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Abstract
Graph visualization is an important field in information visualization that is centered on the graphical display of
graph-structured data. Yet real world data is rarely just graph-structured, but instead exhibits multiple facets, such
as multivariate attributes, or spatial and temporal frames of reference. In an effort to display different facets of a
graph, such a wealth of visualization techniques has been developed in the past that current surveys focus on a single
additional facet only in order to enumerate and classify them. This report builds on existing graph visualization
surveys for the four common facets of partitions, attributes, time, and space. It contributes a generic high-level
categorization of faceted graph visualization that subsumes the existing classifications, which can be understood as
facet-specific refinements of the resulting categories. Furthermore, it extends beyond existing surveys by applying
the same categorization to graph visualizations with multiple facets. For each of the introduced categories and
considered facets, this overview provides visualization examples to illustrate instances of their realization.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—
Line and curve generation

1. Introduction

Data often combines various aspects, such as spatial and tem-
poral frames of reference, or multiple attribute values per
data item. We term such data “multi-faceted” in accordance
with Kehrer and Hauser, who introduced this term to describe
this characteristic for scientific data [KH13]. The importance
and interplay of data facets are reflected in tailored visual-
ization techniques for multi-faceted data. In this report, we
provide an overview of visualizations specifically tailored to
multi-faceted graph-structured data.

All visualizations for graph-structured data have in com-
mon that they encode in some form the graph’s structure
– i.e., its nodes and edges – as this sets it apart from other
kinds of visualization. There are different ways to systematize
graph layouts and visualization methods. The most prevalent
one is to categorize them according to algorithmic considera-
tions [BETT99, HMM00, KW01, Tam13], but there also exist
categorizations according to the input data (trees vs. networks,
directed vs. undirected, etc.) [BETT94], to the principal vi-
sual encoding of the output visualization [vLKS∗11, SS06],
and to the user tasks the visualization supports [APS14].

† corresponding author: steffen.hadlak@igd-r.fraunhofer.de

On top of the structure, additional facets of graphs are
frequently included in their visualization. Existing surveys on
graph visualization commonly focus on one additional facet
to be shown, while other facets are considered as secondary
constraints or subtypes:

• The graph’s partitions – i.e., any grouping or clustering
of the nodes and/or edges – are explicitly addressed as
part of the research on Compound Graph Visualization, for
which a number of common layout techniques exist that
handle the specifics of partitioned graphs [BC01,VBW15].

• The graph’s attributes – i.e., its node properties and edge
weights – play a fundamental role in the field of Multivari-
ate Network Visualization that treats them as a representa-
tion challenge in their own right [KPW14].

• The graph’s dynamics – i.e., its time-varying structure
– is the subject of the field of Dynamic Graph Visualiza-
tion [BBDW14, KKC14a]. The distinction between static
and dynamic graph visualization is considered a primary
visualization challenge [Che06].

• The graph’s spatialization – i.e., fixed node positions
and sometimes even fixed routes for its edges – is usu-
ally considered a subdomain of Cartography and most of
the literature on (geo)spatial graphs has appeared in this
context [Rod05, Wol13].
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Figure 1: Facets of graph-structured data that are commonly included in graph visualizations.

As a result, the mentioned overview articles and surveys
provide to a large degree targeted classifications for the par-
ticular facet on which they focus. This stands in contrast to
many scenarios in which multiple facets of a graph are dis-
played – e.g., visualizations of attributed, spatio-temporal
graph structures as they occur for example in wireless mesh
networks [HSS11, HSCW13]. These multi-faceted scenarios
require a broader view of graph visualization that incorpo-
rates the commonly separated facets of graph-structured data.

In this report, we aim to reconcile these different per-
spectives with each other, thereby contributing a high-level
overview or “meta-survey” of the mentioned existing surveys
for faceted graph visualization. Our main thesis underlying
this report is that each facet of a graph can conceptually
be considered as being visualized separately and then being
composed into a final multi-faceted visualization. This com-
positional viewpoint resonates to some degree with most of
the existing surveys – most prominently in Kerracher et al.’s
design space for dynamic graph visualization [KKC14a]. In
Sec. 2, we distill this idea into a systematization approach
that allows us to create a uniform categorization of faceted
graph visualizations for a diverse set of facets. Sec. 3 presents
such a categorization for combinations of the graph layout
with representations of one additional facet out of the four
data facets that are commonly encountered with graph data:
partitions, attributes, temporal and spatial context. These are
schematically depicted in Fig. 1. This categorization effec-
tively reframes the classifications put forward by the existing
surveys in a consistent and relatable schema. As Sec. 4 shows,
our composition approach also allows us to go beyond the
existing surveys of single-faceted graph visualization by com-
bining them into graph visualizations with multiple different
facets. Finally to span the full breadth of multi-faceted graph
visualization, Sec. 5 discusses visualizations of multiple in-
stances of the same facet, before Sec. 6 concludes this report
by highlighting some open research questions.

2. Our Systematization Approach

There exist countless instances of visualization techniques
for multi-faceted graph data, which makes it impossible to
survey these techniques one by one in this report. To solve
this problem, we used a systematization approach that is:

• output-oriented by focusing on the visual result and thus
abstracting from other aspects, such as the different ways
to produce them (algorithmics) or to use them (user tasks),

• high-level or generic by abstracting from the concrete vi-
sual displays of individual facets and describing their com-
position instead, and

• exemplifying visualizations for each composition and dis-
cussing them in detail, rather than trying to list them all.

These aspects are detailed in the following in order to clarify
the methodology we use in this report.

2.1. An Output-oriented View on Graph Visualization

In graph visualization, the focus lies traditionally on the algo-
rithms that produce a graph layout with their visual properties
being a-priori constrained (e.g., uniform edge lengths) or a-
posteriori measured and optimized (e.g., number of edge
crossings). This focus stems from the inherent complexity of
the graph layout problem, which is intractable in case of con-
tradicting visual constraints and still remains NP-complete
when prioritizing them [DPS02] or when reducing the prob-
lem to a simpler graph class, such as trees [MS04]. Thus a lot
of research is devoted to developing layout heuristics that re-
duce the problem’s algorithmic complexity while maintaining
a high visual quality of the outcome.

Over the last decade, this focus has slightly shifted to-
wards considerations of the utility of the generated graph
layouts for various user tasks. This is only natural, as differ-
ent tasks impose different requirements on the visualization.
For example, an interactive exploratory traversal of a net-
work requires other visual properties than a static overview
for its presentation. Hence, recurring tasks for graph visu-
alization have been identified [LPP∗06] and subsequently
refined for the various graph facets – e.g., for partitioned
graphs [SSK14], for multivariate graphs [PPS14], and for
dynamic graphs [APS14, KKC14b].

