its “strength” “weakens”. This captures nicely the
time point at which it was announced that hurricane Irene was downgraded
to a Category 1 hurricane. This is also reflected in the emotional tone of these
tweets, which score with 59.5 a much higher and even slightly positive emo-
tional tone than the day before. Yet this score plunges again right after the
landfall of Irene on the East Coast that brought flooding and power outages
in its wake. The emotional tone reaches a minimum of 34.92 on 29-AUG-2011,
when then presidential candidate Michele Bachmann commented on the dis-
astrous situation on the East Coast that hurricanes and earthquakes are god’s
warning to Washington. Mentions of this quote were frequently retweeted, so
that a corresponding pattern shows in Figure 12.10 (bottom). The overall
negative reception of this quote on Twitter together with the first mentions

1see http://www.liwc.net
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of the next “tropical” “storm” of the 2011 hurricane season “katia” seems to
have brought the emotional tone down to this minimum.

From these examples, it becomes apparent that the DoI-based inspection
of the streaming data is a valuable tool to define just the parts of the data that
are of interest while cutting down on the noise (i.e., keywords of low interest
cluttering the view) and the already known facts (i.e., the most dominant
keywords). Since the DoI function can be adjusted at any time throughout
the exploration, found facts – i.e., prominent keywords – can be added to the
exclusion list to bring out even more subtle details.

12.11 Conclusions

We have introduced a simple and useful view of graph streams as co-
occurrence graphs. The fundamental driving statistics are edge firing rate,
recency and edge persistence. They allow us to isolate edge group patterns
like “herding” and “straying” that can be used as proxies of interesting graph
stream behaviors. Salient nodes in the graph stream pop up as those vertices
with persistent firing rates substantially above the average firing rate of the
entire graph stream. Their selection is certified by their coverage ratio of the
entire stream. This ratio can be incrementally verified by either a human or a
computer. Drowned-out “undercurrents” of the graph stream can be brought
to light by using a modular Degree-of-Interest function that filters out the
known patterns in the stream and enhances the unknown ones.

The approach suggested here presents several directions of future research.
They include:

• Summarization of graph streams by transition diagrams

• Collaborative exploration of graph streams

• Detection of verifiable graph stream properties. Candidates include:
streams entropy, entropy norms, and discrepancy.
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