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A Modular Degree-of-Interest Specification for
the Visual Analysis of Large Dynamic Networks

James Abello, Steffen Hadlak, Heidrun Schumann, Hans-Jörg Schulz

Abstract—Large dynamic networks are targets of analysis in many fields. Tracking temporal changes at scale in these networks is
challenging due in part to the fact that small changes can be missed or drowned-out by the rest of the network. For static networks,
current approaches allow the identification of specific network elements within their context. However, in the case of dynamic networks,
the user is left alone with finding salient local network elements and tracking them over time. In this work, we introduce a modular DoI
specification to flexibly define what salient changes are and to assign them a measure of their importance in a time-varying setting. The
specification takes into account neighborhood structure information, numerical attributes of nodes/edges, and their temporal evolution.
A tailored visualization of the DoI specification complements our approach. Alongside a traditional node-link view of the dynamic
network, it serves as an interface for the interactive definition of a DoI function. By using it to successively refine and investigate the
captured details, it supports the analysis of dynamic networks from an initial view until pinpointing a user’s analysis goal. We report on
applying our approach to scientific co-authorship networks and give concrete results for the DBLP dataset.

Index Terms—Time-varying graphs, dynamic graph visualization, degree-of-interest.
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1 INTRODUCTION

I T is inherent in many time-varying data sets that a series
of minuscule changes here and there accumulates to form

the overall dynamics of the data. In a visualization of that
data, it is important to be able to spot and track these small
changes to form an understanding of the data dynamics. Yet,
as the data grows larger, this becomes much harder, because
these minor changes are either drowned out by overplotting
from the rest of the data, or abstracted/clustered away along
with other details to make room for a tidy overview. Providing
both, overview and detail, in a meaningful way is a challenge
in dynamic graph visualization – a challenge that becomes
even harder, when the notion of what is overview and what
is detail shifts in the course of the visual analysis. This paper
addresses this challenge for the case of time-varying networks
with hundreds of thousands of nodes and millions of edges.

Recent work by Farrugia and Quigley identifies two levels of
analysis for dynamic graphs [14]: the global network overview
level concerning changes influencing the graph as a whole
and the local individual node level concerning smaller, more
confined changes in the graph. To be able to support both
levels – analyzing local changes, while at the same time
maintaining an abstracted overview of the global network
dynamics – one must first and foremost be able to differentiate
one from the other. To realize this differentiation, we follow
the idea of a degree-of-interest (DoI) function that quantifies
the interestingness of each graph element at each point of time.
Consequently, changes of elements with high DoI values are
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then tracked on an individual detailed level, whereas elements
with low DoI values are only tracked in bulk on a global
overview level. This raises the following three challenges:

• Devising a comprehensive DoI definition to make the
necessary distinction between graph elements to follow
on a local level and those to follow on a global level.

• Utilizing the DoI values in a visual analysis setup
to make local and global changes distinguishable and
permitting for an interactive refinement of this distinction.

• Showing that such a DoI-based approach indeed enables
the user to form an understanding of the network dynam-
ics in a real world scenario.

After a brief survey of the existing DoI-based graph visu-
alization approaches in Section 2, the overall structure of this
paper follows these three points and describes our contribution
to each of them. Section 3 introduces a novel modular DoI
definition that exceeds the existing DoI-based approaches
for static graphs in two aspects. First, it can be utilized to
hierarchically compose and recompose DoI functions on the
fly, and second, it explicitly incorporates means to capture the
dynamics of a network. Section 4 presents our visual analysis
setup that shows the dynamic network according to the DoI
values and that permits for interactive adjustment and steering
of the DoI computation in all its aspects. This effectively
breaks open the “black box” of DoI computation, as it not
only enables a user to see whether a part of the network
exhibits any dynamic feature of interest, but also to explore
which feature(s) concretely lead to the display of a part of
the network. Section 5 illustrates the utility and value of this
DoI-based analytical process by taking a closer look at the top
authors of the largest connected component of the DBLP data
set [23] with its 914,492 nodes and 3,802,317 edges over 22
time points (years). This use case is also detailed in the video
that accompanies this paper. It serves to give an impression of
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how different DoI definitions are built, adjusted, and used to
gain insight in the dynamics of this large network – something
that would be hard to do with any other approach existing to
date. Finally, Section 6 concludes our paper and details some
ideas to be addressed in future work.

2 RELATED WORK

One of the first DoI functions was specified by Furnas in 1986
for static hierarchies [17]. It already considered two aspects of
the data: the user interest in each node (inverse to the distance
to a currently selected focus node) and an a priori interest
inherent in each node (inverse to its distance to the hierarchy’s
root). These two values are summed and then used to generate
a contiguous subtree of high interest by pruning subtrees of
lower interest. In this way, the limited screen real estate is used
to convey only the subtree of highest interest. Furnas’ overall
idea is still the same until today and was merely extended in
subsequent research to cope with
• other a priori interest values than the distance to the root,
• networks instead of trees,
• multiple user-selected focus nodes instead of a single one,
• and dynamic instead of static graphs.
Other a priori interest values than the rather specific

distance to the root are regularly defined to capture interest
according to certain application domains. Examples are the
definition of a priori interest for nodes representing concepts in
ontologies [20] and importance values for nodes corresponding
to given search terms [36]. It is very common that a single
DoI function combines multiple such a priori interest values,
whose influence on the overall DoI value can be adjusted
through adaptable weights. As a result, a user can no longer
distinguish which of the a priori values triggered a node to
receive a high combined DoI value. To communicate the cause
for a node’s high DoI value, most approaches simply use
different colors [7], [8]. Furthermore, it has been observed
that the combined DoI values may not necessarily be “well
distributed”, with lower values at the leaf nodes and higher
values closer to the root node, as it would be needed for
pruning [36]. To solve this problem, a priori interest values
are often aggregated bottom-up, so that they are guaranteed to
be monotonously increasing towards the root.

For networks, this requirement of strictly increasing in-
terest values cannot be guaranteed as there is no singular
(root) node towards which to aggregate them. To nevertheless
counter the problem of heterogeneously distributed interest
values, DoI-based approaches use, for example, a diffusion
of DoI values across the network [36] to even them out.
Script-based approaches can be used to tailor such a diffusion
process, for example, to only diffuse the values to every other
node, as it makes sense for bipartite networks [34]. The same
problem of a missing singular reference node also affects the
representation of networks that have been reduced according
to a DoI function: For the pruning of subtrees, it was always
apparent where details were removed (at the bottom), yet this
is no longer the case for networks in which nodes may get
removed or collapsed into metanodes in various places. In the
latter case of a partially collapsed network, glyphs are often

used to highlight metanodes among the uncontracted nodes
and thus to inform a user where information is hidden from
his view [18], [31]. In the former case of nodes having been
removed or filtered, no metanodes exist in which to embed this
information. In order to nevertheless indicate where subgraphs
were removed, graph cues and signposts can be added to point
towards invisible parts of the network and thus to provide a
handle for navigating the abstracted context [26], [30], [36].