In order to handle this variety of the diverse layout algo-
rithms for generating and the numerous ways of using graph
visualizations, we recognize that end users are mainly con-
cerned with the final “look-and-feel” of a visualization We
thus adopt an output-oriented perspective that aims to system-
atize the observable visual encodings, instead of the possibly
large number of different ways to produce it or to use it.
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(a) juxtaposition (b) superimposition (c) nesting

Figure 2: Composition mechanisms for two facets in display space exemplified for different graph structures and their geospatial
context. Compositions realize different ways of putting focus on a representation: while the juxtaposition (a) provides a balanced
view, the superimposition (b) features a clear, underlying base representation that determines the positioning for all overlaid
facets. This is also the case for nesting (c), as the nested facet has to obey the positioning and space constraints of the base
representation. Depending on the base representation, the possible utilization of the outcome can differ significantly. For example,
both instances of nesting (c) show the same data – yet, the nested subgraphs on the left convey which nodes belong to a given
geospatial area, whereas the nested areas on the right show which areas belong to a given node.

2.2. A High-level Systematization through Composition

As the graphical encoding is largely different from facet to
facet, each facet would require its own categorization, based
on their respective graphics. This is basically the abstrac-
tion level used by most of the existing surveys, which focus
on a single additional facet – e.g., the surveys for dynamic
graphs [BBDW14, KKC14a] use such visual distinctions. In
order to provide a uniform systematization for all different
data facets, we adopt a higher-level approach that focuses
on the different ways for combining visualizations of graph
facets instead of what these visualizations are. There are a
number of possible combinations and we discern them by
their base representation and composition modality.

The base representation of a combination names the pri-
mary graph facet whose depiction governs the central aspects
of the composited visualization, whereas any other facet is
merely added onto this base representation. For example,
when combining the graph structure with its attributes, the
base representation can either be a graphical layout of the
structure with added visual cues for the attributes; or it can be
a multivariate visualization of the attributes that is enhanced
with edges to show the structure. The base representation can
be more or less pronounced, but can usually be determined
if the graph is large enough to prevent equal treatment for
each facet due to limited screen space. Whereas for smaller
datasets, it may be possible and desirable to show all facets in
a balanced way without a discernable focus on one of them.
This is either done by placing the representations of both
facets in multiple coordinated views [Rob07] and connecting
them via linking and brushing [BMMS91], or both facets are
considered to be nodes of a bipartite graph [ADH98] and
interleaved in a combined visualization.

The composition modality denotes whether the combina-
tion of the facets is realized through a spatial composition that

utilizes the display space, or through a temporal composition
that utilizes display time. For both composition modalities
exists a variety of realizations. For the spatial composition
of visualizations, the literature enumerates different possibili-
ties, such as juxtaposing two visualizations, superimposing
them, or nesting them [JE12, GAW∗11]. Fig. 2 illustrates
these three composition methods for the case of different
graph structures being combined with a geospatial facet. For
the temporal composition, notable results in the direction of
establishing an agreed-upon set of possible realizations have
been made [KK95, Fis10]. In principle when combining two
facets in display time, we iterate over the elements of one
facet and display the corresponding other facet. For example,
in dynamic graph visualization, we could either iterate over
the temporal facet and show the graph structure present at
each time point to analyze the dynamic network, or we could
traverse the structural facet and highlight all time points at
which a node is present to investigate the network dynamics.
We discern between two degrees of freedom for steering such
an iteration: predefined compositions run automatically, as
in an animation, and freely adjustable compositions allow
the user to determine the sequence of views on the fly via
appropriate GUI controls.

In general, spatial and temporal composition are challeng-
ing and despite much research on them, there remain a num-
ber of hard algorithmic questions to which no final answers
have been found yet. A common problem of the spatial com-
position is edge clutter of a superimposed or nested graph
structure that obscures the underlying base representation.
The most prominent solution to this problem is the use of
edge bundling [ZXYQ13]. Whereas the most challenging
problem of the temporal composition is to create a base rep-
resentation that remains coherent over the course of the iter-
ation and preserves the mental map [Bra01]. This is usually
achieved by confining layout changes to only those local re-
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gions in which underlying data changes occur, while keeping
the global layout stable [BIM12, MELS95]. In case of both
composition modalities being used for different facets, it can
also occur that both challenges must be addressed concur-
rently – for example in the form of an edge bundling that is
stabilized over the course of an animation [HEF∗14].

2.3. Exemplification instead of Enumeration

While other surveys aim to provide a complete enumeration
of existing visualizations (e.g., [Sch11]), this is impossible
for multi-faceted graph visualization techniques, as there are
simply too many. This is underlined by the fact that each of
the considered facets forms the subject of its own domain in
visualization:

• Displaying partitions and clusters is addressed in Euler
diagrams [Rod13] and set visualization [AMA∗14].

• Showing (numerical) attributes of data is the concern of
multivariate visualization [WB97, FH09].

• Representing dynamic data is the challenge of visualization
for time-oriented data [AMST11, Wil12].

• Depicting spatial data is mainly understood as showing
geospatial data and addressed in cartography [KO10] and
geographic visualization [DMK05, DMT08].

The combinations of the many individual techniques these
domains comprise into multi-faceted visualizations is sheer
endless and modern multi-view visualization systems can
easily be configured to produce hundreds of different combi-
nations. Therefore, we concentrate on only a few examples
per combination possibility and facet, which allows us in
turn to provide a more detailed description of them. They
stand as representatives for other, often similar visualization
techniques that fall into the same category.

3. Visualizations of the Graph Structure and One
Additional Facet

In this section, we present the proposed categorization by
systematically discussing all possible combinations of a vi-
sualization of the graph structure (G) with a visualization
of one additional facet (∗). Together with the composition
mechanisms introduced in the previous section, this generates
the following five combinations:

Spatial composition of two facets means that they must
both be accommodated in the same visualization, with the
base representation determining the principal visual encoding.
We denote this composition by straight arrows – a one-sided
arrow← pointing towards the base representation in which
the other one is incorporated, and a double-sided arrow↔
when both representations are combined in a balanced way
without a particular focus on one of them.

• [G←∗] Using the graph structure in the base represen-
tation implies that an underlying graph layout is enhanced
via superimposition or nesting with a visual representation
of the respective other facet.

• [G↔∗] A balanced display of two facets can be achieved
by juxtaposing them – either with each facet in its own
display space as linked views or by interleaving them in
the same display space as a bipartite graph.

• [∗← G] Using the other facet in the base representation
implies that this facet is visualized and the graph structure
is added onto it by means of superimposition or nesting.

Temporal composition of two facets means that we only
show the base representation and iterate over the other facet.
As the facet over which the iteration runs remains mostly
invisible, there cannot be a balanced composition in display
time, because the visible base representation clearly deter-
mines the visual appearance. Another difference to the spatial
composition is that the visualization is not produced once,
but reproduced for each iteration step. This aspect of an itera-
tively changing display is embodied in the circular arrow �� �

that we use to denote this composition.

• [G �� � ∗] Using the graph structure in the base representa-
tion implies that the user iterates over the respective other
facet and sees the corresponding parts of the structure –
e.g., looping through a list of spatial regions and showing
the subgraph(s) that belong to each region.

• [∗ �� � G] Using the other facet in the base representation
implies that the user traverses the graph structure by iterat-
ing over the nodes and/or edges and thus adapts the display
of the other facet to show only those items that relate to
it – e.g., stepping through the nodeset of the graph to see
which spatial regions they lie in.

In the following, these five types of composition are applied
to the four facets of partitions (∗= P), attributes (∗= A), time
(∗= T ), and space (∗= S). The resulting categorization for
each facet is compared to the classifications derived by other
surveys for the individual single-faceted graph visualizations.

3.1. Partitions: Compound Graph Visualization

Combining the graph structure and its partitioning in one
visual display is often done to show graphs that would be
too large to be shown in an unclustered, fully detailed way.
Such a partitioning can either be a classification that is given
with the graph-structured dataset or a computed clustering
for which a wide range of methods exists [Sch07]. Often,
partitions are given and shown in form of a hierarchy (e.g., a
dendrogram) with larger partitions including smaller ones.

3.1.1. Spatial Compositions

[G← P] Graph structure as base representation: The
first figure in Table 1 shows the level-of-detail visualization
technique [BD07] that takes a given 3D layout of the graph
structure and constructs semi-transparent implicit surfaces
around groups of nodes of the same partition. Note that in
order to yield discernable clusters, the underlying layout must
separate them well [NL05]. The nodes are classes of an object-
oriented software and the edges denote method calls among
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Table 1: Examples for combinations of structure and partitions in one visualization.

structure as base representation balanced representation partitions as base representation

sp
at

ia
lc

om
po

si
tio

n

[G← P] Level-of-Detail
Visualization [BD07]

[G↔ P] Coordinated Graph
Visualization [TAS09]

[P← G] Hierarchical Edge
Bundling [Hol06]

structure as base representation partitions as base representation
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[G �� � P] Grouse [AMA07] [P �� � G] Vizster [HB05]

them. The partitions are formed by the inheritance hierarchy
in which the classes are embedded. Roughly speaking, the
transparency of each implicit surface is increased the closer it
is to the viewpoint and decreased the further away it is. This
way, surfaces, which are too close, become invisible as they
are completely transparent; and surfaces, which are too far
away, become invisible as they are occluded by an already
opaque “parent surface”. Only surfaces at a certain distance
are visible, which corresponds to a horizontal cut through the
partitioning hierarchy – i.e., a maximal anti-chain [AvHK06].

[G↔ P] Balanced representation: The second figure in
Table 1 shows the graph structure and its partitioning in
two adjacent views as they are provided by the CGV sys-
tem [TAS09]. The dataset is a network of search queries (the
nodes) that are linked via edges if they occurred within the
same period. Its partitioning was computed using the Markov
clustering algorithm [vDAG12] and the clusters are shown
as metanodes in the graph view. Both views are linked, so
that selecting a cluster in the hierarchy will change the graph
visualization to bring it into view. Whereas selecting a metan-
ode in the graph view will unfold its contained (meta-)nodes,
corresponding to a drill-down operation in the partition hier-
archy [EF10] that moves the anti-chain downward. Further
examples are the ASK-GraphView system [AvHK06] and the
TreeMatrix technique [RMF12], which combine representa-
tions of the partitioning with a matrix visualization of the
graph structure.

[P← G] Partitions as base representation: The third fig-
ure in Table 1 shows a software class hierarchy whose in-
heritance relationship (i.e., the partitions) is laid out as a
treemap [JS91] first and then the method calls among the
leaves are added in the form of edges. These edges are further
bundled [Hol06] to reduce the visual clutter that is generated
by such a superimposition [FWD∗03]. In contrast to the two
previous combinations, this technique prevents overcrowding
of the visualization by bundling the edges into metaedges,
but leaves the individual nodes visible and does not com-
bine them into metanodes. Another example is the SWViz
application [ACJM03] that represents the clustered graph by
a hierarchical nesting of node-link visualizations. Connec-
tions between nodes from different clusters are neglected and
instead visualized as edges between the clusters.

3.1.2. Temporal Compositions

[G �� � P] Graph structure as base representation: The
fourth figure in Table 1 shows the visualization tool
Grouse [AMA07]. It displays parts of the Internet Movie
Database where the nodes are actors, and the edges denote
that two actors have appeared in a movie together. The left
side shows a tree view of a computed cluster hierarchy, effec-
tively presenting a GUI control with which users can steer the
iteration over the clusters, changing the shown graph structure
step by step. The right side shows the graph structure within
the selected cluster in detail in the center and all connected
clusters as metanodes in its context. A further example is
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the GMine system [RTT∗06] that also follows the idea of
focusing on a specific cluster for the exploration. To help the
visual inspection of a cluster, distortion techniques such as
semantic fisheye views [LEH05] can be employed to increase
the display space of the cluster in focus.

[P �� � G] Partitions as base representation: The fifth figure
in Table 1 shows Vizster [HB05], a visualization system for
social network exploration. In a social network, nodes are per-
sons and edges denote friendship, kinship, or any other social
relation between two persons. Its initial view selects a current
user and displays all persons who are directly connected to her
– i.e., her so-called ego-centered network [WF94, ch.2.3.3].
Depending on their interconnections, these “friends” are par-
titioned into communities and color-coded. The user can
interactively traverse the graph by selecting another person
(node) among the shown ones, which will then become the
center of a new ego-centered network and show its communi-
ties. This way, one can iterate in a step-wise, user-adjusted
fashion over the graph structure.

3.1.3. Relation to Existing Surveys

While one of the existing overview articles on compound
graph visualization [BC01] is solely concerned with the al-
gorithmic side of the layout generation and thus cannot be
directly related to our five categories, the other one [VBW15]
shows interesting parallels:

• [G← P] encompasses the classes contour overlay and
line overlay that draw the graph first and superimpose the
partitions as Jordan curves or simple lines, respectively.
Furthermore, it captures the very similar class called em-
bedded, which basically adds metaedges among the parti-
tions, thus turning them into nodes (i.e., metanodes) them-
selves. Finally, it also subsumes the class of visual node
attributes, which denotes a nesting of more or less elabo-
rate representations of partition membership in the nodes –
e.g., in the form of glyphs.

• [G↔ P] maps directly to the class called juxtaposed in
which each facet is drawn in a dedicated part of the drawing
area – either in a completely separate way or in a synced
manner that aligns the positioning of both facets.

• [P← G] relates directly to the class called partitioning
that maps the partitions onto space-filling partitions of the
drawing area and superimposes the graph accordingly.

Our categories [G �� � P] and [P �� � G] are not captured by
this survey, as it does not consider the iteration over the parti-
tions or the graph structure via animation or user interaction.

3.2. Attributes: Multivariate Graph Visualization

Showing the graph structure together with node attributes
and/or edge weights is a prevalent theme in graph visualiza-
tion. As it was the case for partitions, such attributes can
either be part of the dataset or they can be computed for all
nodes/edges, usually to quantify local aspects of the graph

structure [WFC∗06]. While a single attribute is easily mapped
onto a visual variable such as node size or color, the incorpo-
ration of multiple attributes can be realized as follows.