For multiple focus nodes, the challenge lies first and
foremost in the computation of the distance between each
node and the selected foci in order to determine each node’s
DoI value. While this is straightforward for a single focus,
there is no standard way to compute a single distance value
to multiple points in a network – regardless of whether the
geodesic distance is used or any other distance metric, such
as a geometric distance [20] or a similarity metric [8]. In
either case, the most common approaches are to use the
distance to the closest focal node [18] or to use the average
distance to all focal nodes [26]. To reduce the number of
distance computations, the number of focal nodes is often
bound by a maximum quantity, which is realized by decreasing
the influence of all existing foci whenever a new focus is
selected [9], [18], [20]. For their depiction, networks with
multiple focus nodes can no longer simply be laid out by using
the geodesic distance to the focus, as it is done, for example,
in [32]. Instead two other approaches prevail: those that aim
to assign them prominent positions through an adapted force-
based layout [29] and those that simply use color or label size
to highlight them [9], [20] in a regular layout.

For dynamic graphs, DoI values are computed for each
time point individually. Here, the same problem can occur
as when generalizing to networks: the DoI values of a node
can vary a lot from one time point to the next. In case of
an animated view over time, this can lead to pop-up artifacts
in the visualization when nodes are of high interest at one
time point and of low interest at the next time point. The
first DoI-based approach for dynamic trees did not directly
counter this problem, but instead put all focus nodes into
a set of high interest nodes that remained the same for all
time points [7]. This way, pop-up artifacts will still occur, but
not for focus nodes, as these will always be of high interest
and thus visible. In [31], a different approach was presented
for dynamic hierarchical compound graphs. It uses a temporal
relaxation to distribute DoI values from and to previous and
future time steps to limit such visual effects. After treating
sudden changes with either method, both approaches rely on
animations to transition smoothly from one time point to the
next. To navigate through time, [7] utilizes the DoI values as
part of a complex time slider that denotes time points at which
specific events have occurred for a set of focus nodes.

In summary, it can be observed that the many existing DoI-
based visualization approaches are all provided as final, fixed
monolithic solutions that are tailored to a specific application
domain with specific tasks and specific types of graphs. Possi-
bilities to adjust them rarely go beyond the adaptation of a few
weights for their individual terms. While this simplification
prevents the user from being exposed to the full complexity
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of a comprehensively defined DoI function, it also limits
his ability to express his own interest for a particular task
or a particular input graph that was not anticipated by the
visualization designers.

Other fields have already gone a step further in this re-
gard. For example, for high-dimensional numerical data, more
flexible DoI approaches exist, such as the Feature Defini-
tion Language (FDL) by Doleisch et al. [10]. It allows for
specifying basic features of interest and to combine them
into more complex features. These features can even include
temporal measures, such as derivatives of attributes [11]. In
order to communicate and modify structure and parameters of
an FDL-defined complex feature, a hierarchical representation
is used [10], [11]. Yet, due to its specificity to numerical input
data, it cannot be applied to graphs as it does not provide
means to take the graph structure into account. In particular for
large dynamic graphs, no approach with comparable flexibility
has yet been proposed to the best of our knowledge. This is
the gap, which we aim to address in the following section with
our modular DoI specification for dynamic networks.

3 A MODULAR DOI DEFINITION FOR DYNAMIC
NETWORKS

The aim of this section is to introduce a DoI definition that
is able to cope with the changing demands of interactive
visual analysis of dynamic networks from various domains.
We achieve this by bringing two novel ideas to the field of DoI
functions for graphs. The first is a modular way of assembling
DoI functions from predefined functional components. This
way, a DoI function can be flexibly adapted to new application
domains or newly found network characteristics by simply
exchanging or reconfiguring its individual components. These
components can be grouped into four categories, which we
named depending on the practical role they play in the overall
DoI definition:
• DoI generators provide the base DoI values that specify

the user interest in individual characteristics of graph
elements. The corresponding function blocks are called
specification components.

• Unary DoI operators transform a single given DoI value
– e.g., to amplify or reduce it. The corresponding function
blocks are thus called transformation components.

• N-ary DoI operators (1 graph element, n DoI values)
combine two or more DoI values defined for a single
graph element. The corresponding function blocks are
therefore called combination components.

• N-ary DoI operators (n graph elements, 1 DoI value)
propagate a DoI value across neighboring graph elements.
The corresponding function blocks are therefore called
propagation components.

The second novel idea is the incorporation of the temporal
aspect in the DoI definition. This is achieved by providing
specific components that allow the user on the one hand
to define something as interesting, because of its temporal
dynamics, and on the other hand to define something as
interesting, because it was/will be interesting in past/future
time steps. The former is embodied in particular specification

components, the latter is made available through a temporal
propagation component – both are novel in the domain of DoI
functions for networks.

The following section briefly defines the basic terms and the
functional formalism that permits us to plug these components
into each other. The four types of components themselves are
then described in the sections thereafter, before they are finally
brought together in an example of how to express Furnas’
original DoI function.

3.1 Basic Terms
We consider a totally ordered set T of time points ti with
1 ≤ i ≤ |T |. These time points do not have to be equidistant,
i.e., the duration between two time points ti+1− ti may vary.
In this context, a dynamic network G is a sequence of graphs
Gi = (Vi,Avi,Ei,Aei, ti) forming a 5-tuple of a node set Vi, a
set of node attributes Avi, an edge set Ei, and a set of edge
attributes Aei at the time point ti ∈ T . We intentionally refrain
from using the term edge weights, so that numerical attributes
of both, nodes and edges, are consistently called as such. This
makes sense, as in most of the following discussions, we do
not distinguish between nodes vi ∈ Vi and edges ei ∈ Ei, but
instead we speak of graph elements xi ∈Vi∪Ei. Hence, node
and edge attributes both map a given graph element to a nu-
merical attribute attr(xi) : Vi∪Ei 7→R with attr(xi)∈Avi∪Aei.
In case that an attribute is only partially defined, i.e., only
for nodes or only for edges, it maps all other elements to
undefined. Common examples for node attributes are the
degree deg(vi) or the cluster coefficient cc(vi), whereas for
edge attributes an often used example would be the edge
betweenness centrality bc(ei). In accordance with established
DoI-based graph visualization approaches, we define a DoI
value as a real number in the interval [0 . . .1], with 0 expressing
no interest and 1 expressing the highest degree of interest.

3.2 Specification Components
Overall, the specification spec(xi) captures the user interest
in a graph element xi ∈ Vi ∪ Ei at time point ti ∈ T based
on some property of that element, for example, an attribute
attr(xi). It consists of two functions: a computation function
comp : Vi∪Ei 7→R that calculates a single numerical value for
a graph element and the interest function inter :R 7→ [0 . . .1]
that maps this value to the interval [0 . . .1] in accordance
to the user interest. Hence, any specification component can
generally be expressed in the form spec(xi) = inter(comp(xi)).
This is noteworthy, as most existing DoI approaches use
computed node/edge properties directly in their DoI function,
without explicitly defining the user interest over each prop-
erty’s value range. We decouple these two notions to help
the user distinguish between what influences his interest in a
graph element (computation function) from how it influences
it (interest function).