3.2.1. Spatial Compositions

[G← A] Graph structure as base representation: One of
the most common compositions is the use of a standard graph
layout for the structure and embedded attributes within the
nodes. This is shown in the first figure in Table 2 with a visu-
alization taken from the DBE-GRAVISTO network analysis
and graph visualization system [BHK∗05]. The graph struc-
ture represents parts of the metabolic network of the Narbon
bean and the shown detail represents the citric acid cycle. For
each metabolite (node) of this network, different attributes
are shown in an embedded bar chart. These are measured
substance levels for each metabolite in different lines of the
bean, with dark gray being the wild type and light gray being
several transgenic lines. Other examples of this category em-
ploy various kinds of glyph-based attribute visualizations to
embed in nodes [ME09] or edges [EDG∗08].

[G↔ A] Balanced representation: This spatial composi-
tion through linked views is probably the most straightfor-
ward one, as it does not require additional effort in gener-
ating a new visualization, but can be realized by means of
two standard visualizations – a layout of the graph structure
and a multivariate visualization of the attributes. The second
figure in Table 2 shows the Tulip graph visualization sys-
tem [Aub04] with the graph structure on the left side and
a series of histograms on the right side. The dataset in this
example is a poker network in which the nodes are poker
players and the edges denote that one player lost and paid
to the other. The node attributes shown in the histograms
include common player metrics, such as the number of hands
played and the total gain obtained, and edge weights denote
the amount of money paid. Besides linked views, there also
exist techniques that interleave both facets in the same dis-
play space. For example in JauntyNets [JKZ13], attribute
values are handled as an additional nodeset and each of these
“value nodes” is connected to the graph nodes exhibiting its
corresponding attribute value.

[A← G] Attributes as base representation: The third fig-
ure shown in Table 2 depicts a food web using semantic
substrates [AS07]. Nodes represent different species and di-
rected edges are predator to prey relations. For each species,
attributes are given for its metabolic category, its average
mass and length. The layout uses these attributes to position
the nodes. In the example, it first defines regions of the draw-
ing space according to the metabolic categories. It then put
a scatterplot into each region, using average length as x-axis
and average mass as y-axis. Each node can thus be placed
according to its attributes. As such a positioning often intro-
duces overplotting between nodes having the same attribute
values, it is also possible to relax the layout by applying a
node overlap removal [TS13]. Similar techniques to semantic
substrates are PivotGraph [Wat06] and GraphDice [BCD∗10].
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Table 2: Examples for combinations of structure and attributes in one visualization.

structure as base representation balanced representation attributes as base representation

sp
at

ia
lc

om
po

si
tio

n

[G← A] DBE-GRAVISTO [BHK∗05] [G↔ A] Tulip [Aub04] [A← G] Semantic
Substrates [AS07]

structure as base representation attributes as base representation
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[G �� � A] Point-based Representation [SHS11] [A �� � G] Paired Parallel Coordinates [SHQ08]

3.2.2. Temporal Compositions

[G �� � A] Graph structure as base representation: The two
views shown in the fourth figure in Table 2 were produced
using a point-based representation that layouts a tree in a very
space-efficient manner [SHS11]. By adjusting the GUI con-
trol underneath the visualization, different ranges of interest
for an associated attribute can be set to iteratively adjust the
displayed structure to only show the nodes of the hierarchy
whose attribute values are within that range. In the exam-
ple, the shown hierarchy is a large hierarchical topic index
for websites and the attribute mapped on display time is the
number of weblinks in each of its categories.

[A �� � G] Attributes as base representation: The fifth figure
in Table 2 shows paired parallel coordinates [SHQ08] – a
parallel coordinates visualization of node attributes. The user
can select nodes in an adjacent display (not shown in the
figure) and for each node, a polyline is added to the parallel
coordinates. If an edge connects two of the shown nodes,
the space between their respective polylines is colored gray.
The figure shows nodes and edges from a social network
with associated node attributes, such as the number of posted
photos, friends, wall posts, and groups of which they are a
member. The user can traverse the graph structure node by
node or edge by edge to get a step-wise impression of their
attributes. Another example for this category is the network
lens [JDK10] for traversing the graph structure and showing
the associated attributes next to the nodes within a lens.

3.2.3. Relation to Existing Surveys

The classes from the recent overview on multivariate network
visualization [KPW14, ch.1.2] relate in part to our categories:

• [G← A] includes the integrated approaches that nest at-
tributes in the nodes of a graph layout.

• [G↔ A] covers the multiple and coordinated views.
• [A← G] corresponds to the semantic substrates and

attribute-driven layouts, which are more fine-grained dis-
tinctions within this category.

In addition, the recent overview also features the visualiza-
tion class hybrid approaches, in which at least two of the
other classes are combined – e.g., semantic substrates and
an integrated approach. Yet, the two facets of structure and
attributes can only be integrated once via either one of these
classes. Thus hybrid approaches occur either when other
facets such as time or partitions are added (cf. Sec. 4), or
when multiple instances of facets are integrated (cf. Sec. 5).

Finally, our two categories [G �� � A] and [A �� � G] are not
captured by these five classes, as they incorporate interaction
in the form of user-adjustable iteration, while the classifica-
tion of the overview considers only “visual mappings”.

3.3. Time: Dynamic Graph Visualization

Visualizing graph data that evolves over time is a major re-
search challenge, as laying out a single graph structure is
already hard, but doing it for multiple structures – one for
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Table 3: Examples for combinations of structure and time in one visualization.

structure as base representation balanced representation time as base representation
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[G← T ] Visual Unrolling [BC03] [G↔ T ] Topic Shift
Visualization [TDKB07]

[T ← G] Porgy [PMD12]

structure as base representation time as base representation

te
m

po
ra

lc
om

po
si

tio
n

[G �� � T ] GraphDiaries [BPF14] [T �� � G] 1.5D Visualization [SWW∗15]

every time point – in a coherent and discernable way is ulti-
mately harder. That is why a large body of research exists on
this topic with a variety of different visualization solutions.

3.3.1. Spatial Compositions

[G← T ] Graph structure as base representation: The
first figure in Table 3 shows a 2.5D visualization [BDS04]
that maps the temporal facet onto the third dimension. It
basically stacks semitransparent 2D graph layouts on top
of each other in their temporal order. As a result, the lay-
outs corresponding to earlier time points are barely visible
at the bottom of this stack, while the most recent at the top
are well discernable. The shown dataset is of a discussion,
where the nodes are nouns extracted from statements being
made and the edges denote whether the nouns were used
in the same sentence. The timeline is simply the progress
of the discussion with each time step being a full statement
of a participant of the discussion. The idea of such a 2.5D
stacking is very common and can be found in multiple visu-
alizations [GW06, BPF14]. Another common way to realize
this particular composition is via nesting of the temporal facet
as a line plot inside the nodes or edges in the same sense as
it is done for attributes [SLN05]. The pixel matrix [SWS10]
uses this idea to encode the presence or absence of edges at
various time points in a matrix display.