3.2.1 The Computation Function
The computation function comp evaluates structural properties
and attribute values for a given graph element xi ∈ Vi ∪ Ei
and computes a single numerical value to express them.
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TABLE 1: Categorization of basic sources for specifying interest.

Domain

Time Points current immediate changes higher order changes

(one time point) (two consecutive time
points)

(three or more consecutive
time points)

structure
(node / edge) presence / absence addition / removal age, frequency,...

values
(attribute / weight) identity, normalization,... change, rate of change,... moving average, trend,...

As it is evaluated before the interest function is applied, it
allows for capturing network dynamics that span multiple time
points, deriving a singular value from them, before defining
one’s interest on top of such derived values. Depending on
the number of time points that comp takes into account,
we differentiate three cases that are shown in Table 1 and
discussed in the following.

Current / One time point: This first case is usually used for
static graphs, for which there are no time points to consider.
Structurally, this means to specify a DoI in terms of the pres-
ence or absence of graph elements (usually edges). In terms
of a graph element’s numerical attributes, the computation
function is usually an identity function or performs at most
a normalization of these values. The latter is frequently used
in order to be able to apply the same DoI function across
different time points with potentially very different absolute
node/edge counts, as well as across differently sized input
graphs. Overall, this case can be expressed for a given attribute
attr as comp(xi) : attr(xi) 7→R.

Immediate changes / Two consecutive time points: This
case contains all computation functions, which are defined on
two subsequent time points. Structurally, this can be either
an addition of a graph element from the last time point ti−1
to the current time point ti, or a removal that will occur at
the next time point ti+1. Changes of a numerical attribute
are determined in a straightforward manner by, for example,
computing the difference between the two values or the rate
of change between them. Again, depending on whether to
compute the change in hindsight or foresight, this can be
expressed for a given attribute attr as

comp(xi) : attr(xi−1)×attr(xi) 7→R (hindsight)
comp(xi) : attr(xi)×attr(xi+1) 7→R (foresight)

Higher order changes / Three or more consecutive time
points: This case subsumes all computation functions, which
compute a development of the graph over more than two
consecutive time points. With respect to the graph structure,
this can be, for example, the age of a graph element, i.e.,
for how long it is already present, or any other measure over
multiple time points, such as the frequency with which an
element appears [1]. Whereas the development of attribute
values and weights of a graph can be assessed in the manner
known from time series data, e.g., by computing moving
averages over multiple time points or trends. For a given
attribute attr, as well as a number p of past time points and
a number f of future time points to include, this case can be
expressed in general as

comp(xi) : attr(xi−p)× . . .×attr(xi)× . . .×attr(xi+ f ) 7→R.

3.2.2 The Interest Function
The interest function inter defined on top of the computation
comp realizes the mapping from real values to DoI values. It
can be envisioned as “carving” the interesting parts from the
value range of a computed numerical property. This includes,
that it also maps any undefined attributes to 0 to express
no interest in them. While the interest function can take on
any required shape or form, there are a number of commonly
used ones that are briefly listed in the following, where x
stands for any previously computed numerical value comp(xi).

Gaussian function: inter(x) = e−(x−α)2/β

This function is used to pinpoint a certain value of interest and
produce a smooth decline of interest with increasing distance
to this value. The value of interest can be set through the
parameter α , the gradient of its decline is governed by the
parameter β with β > 0.

2-Sided exponential function: inter(x) = β |x−α|

This function is also used to focus on a specific value, but
with a steep decline towards smaller values. The value itself
can be set via the parameter α , while the rate of the decline
is governed by the parameter β with 0 < β < 1.

Sigmoid function: inter(x) = 1/
(

1+ e−β∗(x−α)
)

This function is used to express interest in only high values
with a smooth decline at a certain threshold. The threshold
can be set by the parameter α , whereas the rate of the decline
is governed by the parameter β with β > 0.

Piecewise constant function: This function is used to define
intervals of different interest levels. There is no fixed set of
parameters for its specification, as the number of intervals may
vary.

3.2.3 Utilizing a Combination of Computation and Inter-
est Functions to Capture Interactive Selections
So far, we have only discussed instances in which we wanted
to capture properties of the network data and its dynamics. Yet,
our two-part DoI specification is much more versatile than that
and it is even able to express such aspects as the interactive
selection of graph elements by encoding the selection logic
in the computation function and an interest in more recently
selected elements in the interest function.

For a simple selection, it needs merely a running global
counter count that is increased by 1 each time a selection is
made and an attribute clicked at(xi) to store the current count
when element xi gets selected. The computation function can
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then be used, for example, to limit the selected elements to
only those of the n last selection operations

lastn(xi) =

{
clicked at(xi)> count−n : clicked at(xi)

else : 0

The interest function defined on top of that computation can
be, for example, a decay function similar to [9]:

decayd(lastn(xi)) =

{
lastn(xi)> 0 : dcount−lastn(xi)

else : 0

Depending on the decay factor d, the resulting DoI values can
range from all 1’s for d = 1 (multiple foci if n > 1) to only the
last selected element having a DoI value of 1 for d = 0 (single
focus). A decay factor between 0 and 1 can be used to balance
these two approaches by fading-out older selections and thus
ensuring that only a limited number of elements is selected
at all times. In the remainder of this paper, we use the term
selectd(xi) as a placeholder for any such DoI specification
decayd(lastn(xi)) that captures an interactive selection with
decay factor d over the last n graph elements that were clicked.

Every specification component spec(xi) is in itself already a
very simple DoI function doi(xi). The remaining components
merely take DoI functions – such simple ones as spec(xi),
but also more complex ones as they result from applying the
following components – as an input to yield more powerful
DoI functions.

3.3 Transformation Components
Functional components falling in this category are mainly used
to modify a previously specified DoI function by emphasizing
certain parts, cutting off others, or simply inverting it. Thus,
a transformation component can be realized through any
function, which fulfills trans : [0 . . .1] 7→ [0 . . .1] The two
transformations that are mainly used are an inversion and a
scaling of a DoI.

Inversion function: inv(doi(xi)) = 1−doi(xi)
Inverting a DoI function is suitable, if the opposite of the user
interest can be specified more easily than the actual interest.
For example, when the user is not interested in all values above
a certain threshold, as expressed with the sigmoid transfer
function, but instead in all values below that threshold, then
the inversion of the sigmoid can be used to express this.

Scaling function: The scaling of DoI values is suitable, for
example, to lessen their influence or to ensure a guaranteed
minimal influence, even if the values are low. The two forms
that are often used, the multiplication and the exponentiation,
can be expressed in one function scaleconst,exp(doi(xi)) =
const ∗doi(xi)

exp with const ∈ [0 . . .1] and exp ∈R.

3.4 Combination Components
Since a DoI definition is usually based on multiple attributes,
properties, dynamics, etc., combination components can be
used to form more complex patterns from multiple DoI
definitions that capture different features. Such patterns can
even have different temporal dependencies, i.e., a pattern

defining a linear function can be combined from a value
at some time point (first column of Table 1) and a slope
(second column of Table 1). Combinations thus realize
a mapping comb : [0 . . .1]n 7→ [0 . . .1]. Numerous useful
combination functions are known [3]. However, the most
common ways to incorporate multiple DoI terms in one
function are either Min/Max combinations (often used in
DoI functions for multivariate data, such as the FDL) or
weighted sums (often used in DoI functions for network data).

Min/Max combinations: The minimum combination is used
to express that all input functions must return a high DoI
value, in order for the combined function to also return a
high DoI value. In this regard, it can be viewed as the fuzzy-
logical AND operator on the input functions. The maximum
combination works the other way around by returning a high
DoI value if at least one of the input functions has a high
value. It is thus comparable to the fuzzy-logical OR operator.

Weighted sum: This type of combination aims to balance the
influence of the n individual DoI terms by multiplying them
with weights w1, . . . ,wn ∈ R before simply adding them up.
To ensure that the resulting function value will still be within
the range of [0 . . .1], the weighted sum is divided by the sum
of all weights. Depending on how the weights are chosen,
weighted sums can be used to express a variety of different
operations, such as averages (wk = 1/n) or the maximum
likelihood estimator (wk = 1/σ2

k ), both with k ∈ [1 . . .n].

3.5 Propagation Components

The DoI functions defined so far are always bound to one
specific graph element xi at one specific time point ti. The
region around them – structure-wise, as well as time-wise – is
not yet considered. To realize our goal of not only pinpointing
elements of interest, but also showing them in their immediate
context, we use propagation functions to disseminate high
DoI values to surrounding graph elements and time points.
Consequently, we discern between the propagation of DoI
values across the graph topology and along the temporal axis.

3.5.1 Structural DoI Propagation

A structural propagation distributes DoI values across multiple
graph elements for each time point individually. It is basically
determined by four functions:

• An input DoI function doi(xi) whose values are to be
gathered for a graph element xi.

• A distance function distattr(xi,yi) : (Vi ∪Ei)
2 7→ R that

takes two graph elements from the same time point ti as
an input and measures w.r.t. the edge attribute attr how
far they are separated from each other as a real value.

• An edge attribute attr(xi) to be used for computing the
distance function, with only positive edge attributes being
allowed: attr(xi) : Ei 7→ R+. If the used edge attributes
represent capacities, where large values actually stand for
a tighter connection than small values do, they have to be
transformed into costs. This is simply done by computing
attr′ = 1/(attr+1).
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• A drop-off function drop(doi(xi),distattr(xi,yi)) :
[0 . . .1]×R 7→ [0 . . .1] that is monotonic decreasing, so
that at larger distances the DoI value recedes.

These functions are then combined with a maximum to pre-
serve the highest DoI value, so that no element of high interest
will be drowned out by a neighborhood of lesser interest:

props(doi(yi),xi) = MAX
yi∈Vi∪Ei

drop(doi(yi),distattr(xi,yi))

For its computation, different distance functions are possible.
Since we do not distinguish between nodes and edges and
want to diffuse DoI values defined for nodes also to their
incident edges and vice versa, we need a generalized distance
function, which permits us to do so. For this, we define the
distance between two nodes dvv as the usual geodesic distance
gd(xi,yi) between them. The distance between an edge and a
node dve/dev is computed as the minimum distance between
the two incident nodes to that edge and the node plus half of
the edge attribute, which mimics a node lying halfway on the
edge. And the distance between two edges dee is reduced to
the former case. All in all, the distance function is defined as:

distattr(xi,yi) =


xi ∈Vi∧ yi ∈Vi : dvv(xi,yi)

xi ∈Vi∧ yi = (v1,v2) ∈ Ei : dve(xi,yi)
xi = (v1,v2) ∈ Ei∧ yi ∈Vi : dev(xi,yi)
xi = (v1,v2) ∈ Ei∧ yi ∈ Ei : dee(xi,yi)

dvv(xi,yi) = gd(xi,yi)

dve(xi,yi) = MIN(dvv(xi,v1),dvv(xi,v2))+attr(yi)/2
dev(xi,yi) = MIN(dvv(v1,yi),dvv(v2,yi))+attr(xi)/2
dee(xi,yi) = MIN(dve(v1,yi),dve(v2,yi))+attr(xi)/2

3.5.2 Temporal DoI Propagation
A temporal propagation distributes DoI values across multiple
time points for each graph element individually. It consists of
an input DoI function doi(xi), but xi’s DoI values are in this
case to be gathered from all time points t j with 1 ≤ j ≤ |T |
and scaled w.r.t. ti using the given drop-off function:

propt(doi(x j),xi) =
|T |

MAX
j=1

drop(doi(x j), t j− ti)

The distance between two time points is simply their differ-
ence. If it is negative, the time point under consideration lies
before ti – otherwise after it. This way, the drop-off function
can be defined differently for negative values than for positive
values, allowing the user to adjust the spreading of DoI
values independently. Thus a foreshadowing of the occurrence
of an interesting element can be handled in another way
than its influence in retrospect. As a result, the propagation
across time prevents sudden jumps in the DoI values and
smoothes any process that relies on these values, i.e., prevents
pop-up artifacts in animations. But, as the example in the
following section shows, propagations can also be used for
other purposes.

3.6 Example: Realizing Furnas’ DoI Function
Since our approach combines many features of existing DoI
functions, it is not surprising that most of them can be
expressed by a combination of the functional components

described above. To illustrate the overall idea of how this is
done, this section shows how to formulate Furnas’ original
DoI function using our approach.

Furnas’ DoI function has two parts: the a priori importance
API(x) =−dist(x,root) and the distance D(x,y) =−dist(x,y)
of a node x to a focus node y, which are summed to yield:

DOI(x|y) =−dist(x,root)−dist(x,y)

The value range of this function spans [−3∗max height . . .0]
where max height denotes the maximum height of the tree
in question. Consequently, a DoI value of −3 ∗max height
represents the lowest interest and is produced when x and y
are both leaves at depth max height and root is their least
common ancestor. On the other end of the spectrum, a DoI
value of 0 stands for the highest interest, which results for
x = y = root. This kind of an open ended DoI value range
that depends on the size of the input graph and that can be
observed for many existing DoI functions is an aspect that we
cannot model with our fixed [0 . . .1] interval of DoI values.