[G↔ T ] Balanced representation: The second figure in
Table 3 interleaves both facets in the same drawing space,

instead of juxtaposing their independent views. This is done
by showing not only the nodes of the graph, but also encoding
the time points as nodes of a different kind and connecting
each “time node” with the graph nodes that are present at the
respective time point. The figure shows a topic shift visualiza-
tion [TDKB07] of a corpus of scientific paper abstracts. The
visualization contains a number of terms derived from these
abstracts as graph nodes and their respective years of publi-
cation as “time nodes”. A term is connected to the year(s) in
which it occurred in an abstract. Note that the visualization
does not feature any edges among the graph nodes, as the
evolution of the edges is hard to encode likewise – for ex-
ample, by linking each edge of the graph structure via “time
edges” to certain “time nodes”, i.e., years.

[T ← G] Time as base representation: The temporal facet
as an underlying base is mostly utilized by small multi-
ples [Tuf90] that use a linear or grid-structured tiling of the
display space to encode the time points. This underlying grid
serves as the base representation in which the graph structure
is embedded at each time point. Techniques that use such
small multiples are, for example, DiffAni [RM13] and Ma-
trixFlow [PS12]. Yet this particular combination becomes
even more useful when the time is not simply linear (i.e.,
a timeline), but complex enough to be explicitly displayed
itself – e.g., in the case of branching time. The third figure
in Table 3 displays a part of such a visualization from the
Porgy environment [PMD12] that layouts time in the form of
a state-transition-diagram and embeds the graph structure at
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each state. It is used for graph rewriting systems that apply
rewriting rules (transitions) to certain states. In the shown
case, the graph structure is a biochemical network of proteins
and interactions between them. Through this combination
and some additional compression, such as shortening paths
of transitions that do not branch, all possible state transitions
for a network are shown in one visualization.

3.3.2. Temporal Compositions

[G �� � T ] Graph structure as base representation: This cat-
egory stands for the common mapping of “time onto time”.
The fourth figure in Table 3 shows GraphDiaries [BPF14], a
visual interface that combines a layout of the graph structure
at a given time point with an interactive slider as GUI control
to steer which time point is shown. The temporal stability of
the layout is achieved by using a common initial layout from
which the individual layouts are derived for each time point.
Both figures show a co-authorship network at a selected point
of its evolution. In the left figure, nodes are color-coded in
blue, which have been added since the previous time point;
whereas in the right figure, nodes are color-coded in orange,
which will be removed at the next time point. There are many
further examples building on graph animations that mainly
differ in the strategy for maintaining the layout’s stability and
thus the user’s mental map [BIM12, Sec.3].

[T �� � G] Time as base representation: The fifth figure in
Table 3 shows a 1.5D visualization [SWW∗15] that displays
the timeline for a selected node in the center of the view. Other
nodes are connected with lines to the respective time points
at which these nodes were direct neighbors of the selected
node. By traversing the graph structure and selecting different
nodes, their connectivity over time can be investigated in
a step-wise manner. The figure depicts a communication
network, where the nodes are mobile phone users and the
edges are SMS texts. By looking at the connection patterns
over time, spammers can be identified, as they connect to a
different set of users at each time point (left figure) instead
of repeatedly connecting to mainly the same group of people,
like a regular user (right figure). Instead of its adjacent nodes,
one can also show a node’s incident edges over time [Rei10].

3.3.3. Relation to Existing Surveys

For the dynamic graph visualization surveys [BBDW14,
KKC14a], we can find the following correspondences:

• [G← T ] incorporates the classes superimposi-
tion [BBDW14, KKC14a], layered [BBDW14], and
additional spatial dimension [KKC14a], which all denote
stacked combinations in some shape or form. In addition,
the classes nested [KKC14a] and intra-cell [BBDW14]
also fall into this category as they capture the embedding
of the temporal facet in general or in matrices, respectively.

• [G↔ T ] includes the classes integrated [BBDW14] and
time as node [KKC14a], which subsume combined and
tightly interwoven visualizations of both facets.

• [T ← G] corresponds to the class of juxtaposi-
tion [BBDW14, KKC14a], which is comprised of
visualizations using small multiples.

• [G �� � T ] relates directly to the classes anima-
tion [BBDW14] and sequential views [KKC14a].

In addition, a class of visualizations called merged [KKC14a]
is given, which describes a transformation into the domain of
multivariate graph visualization by computing a union graph,
as it is discussed in Sec. 3.5.

Our category [T �� � G] appears in neither of the two surveys,
probably because only few visualizations exist in this cate-
gory. A reason for this underrepresentation may be that these
visualizations violate the congruence principle [TMB02],
which states that it is more intuitive to map “time onto time”
and “space onto space” than the other way around.

3.4. Space: Spatial Graph Visualization

A spatial facet is usually thought of as a geospatial frame of
reference for the data, which can be given at various levels of
granularity: from all positions being fixed at point locations to
mere inclusion relations with a set of areas or regions. On top
of that, other forms of spatial facets have recently emerged
– for example for graphs from the biomedical domain, the
spatial context can also be the organs of the human body or
the compartments of the biological cell, instead of countries
of the world. This detaches the tight relation of visualization
of spatial facets to the cartographic domain and opens up new
representation possibilities as they are among the following
examples, as well.

3.4.1. Spatial Compositions

[G← S] Graph structure as base representation: The
first figure in Table 4 has been generated with the generic lay-
out algorithm [SDMW09]. It first draws the graph structure
and then superimposes spatial groupings through set visual-
ization mechanisms, as we have discussed them in Sec. 3.1.
The figure depicts a metabolic pathway with a bipartite graph
structure (nodeset1= compounds, nodeset2= reactions) and
denotes the involvement of a compound in a reaction with
an edge. Each reaction is associated with a particular cell
compartment in which it occurs, including transport reactions
between the compartments. Another approach is to represent
the spatial facet as an embedded glyph [JRS12].

[G↔ S] Balanced representation: The second figure in
Table 4 depicts the MOM system [GDLP09] showing a co-
authorship network. The geospatial context is displayed on
the left side with an overlaid graph that connects European
countries that cooperated in co-authoring papers. The graph
structure is shown on the right side with authors as nodes
and joint collaboration on a paper encoded as edges. Note
that these juxtaposed views are not linked via brushing and
highlighting, but with static visual links [CC07] that preserve
the connections between the two views even on a printout.
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Table 4: Examples for combinations of structure and space in one visualization.

structure as base representation balanced representation space as base representation
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[G← S] Generic Constraint-based
Layout [SDMW09]

[G↔ S] Matched One-to-Many
graphs (MOM) [GDLP09]

[S← G] KDE-based Edge
Bundling [HET12]

structure as base representation space as base representation
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[G �� � S] Network maps [RLFP11] [S �� � G] HIVE [JRS12]

[S← G] Space as base representation: The third figure
in Table 4 shows a visualization of flight routes over the US.
The nodes of this graph are airports and the edges are flights
over a given period of time. These flights were originally
shown as straight lines, which produced massive edge clutter
leaving almost none of the underlying map visible. To reduce
this clutter, a kernel-density-estimation-based edge bundling
has been applied [HET12]. For coping with different spatial
scales, it is possible to use insets for first nesting detailed
spatial views into spatial overviews, before overlaying it with
the graph [BKA∗15]. In the case that entire graphs are asso-
ciated with regions of the map, embedding techniques have
been developed that aim to adapt the graph layout to arbitrary
spatial areas [HTSS10].