While the pros and cons of open or closed value ranges are
debatable, a fixed closed interval is an absolute necessity in
our case in order to make the different functional components
compatible with each other and thus to permit for their flexible
combination. Yet, even though we cannot produce the very
same DoI values of Furnas’ DoI function, we can nevertheless
capture its functionality in the range of our [0 . . .1] interval.
Note that the index i has been dropped from the following
DoI definition, as Furnas’ DoI function does not deal with
dynamics in the tree.

doi(x) = 1/3∗ inter(height(x))+2/3∗ props(select0(y),x)

inter(height(x)) = 1−height(x)/max height

distattr(x,y) = gd(x,y) with attr(x) = 1

drop(select0(y),dist1(x,y)) = 1−dist1(x,y)/(2∗max height)

The overall DoI function is a weighted sum of two indi-
vidual DoI functions: one defined over the height of a node
x in the tree and another one defined over the selection
status of a node y. The weights make the contribution of
each function to the overall DoI value explicit and thus also
adjustable if necessary. They can be observed in Furnas’ DoI
function, for example, in the case of the minimum DoI value
of −3 ∗max height to which the a priori interest contributes
−max height (the maximum distance to the root) and the
distance to the focus node contributes −2 ∗max height (the
maximum distance between two nodes).

The first function is a straightforward encoding of Furnas’ a
priori interest, with height(x) = dist(x,root) being the compu-
tation function and the given interest function inter(height(x))
mapping it inverse linearly on the interval [0 . . .1]. The latter
ensures that the root at height = 0 receives the maximum DoI
value of 1 and the deepest leaves receive the minimum DoI
value of 0.

The second function select0(y) captures the selection status
of a node y according to its specification in Section 3.2.3. The
selection status of each node (either 0 or 1) is then propagated
to all other nodes using the common geodesic distance gd(x,y)
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with all edge attributes set to a constant 1 and a linear drop-
off function that assigns 1 if the current node itself is selected
and 0 if the current node is at the largest distance to the
selected node. This procedure is necessary, as we do not
know the interactively selected focus node “a priori”. Thus,
we cannot precompute all distances to it and store it as a
node attribute, as it was possible for the height. Instead, the
structural propagation is used to automatically readjust the DoI
values every time the selection status changes.

As a result, the overall DoI function behaves similar to
Furnas’ DoI function and yields the maximum DoI value of 1
for the root node, if it is also the focus node, and 0 for a leaf
at the deepest level and furthest away from the focus node.
Yet, in contrast to Furnas’ DoI function, we can change its
behavior very easily, now that all its components are exposed.
For example, to turn the DoI function into one that handles
multiple foci in the way that DOITrees [18] do, one can simply
change select0(y) to select1(y). This is possible, because the
closest focus node that has been least affected by the drop-off
function and thus has the highest DoI value will be the natural
result of the maximum combination that realizes the structural
propagation.

As this example shows, it is not only possible to build one’s
own DoI function with the proposed components, but also
to reproduce existing DoI functions with them. This provides
endless combination and adjustment opportunities, which on
the one hand are absolutely necessary to express the user
interest as precisely as possible to form a meaningful func-
tional base for the subsequent visualization. On the other hand,
all these different options also create additional complexity
that the user must master in order to make fullest use of
our approach. The following section discusses these points,
illustrating a realization of a visual analysis setup built around
our modular DoI definition concept.

4 AN INTERACTIVE VISUAL ANALYSIS SETUP
BASED ON THE DEFINED DOI VALUES

With the modular DoI definition, the previous section detailed
a new approach to define how much interest each graph
element receives at each point of time. Once the DoI function
is computed, the resulting DoI values provide an extremely
valuable annotation to the data that can be used in many more
aspects than just for reducing the network. Focusing on the
DoI, we refrain from describing the architectural details and
design issues, which our visual analysis setup has in common
with most other existing graph visualization systems, such as
TugGraph [2] or CGV [35]. Instead, this section illustrates
specifically, how our visual analysis setup makes extensive
use of the DoI values to provide DoI-based representations
and interaction mechanisms. For this, we rely on two distinct
views:
• The DoI view serves the purpose to interactively define

and refine a DoI function that captures the user interest
by exposing its functional components as reorderable,
hierarchically stacked visual components.

• The Network view shows the result of applying the
defined DoI function by agglomerating graph elements
of lesser interest on the global network overview level,
while highlighting graph elements of high interest on the
local individual node level.

The overall setup consisting of these views is exemplified in
Figure 1. The next two sections will discuss these two views,
followed by a description of how the views are interlinked to
support the user in defining and adjusting the DoI function to
express his interest in detail.

4.1 The DoI View

The purpose of the DoI view is to interactively define what will
be shown of the network by giving access to the DoI function
and a few other parameters. This view goes well beyond the
usual simple adjustment of some weights by exposing the
entire DoI function to the user and allowing for its complete
reconfiguration. The view consists of five panels that each has
an important role in the course of the DoI definition:

The network statistics (Figure 1, panel (a)) provide a brief
numerical overview on the current reduction of the network
by showing how many graph elements exist (overall, in the
current time step, and in its reduced form). These numbers
give the user a concrete idea of how big the network is and
how much of it is actually hidden from the Network view – in
other time points, as well as inside the metanodes, into which
elements of lesser interest are contracted.

The DoI definition (Figure 1, panel (b)) permits the user to
adjust the DoI function that forms the basis of the reduction
into metanodes. The view is an interactive, hierarchically
structured graphical representation that directly encodes the
different DoI components of the currently used DoI function.
Each functional component defined in Section 3 corresponds
to a matching visual component that can be plugged into the
DoI view and that provides the necessary handles to adjust a
component’s parameters. Depending on the complexity of the
DoI function, the embedded component views may require
a large part of the available screen real estate. To counter
this drawback, we enable the user to switch to a reduced
view that only shows the left-hand labels of the component
views in an Icicle-plot-like fashion and hides the visualizations
and parameters on the right-hand side. While this reduces the
width of the DoI view, the height can be reduced by folding
known branches of the hierarchically composed view to a
mere label as well. This feature is exemplified in one of the
later screenshots in Section 5, where known DoI terms from
previous visual analysis steps are folded and only the ones
that have been newly added in the current step are shown in
full detail.

The manual selection (Figure 1, panel (c)) gives access
to individual graph elements for adding or removing them
manually as high-interest nodes through the selectd-term in
the DoI function. This access is quite important, as it permits
the user to not only express his interest in a particular behavior



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, 2013 8

Fig. 1: The proposed overall visual setup with its two main views: (1) the DoI view and (2) the Network view. The
Network view shows a snapshot of the DBLP dataset for the year 2007, which has been reduced according to the defined
DoI function. The DoI view is partitioned in five panels (a)-(e). Panel (a) gives some numerical details on the reduction.
Panel (b) shows the DoI function doi(xi) = props(max({select0.85(yi),doitopAuthors(yi)}),xi). The term doitopAuthors(xi) =
sum({inter1(norm(publications(xi))), inter2(norm(node degree(xi)))}) selects the most active authors, while the select-term
governs how graph elements picked by the user in panel (c) are treated. Here, they are added as focus nodes (MAX combination)
and shown in orange in the Network view. The colors of all other elements are given by the adjustable color scale in panel
(d) and the amount of reduction can be fine-tuned in panel (e). The labels of the DoI components in panel (b) are currently
colored to reflect their individual DoI values for the hovered node “Wei Wang”, which is in highlighted in red.

through the DoI function for identification tasks (indirect look-
up), but also in certain graph elements for localization tasks
(direct look-up). For this, we provide a compact list-based
view that shows the search result for a search term typed at the
bottom. The entries in the list are highlighted in the color that
corresponds to the respective DoI value computed for them. In
case it cannot be determined from the label itself, a small icon
in front of each entry denotes whether an element is an edge
or a node. Since there can be a large number of matching
results, we use a fisheye distortion that couples the applied
magnification with an entry’s DoI value, so that elements with
higher interest are shown in a larger font. To support the user
in selecting the smaller entries of lesser interest, a table-lens
enlarges the rows under the mouse cursor for an easier selec-
tion. The effect of the selection depends on how the selectd-
term is used in the DoI function: a simple MAX(doi,selectd)-
combination will result in an addition of the selected element,
whereas a MIN(doi, INV (selectd))-combination will remove
selected elements.

The DoI color mapping (Figure 1, panel (d)) allows the user
to change how the DoI values are mapped onto color. In order
to help distinguish elements of different interest more clearly,

we chose to partition the full interval of DoI values [0 . . .1]
into multiple ranges. This way, one can set a clear threshold
between two ranges of different interest and they will get
assigned two clearly distinguishable colors, according to the
range of DoI values in which they lie – something that would
be hard to do with a continuous color scale. The number of
the ranges and the interval of DoI values they span can be
adjusted by the user directly within the interactive color scale.
The color mapping set by this means is used throughout the
DoI view and the Network view.

The visualization thresholds (Figure 1, panel (e)) are con-
trolled via sliders that effectively permit to tune the size of the
shown network in the Network view. As the graph is too large
to be shown in its entirety, it has to be reduced according to the
computed DoI values. For this, we successively contract the
edge(s) whose averaged DoI values of its two incident nodes
and itself is minimal across the entire network. Another option
would be to make the probability of an edge to be contracted
inversely proportional to the summed DoI values and then
choose random edges for contraction w.r.t. this probability to
yield a sampling effect. A contracted edge and its two nodes
are subsumed by a metanode that receives the maximum DoI
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value of all contained elements. The contraction is performed
until the number of remaining nodes and edges falls below the
visual entity budget [13] that the user defines via the first of
the sliders. Such a visual entity budget is usually a better way
to limit the size of the graph than a fixed cutoff with respect to
the DoI value, as it maximizes what is shown no matter how
skewed the distribution of DoI values is. The second slider
governs the number of labels in the Network view.

4.2 The Network View

While the previous section detailed how the DoI view helps
to determine what will be shown (i.e., the reduced network),
this section discusses how it is shown in the Network view.
For this, we consider those aspects, which tie in closely with
the DoI values.

The positioning is done for each time point individually, yet
in a fashion that ensures some stability across time points, so
that browsing along the time axis gives a coherent impression
of the overall behavior. For this, we combine a simple base
layout with an additional stabilization mechanism. For the base
layout, we employ the Fruchterman-Reingold force-directed
layout [16] and generate it incrementally for each time point
by taking the resulting layout of the previous time point
as a starting point for the next time point’s layout. As a
stabilization mechanism, we use pinning weights, as it has
been suggested in [15]. By choosing the pinning weight of
a node to be proportional to its DoI value, a node’s position
becomes automatically more rigid, the higher its DoI value is.
This way, nodes of higher interest can be followed more easily,
while nodes of lesser interest are still allowed to adapt more
freely, as they do not need to be tracked individually. In order
to enhance the trackability of high-interest elements already
during the force-directed layout, we assign spring constants to
the edges that are proportional to the largest DoI value of its
incident nodes. This mechanism is similar to the heat model
used in [29]. Optimally, it creates a fisheye-like effect around
nodes with high DoI values as it elongates its incident edges.
But in cases of densely connected subsets of detail nodes,
this effect is neutralized since all edges receive similarly high
spring constants.

The shapes of the nodes are probably the most prominent
feature to tell apart detail nodes and metanodes. While detail
nodes are shown in the form of small circles, we aim to give
metanodes a more distinct look that makes it immediately clear
that they are representing multiple contracted nodes instead
of a single detail node. We do so by embedding a glyph
in the metanodes. These glyphs give some basic node/edge
statistics on the respective collapsed subgraph they represent.
It consists of a circle section on top of a semicircle and can
have different appearances depending on the size and density
of the subgraph, as schematically illustrated in Figure 2.
The circle section at the top encodes information about the
number of subsumed nodes, which is mapped logarithmically
on its angle α = 180◦ ∗ log(#nodes)

log(max#nodes)
. Whereas, information

about the subsumed edges is mapped in the form of the

density 

low medium high 

few intermediate many 

low medium high low medium high 

density density 

number of nodes 

Fig. 2: Different appearances of the glyph encoding contracted
subgraphs. The size of the subgraph is mapped to the angle
of the circle section at the top. The density (number of edges
out of all possible edges) is mapped to the radius of the circle
section at the bottom. Thus, the glyph at the very left encodes
a small set of nodes with minimal connectivity, whereas the
full circle at the right represents a large clique.

subgraph’s density (the ratio of existing edges vs. all possible
edges) logarithmically on the radius of the lower semicircle
r = r f ull ∗ log(#edges)

log(#nodes∗(#nodes−1)/2) .

The color follows the color mapping that is set in the DoI
view. Detail nodes are color-coded directly according to their
DoI value, while the color-coding of the edges is shown
via halos [24] around the edges to not interfere with the
topological information they convey. To better distinguish
detail nodes from metanodes that form the context of the
observed details, we furthermore color metanodes and edges
that lead up to them as gray.

The labeling prioritizes nodes with higher DoI values for
labeling overall and direct labeling specifically, so that high
interest nodes are always labeled with best possible attribution
of the label to them. We achieve this by utilizing the particle-
based approach described in [25]. We carry out this approach
starting with the detail node with the highest DoI value and
stopping when the labeling threshold set in the DoI view is
reached. This has the effect that nodes with higher DoI values
also have a higher chance of getting a direct label, since not
many other labels have been placed yet. Whereas nodes with
lower DoI values are then more likely to receive eccentric
labels as all the close spots are potentially already taken by
previously placed labels. This also helps to set high-interest
nodes apart from nodes with lower DoI values, for which
labels are only available on demand.

The interaction facilities provided by the Network view are
mainly the standard interaction techniques, such as zooming,
panning, and relocating nodes. While these are not influenced
by the DoI, they nevertheless affect the DoI-based view. For
example, a zoom-in will lead to fewer visual objects being
displayed in the zoomed-in part of the view. This leaves in
turn more space for additional labels, which are automatically
added to previously unlabeled nodes in this case. Other, more
exotic couplings of standard interaction with the DoI values are
easily imaginable. For example, when relocating a node, one
could set the mouse movement speed inversely proportional to
the node’s DoI value, similar to the idea of pseudohaptics [21].
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This way, nodes with higher DoI values would be harder to
relocate not only for the layout algorithm due to the pinning
weight, but also by the user who would thus get an additional
feedback about the node’s DoI value.