3.4.2. Temporal Compositions

[G �� � S] Graph structure as base representation: The
fourth figure in Table 4 shows a visualization of the
world wide web broken down into subnetworks by coun-
try [RLFP11]. The nodes represent autonomous systems such
as internet service provides or large companies handling the
data transport and the edges represent consumer-provider re-
lationships indicating a data exchange between them. The
left side features a world map as an interactive overview and
GUI control in which the user can select countries of interest
and thus steer which subgraph to show in the detail view on
the right side. This way, the user can iterate step-by-step over
the spatial facet and investigate the respective subnetwork.

[S �� � G] Space as base representation: The fifth figure in
Table 4 shows the HIVE system [JRS12] depicting floral
organs of thale cress in a 3D rendering. The associated graph
structure (not shown) is a gene regulatory network of genes
(the nodes) and regulatory processes, such as inhibition or
activation (the edges). Selecting a node – i.e., a gene – will
highlight its expression across the various floral organs in the
“spatial view”. Iterating through the different genes maps the
graph structure to display time, showing the different regions
in which the gene expression is high (red) or low (blue).

3.4.3. Relation to Existing Surveys

The few existing overview articles on this field of graph
visualization [Rod05, Wol13] focus mainly on algorithmic
aspects of the visualization and different structural features to
be visualized, but not on the visual aspects themselves. Thus,
it is not possible to establish direct relations between our five
categories and the distinctions they make.

3.5. Transformational Approaches

From a few of the examples given in the previous four sec-
tions, it becomes clear that a correspondence exists between
some of the facets. For example, nodes that belong to the
same spatial region can also be thought of as belonging to
the same partition (i.e., a partition based on geographical
regions) or as having the same categorical attribute (i.e., the
name of the region). These correspondences can be used to

c© The Eurographics Association 2015.



S. Hadlak, H. Schumann, H.-J. Schulz / A Survey of Multi-faceted Graph Visualization

(a) Group-in-a-box Layout [SD13] (b) GMap [GHK10]

Figure 3: Visualization examples that utilize the correspondence between geographical regions of a spatial facet and sets of a
partitioning: (a) The Group-in-a-box Layout [SD13] is in fact a technique for partitioned graphs. So, when clustering a given
spatial graph according to its geographical regions, it can be used to show the graph as a grouped collection of subgraphs. (b)
GMap [GHK10] takes a given partitioned graph and spatializes its partitions into regions of an abstract map.

adapt visualizations to one facet despite them being originally
developed for another facet. This is illustrated in Fig. 3 for
space and partitions. It is noteworthy that their correspon-
dence goes both ways, albeit turning partitions into spatial
regions of an abstract map is considerably harder.

If no apparent correspondence exists, we can still trans-
form one facet into another by means of computation. For
example, we can express the key characteristics of the graph
structure by means of structural metrics [WFC∗06, BB05]
and thus effectively transform the structural facet into numer-
ical attributes. This permits displaying them with multivariate
visualization techniques that do not explicitly show the graph
structure at all – e.g., with scatterplots [WFC∗06] or time-
value plots [JSS∗13]. Another possibility is to maintain the
graph structure, but to transform one of the other facets to use
a different kind of visualization. The most common variant
is the generation of a supergraph or union graph [DGK01],
transforming the temporal facet of a graph structure into an
attribute: it combines all nodes and edges that exist in the
graph at least at one point in time into a static graph structure
and annotates them with an attribute that contains the time
point they were first added to the graph. This way, it can be
visualized using a multivariate graph visualization instead of
a dynamic graph visualization. The union graph and other
transformational approaches are shown in Fig. 4.

3.6. Summary

In sum, the categorization yielded from our combination
approach and used in Sections 3.1 through 3.4 gives a com-
prehensive coverage of single-faceted graph visualizations.
However, we should mention that in some cases it can be chal-
lenging to determine the underlying base-representation. One

instance that illustrates this challenge is the force-directed
layout of clustered graphs [EH00], whose end result seems
equally likely to be either a nested drawing of clusters with
added nodes and edges, or a node-link layout of the nodes and
edges with added clusters. A reason for this is the generality
of our high-level categorization that comes with its broad
coverage of different facets. Many of the existing surveys
of single-faceted graph visualizations feature further classes
to capture such nuances. From the comparisons of our cate-
gorization with the existing surveys, one can find additional
classes of visualizations in these surveys for one or more of
the following three reasons:

• A number of visualization classes are actually more de-
tailed subdivisions of one of our categories – for example,
as they further discern between node-link diagrams and
matrix displays. This can be taken as an indication that
many visualization techniques exist for a particular facet
and category, so that the existing classifications found it
necessary to further subdivide them.

• A visualization class is mainly concerned with the trans-
formation of the data so that it can be visualized with a
different type of visualization altogether.

• A visualization class does not only involve a single facet,
but either multiple different facets or multiple instances
of the same facet.

The first of these aspects is out of scope for our report, which
is focused on incorporating all facets under one categorization
and does not cater towards particularities of individual facets,
and the second of them has already been discussed in the
previous section. This leaves the latter of these three aspects,
which will be discussed in the following sections.
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(a) TVNViewer [CXP∗12] (b) Participatory Sensor Network Visualization [SdMA∗12]

(c) Union Graph Visualization [RUK∗10] (d) Multivariate Graph Visualization [PvW08]

Figure 4: Examples of transforming one facet into another in order to utilize approaches from different (graph) visualization
domains: (a) The TVNViewer [CXP∗12] transforms the structural facet of a dynamic graph into attributes by counting the
number of different node types at each time point. It then displays the evolution of these numbers over time in a stacked chart.
(b) The Participatory Sensor Network Visualization [SdMA∗12] transforms the structural facet of a geospatial network into
an attribute by determining the node count for each position on the map and displaying it as a heatmap. (c) The Union Graph
Visualization [RUK∗10] transforms the temporal facet into an attribute by denoting the first time point at which each node/edge
appeared and color-coding these onto a static graph layout. (d) The Multivariate Graph Visualization [PvW08] transforms
attributes of a graph into partitions by grouping nodes with similar attribute values, displays the partitioned nodesets side by side,
and connects them if an edge exists between nodes of these partitions.

4. Visualizations of the Graph Structure and Multiple
Additional Facets

Multi-faceted graph visualizations incorporate more than just
a single facet on top of the graph structure. In this section,
we show how they can be composed from single-faceted
graph visualizations and visualizations of individual facets
by applying the five combinations that we have used before.