The dynamics of the network can be accessed via a DoI-based
time slider in the form of a stacked graph [5] at the bottom of
the Network view. As the buttons on its left-hand side indicate,
it supports all the usual interactions, such as stepping through
the time points one by one or playing an animation over all of
them in both directions. Its overall height reflects the number
of all elements having a non-zero DoI value at a given time
point. It is subdivided into horizontal bands of the different
color intervals chosen in the color scale in the DoI view. These
bands are stacked from the lower DoI values to the highest
ones, so that a user can judge the interestingness of a time
point from the size of its topmost layers encoding the number
of elements with high DoI values. To achieve that even the
few elements of the highest DoI interval are visible, we do not
simply add up element counts in the stacked graph, but their
DoI values instead. This way, elements with a DoI value of
zero are not taken into account and elements with higher DoI
values get more emphasis. The encoding as a stacked graph
informs a user about time points at which larger numbers of
interesting graph elements occur. With this information, the
user can pinpoint a time point of high interest and directly
jump to it with a single mouse click.

4.3 Supporting DoI Definition and Adjustment with
Presets and Linking
The DoI view and the Network view provide the interactive
and graphical tools a user needs to pursue a DoI-based visual
analysis of a dynamic network. As powerful as these tools are,
their flexibility introduces additional complexity that a user
has to master before the tools become useful. To aid in this
process, we offer support by supplementing the views with
two additional mechanisms:
• for the initial definition of a DoI function, we provide

pre-configured DoI presets to choose from and visual
cues for their parametrization, and

• for the interactive adjustment of a DoI function, we pro-
vide linking between the views to allow for a peek into
the DoI computation for “debugging” and fine-tuning.

The pre-configured DoI presets and visual cues provide help
for defining meaningful DoI functions and thus a sensible
distinction between detailed focus nodes and contracted con-
text nodes in the Network view. Presets are preassembled
and preconfigured DoI definitions that can be selected as
starting points and building blocks for one’s own definition. As
different domains and different types of input graphs require
different presets, it is not possible to give a comprehensive
list of such function blocks. For example, network intrusion
detection requires different components than citation network
analysis and trees require different functional DoI terms than
a bipartite graph or a general network, as in each case the
distinction between focus and context is made differently.
Hence, DoI presets have to be tailored to the application

domain and the graph type of the input data to be semantically
meaningful to a user from a particular area. For example, for
our use case from Section 5, we provide ready-made presets
that capture the common interests in bibliometric research and
citation analysis.

Once selected, the presets can then be adapted to the
specific characteristics of the network to be analyzed by using
the visual cues. These are given in the form of a histogram
of the distribution of attribute values in the background of
the DoI specification components. This way, a user can make
an informed decision when adjusting the interest function
directly on top of the values of the computation function, as
they are shown in the histogram. Furthermore, the histogram
provides feedback of how many nodes in each histogram bar
are already assigned high DoI values through the currently
specified DoI function. This is encoded in the histogram by
means of stacked bar charts, which use the same global color
ranges as they are defined in the color mapping.

The linking between the views ensures that the user can
investigate in detail which functional component caused par-
ticular DoI values in the Network view. By hovering over
an element in the Network view, it gets marked red and the
DoI view changes the background color of the labels of all
DoI components to reflect its DoI value. One can then track
the high DoI values from the “root” of the DoI composition
hierarchy down to the individual feature(s) that contributed
the most to the resulting DoI value. In Figure 1, it apparently
stems from the weighted sum combination, which is easily
identified by its darker color in the functional DoI hierarchy,
whereas for example the component of the clicked elements
is colored in a lighter shade. Furthermore, the red marker
at distance 0 at the bottom of the structural propagation
component indicates that the high DoI value originates indeed
from the highlighted element itself and was not propagated
from another element. This marker denotes the spatial or
temporal distance at which the element lies that propagated its
DoI value to the hovered element. Histograms feature a similar
marker to show where the investigated element lies in the value
spectrum of a particular attribute. How this interlinking is used
in a real world example is shown in the following section.

5 A USE CASE EXAMPLE

Citation networks and co-authorship networks are an important
subject of study as their analysis can reveal interesting features
about a scientific community and expose emerging research
topics [28]. Especially when analyzed over time, they allow for
observing the evolution of a scientific community. One source
for such a co-authorship network particularly for the computer
science research community is the DBLP database [23] that
contains around 2 million publications as of today. Because
of the size of this network, most analysis attempts are based
merely on statistical evaluations of these networks or consider
only publications from a specific community or specific con-
ferences [4], [6], [12], [19], [27]. Such statistical evaluations
represent the network in an abstracted, numerical way that
yields at most lists of important authors or highly influential
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Fig. 3: A view of the stacked graph along the timeline for the DoI function doi f ilter(xi) =
min({doitopAuthors(xi), inter3(clustering coe f f icient(xi)))}), which captures top authors with low clustering coefficients.
It can be seen that this does not yet pinpoint the trend of an increasing number of namesakes starting in 2006/2007.

publications without their neighborhood or any other structural
information. Here, we report on our experiences depicting the
DBLP co-authorship network (snapshot from June 2012) with
our DoI-based visualization approach.

5.1 Data Description
In co-authorship networks, the nodes correspond to authors
and an edge exists between two nodes iff the authors, whom
these nodes represent, have published a paper together. We
have extracted such graphs from the DBLP database for each
year from 1990 to 2011. These graphs are cumulative, which
means that each graph contains all authors and co-authorships
that have occurred up to that year. This makes sense, as
two persons having coauthored a publication once will stay
coauthors forever. Additionally for the graph at each time
point, the nodes are assigned the number of papers published
by its corresponding author in that year and the edges are
associated with the number of papers the two incident authors
have published together in that year. Based on these attributes,
it is possible to extract the network of a particular year by
taking only nodes and edges into account, which have an
attribute value > 0 in that year. As proposed in [27], we focus
solely on the largest connected component of the network, as
this component alone makes up 94.2% of the overall data set.
This results in a dynamic network with 22 time points (years)
containing 914,492 nodes and 3,802,317 edges.

5.2 Analysis Goals and First Steps
In the analysis of co-authorship networks, the main interest
lies often on top authors. According to [12], [27] and [37,
ch.5], these authors can be identified by a number of different
characteristics, such as a high number of published papers
and a high number of coauthors, which corresponds to a high
node degree. These two aspects are easily combined into a DoI
function by means of a weighted sum combination that takes
both of them into account. Manually selected focus nodes are
then added through another term, such as the one given in
Section 3.2.3. As a last step, a structural DoI propagation is
applied to ensure that the immediate neighborhoods of top
authors and selected nodes also receive high DoI values and
will thus be shown in their context. For the year 2007, the
result is depicted in Figure 1.

This takes co-authorship network analysis as far as it would
be possible with a fixed monolithic DoI function that has
been developed to address this scenario. Maybe some other
characteristics of top authors would also be included and
one could change their weight and thus their influence on
the combined DoI function. The result will always be the
same: this works fine up to the year 2005, but starting around
2006/2007 one can observe that the visualization is taken over

by a large number of Asian names. The difficulty with these
Asian names is that many of them get listed as top authors
with a large number of publications and coauthors, because
they actually represent more than one person. For example,
the author(s) Wei Wang1 (highlighted in Figure 1) actually
subsumes over 40 different individual persons. The cause of
this known problem is the use of the author’s name as the key
for identifying a person in the DBLP database, which also
leads to the problem that authors appear multiple times due to
different spellings [22]. A tool with a monolithic DoI function
cannot adapt to such specifics of individual datasets and will
thus show incorrect results.

With our approach, however, a visual analysis of the top
authors does not have to end here, because we can alter the DoI
function to filter out the namesakes and yield a correct view
of the top authors. This is detailed in the following section.

5.3 Further Refinement through DoI Modification
We take a two-step approach for our analysis, which aims
first at finding a DoI function that pinpoints the namesakes
and then subtracts them from the initial DoI function in order
to get a view that is unperturbed by this phenomenon.

To select these namesakes, it is necessary to find charac-
teristics allowing to discern them from regular authors. A first
such characteristic is based on the observation that authors
who have published with the same person are also likely to
have published together [28]. As a result, this person with
whom they have published will have a higher clustering coeffi-
cient, meaning his immediate neighborhood is well connected.
Contrary to this, coauthors of namesakes are not as well
connected, because the multiple “overloaded” persons belong
to different scientific communities, and so do their coauthors.

The problem with using this characteristic alone can be ob-
served already in the stacked graph along the timeline, which
is shown in Figure 3: while the trend of a growing number of
namesakes was identified to begin in 2006/2007, the clustering
coefficient captures a number of authors throughout the entire
time interval. It turns out that this characteristic is somewhat
too generous in declaring people as namesakes, as there is
another category of people, who also fit this characteristic, but
are not namesakes: advisors who have published with gener-
ations of graduate students with only few joint publications
between these students due to temporal separation and thus
also resulting in a low clustering coefficient. Advisors can be
told apart from namesakes by their slow increase of coauthors,
which is likely to correspond to a few new grad students each
year. Whereas namesakes exhibit an almost unreal surge of
new coauthors each year that is due to the combined research
collaborations of multiple persons subsumed under a single

1. http://dblp.uni-trier.de/pers/hd/w/Wang:Wei.html

http://dblp.uni-trier.de/pers/hd/w/Wang:Wei.html
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Fig. 4: A full view of the DBLP dataset for 2007, capturing all top authors with low clustering coefficients
and a high increase of node degree over time, which is expressed through the DoI function doi f ilter(xi) =
min({doitopAuthors(xi), inter3(clustering coe f f icient(xi)), inter4(change(node degree(xi)))}). The stacked graph view along the
timeline shows that this refined DoI function better fits the observed starting point and the selected author(s) Wei Wang have
correctly been identified as multiple persons by the function.

name. So, we combine both aspects – the low clustering
coefficient and the high increase in node degree (2nd column
of Table 1) – together with the original characteristics of top
authors – a high publication count and a high node degree.
The result of this DoI combination is shown in Figure 4, again
with Wei Wang highlighted. From the stacked graph along the
time axis, one can clearly see how this phenomenon starts in
2006/2007, as we had observed it before. The resulting DoI
function pinpoints the namesakes well enough to use it in
combination with the initial DoI function to yield a tidied-up
view of the top authors.

To filter out these namesakes, we have to subtract them
from the top authors. This subtraction can be performed
through a minimum combination of the top author selection
from Figure 1 and the inversion of the namesake selection
from Figure 4. However, the selection of namesakes is based
on a temporal feature (the change of node degree) that only
leads to a high DoI value for a node in a specific year
if the steep increase actually occurred in that year. As a
result, authors are classified as namesakes in one year, while
showing an unsuspicious behavior in their node degree in
other years. Hence, we define a namesake as such starting
from the year it was identified as one. Therefore, before
the actual subtraction, we utilize a temporal propagation
that distributes high DoI values corresponding to a found
namesake to all future years. The result of the subtraction is
shown in Figure 5. As a result of the number of namesakes

being reduced, there is now room in the visual entity budget
to show actual top authors who have previously been hidden.
To demonstrate the subtraction, Wei Wang has again been
highlighted to show that while this node fulfills all aspects of
a top author (the weighted sum component in the DoI view
is shown in dark cyan), it also conforms to the characteristics
of a namesake (folded function block “namesakes” is colored
even darker).

Establishing and verifying such a tailored DoI function
would have been very cumbersome without our approach that
permitted us to derive it interactively with immediate visual
feedback. The use case also illustrated the concerted use of
all three of our newly introduced concepts: the modular DoI
specification to iteratively refine the DoI function, the specifi-
cation component capturing the dynamics of graph elements,
and the propagation of DoI values over time to spread a once
identified namesake to all future time points. Now that such
a DoI function has been interactive identified, it would be
possible to use it in a pre-computation or data cleansing step
to identify namesakes in future co-authorship input data that
matches authors by their names.

6 CONCLUSION
In this paper, we have introduced a flexible modular DoI
specification for dynamic graphs, which goes beyond the es-
tablished fixed monolithic DoI-based approaches. While DoI-
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Fig. 5: The same view as in Figure 1, but this time with the found namesakes from Figure 4 hav-
ing been subtracted from it. This has been achieved by combining both DoI functions into doi(xi) =
props(max({select0.85(yi),min({inv(propt(doi f ilter(y j)),yi),doitopAuthors(yi)})}),xi).

based techniques are usually used for generating focus+context
visualizations, we take advantage of the flexibility of our
approach to employ it for supporting visual analysis of large
dynamic networks. This is made possible by providing a user
with the capability to express dynamic features of interest
and to assemble these features into more complex patterns.
Nodes and edges that fit a pattern (e.g., a certain specified
dynamic) are then put into focus of an otherwise abstracted
context representation of the remainder of the network. As
such, our approach indeed permits to analyze local changes,
while at the same time maintaining an abstracted overview of
the global network dynamics.

Our approach stands and falls with the ability to specify
meaningful DoI functions that exactly reflect a given dynamic
pattern a user is interested in. Thus, if our approach was to
be extended in future work, it would be first and foremost
by adding even more ways to specify features. This regards
mainly a better support for the specification of features that are
intricately placed in a high dimensional, multi-faceted attribute
space. While it is possible to capture them with a combination
of the DoI components that we provide, this may require a
large number of base DoI functions and be very tedious to put
together. Hence, it would be desirable to provide components
in which such complex patterns can be specified directly, for
example, by selecting a 2D region in a scatterplot of two
different attributes (inter(comp1(. . .),comp2(. . .))) or of one
attribute vs. the time axis (inter(comp(. . .),T )). Another way
to ease the specification of complex patterns in a high-D
feature space would be to also allow for defining DoI values

based on principal components, as proposed in [33].
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