4.1. Spatial Composition

Graph structure as base representation: This combination
adds one or more facets onto a base representation of the
graph structure. This base representation can either be a plain
graph layout consisting of the graph structure by itself or an
already combined visualization that includes the structural
facet alongside other facets. Fig. 5 shows an example for each
of these two cases. The example in Fig. 5a shows part of an
octi-linear graph layout with embedded views [SBM∗14]. It
depicts a sensor network in the underlying base representa-
tion G. Each node (i.e., sensor) embeds a combined calendar
view of the temporal facet T and similarity visualization

of a clustering P. As these embedded views take up more
display space than a mere glyph, the visualization features
different levels of detail, fully showing the embedded views
only when the user zooms in. Similar nesting approaches
have also been developed for other base representations, such
as treemaps [TS07] and matrices [YEL10]. The example
in Fig. 5b visualizes passenger flow (edges) between metro
stations (nodes) in Tokyo (spatial reference) [IYT∗13] – ef-
fectively forming a composited base representation of the
graph structure and its spatial context [S← G]. On top of
this representation, the third dimension is used to encode
node attributes and edge weights A, which denote passenger
numbers. The colors of the resulting bars and bands show
how these attribute values compare to the expected values.

Balanced representation: Using multiple linked views in
a balanced combination of multiple facets is the most preva-
lent solution if more than three facets are integrated with each
other [JRA09]. Fig. 6a shows an example of a combination of
four facets from a world trade network [LMYH11]. It features
four linked views – one for each facet:
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(a) Octi-linear layout with embedded views [SBM∗14] (b) Metro Passenger Flow Visualization [IYT∗13]

Figure 5: Examples for spatial compositions of multiple facets in which the graph structure is part of the base representation.

(a) World Trade Network Visualization [LMYH11] (b) In Situ Visualization [HSS11]

Figure 6: Examples for balanced compositions of the graph structure with other facets.

• the top left view shows the graph structure with countries
(nodes) and trade relationships (edges),

• the bottom left view shows a partitioning of the graph by
displaying its clustering hierarchy in a radial tree visual-
ization, in this case showing two clusters – the left cluster
(yellow) consists of the economically less important coun-
tries and the right cluster (red) of the more important ones,

• the top right view shows the spatial facet in a choropleth
map with all of the countries from the left cluster being
highlighted in purple, and

• the bottom right view shows a node attribute’s distribution
(in this case the clustering coefficient) and again highlights
the portion of nodes from the left cluster in purple.

In the same spirit, such linked views cannot only be used
as a top-level composition strategy among independent views.
They can also be used as multiple embedded views that are
balanced among themselves, but nested in the same base
representation – effectively forming a hybrid of a balanced
composition among themselves and a nesting into a common
base representation. Fig. 6b shows such a hybrid combination
with a spatial graph layout [S← G] as base representation
and a number of different embedded “in situ” views [HSS11].
These views can be independently defined, so that each can

show a different facet of the graph. The figure depicts a wire-
less mesh network with all four additional facets given: The
nodes are routers with geospatial positions, the edges are
connections between them, and edge weights denote the dy-
namically changing signal strengths. In addition, routers are
grouped (partitioned) according to their geospatial locations
(e.g., by city districts). The embedded views show differ-
ent visualizations, such as time-value plots of average signal
strengths and node-link diagrams of structural details for cer-
tain partitions. Other examples, such as VisAlert [FAL∗06] or
TimeRadarTrees [BD08] follow a more interleaved approach
representing graph structure, attributes, and temporal context
in the same display space.

Other facet as base representation: This combination
adds a visualization of the graph structure onto a base rep-
resentation. Again, we can have two cases of the base rep-
resentation either showing only the graph facet, or showing
an already combined visualization of multiple facets. Fig. 7
shows a visualization for each of these two cases in (a) and
(b), respectively. The example in Fig. 7a shows flow map
visualizations of migration movements (edges) among coun-
tries (nodes) in Africa over 30 years [BBL12]. The combined
structural and spatial facet [S← G] are essentially embed-
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(a) Small Multiples of Flow Maps [BBL12] (b) GenGIS [PPC∗09]

Figure 7: Examples for spatial compositions of multiple facets in which the graph structure is not part of the base representation.

(a) Dynamic Drawing of Clustered Graphs [FT04] (b) Egocentric Storylines [MCSM13]

Figure 8: Examples for temporal compositions of multiple facets: (a) the graph structure is part of the base representation, (b) the
graph structure is the facet over which the iteration runs.

ded along the timeline T in a quasi-linear small multiples
visualization, as it was introduced in Sec. 3.3 for [T ← G].
Whereas the example in Fig. 7b depicts a visualization from
the GenGIS system [PPC∗09] showing sampling sites and
the proportion of different bacteria for each in superimposed
pie charts. Into this base representation, a hierarchy G is em-
bedded that shows the similarities between the sites based
on their shared phylogenetic diversity. Other examples take
a base representation of the graph’s partitions and embed a
single-faceted graph visualization – e.g., a [S← G] combi-
nation including the spatial facet [RMBA13] or a [G↔ T ]
combination including the temporal facet [vdEHBvW14].

4.2. Temporal Composition

Iteration is usually applied to only one facet. While it is
possible to map multiple facets on display time (e.g., iterating
over all partitions and showing for each partition an animation
of its embedded dynamic network), we do not know of any
visualization that uses such a temporal interleaving.

Graph structure as base representation: This combina-
tion shows the graph structure together with one or more other

facet(s) and iterates over a third facet, which is usually time.
In Fig. 8a, the base representation shows a partitioned graph
and its temporal facet is mapped onto display time for anima-
tion. Such an animation becomes more challenging the more
facets are involved, as not only the node positions must be
stabilized, but all other facets as well. In this case, the shown
dynamic drawing algorithm for clustered graphs [FT04] uses
the idea of “virtual nodes” for each cluster. It treats clusters
internally like extra nodes with the same stabilization mecha-
nisms as the graph nodes, but shows them as rectangles.

Other facet as base representation: This combination
uses a multi-faceted visualization as a base representation
and traverses the graph structure. The example in Fig. 8b
shows an ego-centered storyline visualization [MCSM13]
with a chosen node at the bottom and related nodes stacked
on top of it according to their similarity – i.e., nodes closer to
the top are less similar to the chosen node. Time is encoded
from left to right and partitions are color-coded onto the
nodes. Horizontal bands represent nodes that change their
vertical position over time, i.e., their similarity to the selected
node. In the figure, a node is selected that changes its cluster
membership twice – first belonging to the purple cluster, then
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(a) GreenGrid [WSM∗09] (b) TempoVis [ATMS∗11]

Figure 9: Examples for multiple representations of a single facet: (a) multiple representation of the structure – (left) on top of a
map, (right) using a force-directed layout, (b) multiple representation of time – (top) as animation over the structure, (bottom) as
a timeline of bars indicating connectivity.

to the red, and finally to the violet one. This makes it very
similar to other nodes of the purple cluster in the beginning,
which are close to it, but as it changes cluster membership,
this similarity weakens and the purple nodes move to the top.
A GUI (not shown) allows choosing other nodes to investigate
and thus to traverse the graph structure. A similar technique
can be used for investigating the edges of a graph [IA12].

5. Multiple Instances of Graph Facets

So far, graph facets have been shown only once in the compos-
ited visualizations. Yet, one can also show multiple instances
of facets in one visualization – either by showing the same
given facet multiple times, or by showing multiple instances
of the same facet given by the data. In the following, we give
two examples for each: for multiple instances of the graph
structure and for multiple instances of another facet.

5.1. Multiple Representations

Showing the same facet multiple times is not unusual, as it
is either the case that more information needs to be encoded
together with the same facet than one can possibly fit in one
view; or that one wants to balance a composition of base
representation and embedded representation by complement-
ing it with a composition that works the other way around.
The latter enables users to look up relations between facets
from both sides, as it was illustrated in Fig. 2c. The following
examples give an idea of such multiple representations.

Multiple representations of the graph structure:
Fig. 9a shows the information visualization system Green-
Grid [WSM∗09] for planning and monitoring power grids.
Such a grid consists of electrical power stations and trans-
formers (nodes) that are interconnected via transmission sys-
tems (edges). On the one hand, this graph structure is shown

on the left side in its spatial context by superimposing it on
a map visualization in a [S← G] combination and color-
coding the base voltages onto the nodes. On the other hand,
the same graph structure is also shown on the right side in
a graph layout that highlights the topological dependencies
of the structure, spreading out clusters of nodes that were
overplotted in the densely populated areas in the map view.
Both views are linked with each other, so that selecting nodes
will highlight them with visual links in both view. Provid-
ing multiple representations of the structure is also impor-
tant in other domains – e.g., for the analysis of flight delay
data [KAW∗14].

Multiple representations of another facet: Not only the
graph structure itself, but also one of its associated facets can
be duplicated and included more than once in a visualiza-
tion. In the example in Fig. 9b, a snapshot of the TempoVis
tool [ATMS∗11] is shown. In its upper view, it shows the
structure of an online community with users (nodes) and their
conversations (edges). The temporal facet is mapped onto
display time in a [G �� � T ] combination, so that the dynam-
ics of the network are shown via animation, which can be
steered with the slider at the very bottom. The lower view
explicitly shows the temporal facet that was already included
in the upper view, but remained invisible there. For each time
step, it shows a bar that encodes the number of activities (i.e.,
edges) in the online community and thus gives an overview
of network connectivity across the entire temporal facet. If a
particular time step exhibits unusually high or low activity,
the user can set the slider accordingly and inspect the associ-
ated network of conversations for this incident. Other facets,
such as the graph’s partitioning can also be shown multiple
times, for example, to show the structural relations between
the partitions and details of their temporal trends [HSCW13].
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(a) Caleydo [SKKS08] (b) Donatien [HD12]

Figure 10: Examples for representation of multiple instances of the same facet: (a) showing multiple instances of the graph
structure, (b) showing multiple instances of partitionings.

5.2. Multiple Instances

We cannot only duplicate a single facet and show it multi-
ple times, but we can also have multiple instances of a facet
given. On the one hand, this can be the graph structure itself
– i.e., the same nodeset being connected by a number of dif-
ferent sets of edges [BPD11]. On the other hand, this can be
any of the other facets – e.g., multiple partitionings or multi-
ple parallel timelines as produced by multi-run simulations.
In both cases, this falls into the field of visual graph com-
parison [AWW09, ABR∗13]. The following two examples
illustrate each of the above cases.

Multiple given instances of the graph structure: The ex-
ample in Fig. 10a shows the Caleydo framework [SKKS08]
with a stacked visualization of pathways. Pathways are in
essence chemical reaction networks with enzymes and com-
pounds as nodes and the chemical reactions that transform
them as edges. Such pathways capture a specific function
and all compounds and reactions related to it. Yet pathways
are rarely agreed upon and besides the canonical pathways, a
number of alternative models of how biochemical reactions
perform a particular function are given. Showing these par-
tially different pathways is a common visualization task in
biomedical research. Caleydo allows doing so via brushing
and linking, as the user can select a compound in a pathway
and all other occurrences are highlighted. One pathway from
the stack can be shown in detail on the right. A similar ap-
proach uses 3D primitives in the stacking for a more compact
visualization of related pathways [BDS04].

Multiple given instances of another facet: One graph
structure can be partitioned in a number of ways and the ex-
ample in Fig. 10b shows a way to display and compare such
multiple partitionings with each other. The depicted visual-
ization system Donatien [HD12] uses a balanced approach to
do so: alongside the graph nodes and edges, it also displays
the clusters as nodes and connects them to the graph nodes
that belong to them. Cluster nodes of the same color belong
to the same partitioning, i.e., they have been produced by

the same cluster algorithm. This encoding allows for a direct
visual comparison of different partitionings of the same graph
structure. Similarly, GrouseFlocks [AMA08] provides func-
tionality to interactively change the partitioning of a network
and analyze their outcome in a more iterative manner.

6. Conclusion and Directions for Future Research

The presented overview of multi-faceted graph visualization
aims to survey a vast field of visualization. To do so, despite
the extent of the research in this field, we have devised a
categorization based on different visual combination modali-
ties and merely highlighted selected visualizations for each
category. We have further presented our efforts to relate the
existing surveys in this field to our categorization. While there
exists no one-to-one mapping between those surveys and our
categories, the overlap we could establish is considerable and
the differences are mainly due to particularities of individual
facets. We deem this “meta survey” to be an important step
towards a better understanding of the space of possible visu-
alization solutions for multi-faceted graphs altogether. This
overview further points into directions for future research in
the following three aspects:

Graph visualization techniques: We can identify cate-
gories for which so far only very few visualizations exist.
This is the case for temporal compositions, but also for the
balanced spatial composition with interwoven nodesets.

Graph visualization surveys: When looking at the avail-
ability of surveys for faceted graph visualization, to the best
of our knowledge for the domain of (geo-)spatial graph visu-
alization, neither an output-oriented overview of their state-
of-the-art, nor a task taxonomy exists to date.

Graph visualization facets: Other facets exist for which
so far only very few faceted graph visualizations are known,
if at all – for example, provenance, uncertainty, heterogeneity,
or text/annotations. Thus visualizing graph provenance, graph
uncertainty, graph heterogeneity, or graph annotations are
worthwhile directions for systematic investigations.
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For each of these three aspects, our categorization can
provide guidance: For user studies of novel techniques, it can
point to visualizations from the same category against which
to compare. For new surveys of faceted graph visualization,
its five categories can provide a first blueprint which can then
be further refined and subdivided for the case at hand. And
finally for investigating other facets, the spatial and temporal
compositions can give an idea of possible ways to include
them with the graph structure in a faceted graph visualization.
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