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Abstract. Stacked area charts are a common visualisation type for sets
of time series. Yet, they are also known to be challenging to read, in
particular if the time series exhibit much fluctuation or even abrupt
changes. In this paper, we introduce a novel approach to improving the
layout of stacked area charts by means of reordering the time series in
the stack. This approach breaks down into two parts: First, we gather
aesthetic criteria and define associated quality metrics for stacked area
charts. Second, we use these quality metrics together with a new algo-
rithm called UpwardsOpt to find orderings of the stacked time series that
optimise a chart’s aesthetic properties. The produced orderings guar-
antee optimality in the sense that no better result can be obtained by
moving any individual time series to a different position in the stack. In
a benchmark study, we show that our algorithm can increase the layout
quality up to 25%-50% over the state-of-the-art approach at the expense
of longer runtimes. All datasets and an open source implementation of
our algorithm are provided to facilitate their reuse and the reproducibil-
ity of our results.
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1 Introduction

Stacked area charts are a common means to show the aggregate of numerical
quantities over time and available in any serious spreadsheet or dashboard ap-
plication. Yet academic literature on them is sparse. In most cases, stacked area
charts are merely discussed as a by-product of their bigger brother, the stream
graph. This paper aims to change this by providing a broader view on the aes-
thetic criteria of stacked area charts and how to algorithmically fulfil them.

Stacked area charts (sometimes also called layer charts, strata charts, or
band curves [10]) show a set of n individual time series f0 . . . fn−1 as horizontal
layers that are piled on top of each other. As a result, the top contour of this
stack of layers – the so-called silhouette gn – conveys the sum of all time series:
gn =

∑n−1
i=0 fi. In this stacked area charts differ from stream graphs, which do

not stack on top of the horizontal time axis, but instead place layers above and
below a curved baseline. Both chart types should only be used if the sum of the
time series is a meaningful quantity and the silhouette carries useful information
– e.g., for counts, percentages, or fractions [16, p.27].
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The expressiveness and effectiveness of stacked area charts are debated in the
literature. Prominent studies have looked mainly into their usefulness for various
analytic tasks as compared to other chart types [6, 8, 12, 13]. One important
observation is that any task performed with stacked area charts will be hindered
by the accumulation of fluctuations across the layers – i.e., fluctuations of the
lower layers affecting the look of the layers placed above them. In terms of
expressiveness, this lets rather stable layers potentially look as if they are much
more volatile than they actually are. In terms of effectiveness, this makes it very
hard to read off concrete values for any time series but f0 at the bottom of the
stack and the overall silhouette gn.

These apparent shortcomings stand in contrast to the unbroken popularity
of stacked area charts for data journalism and reporting, with recent examples
ranging from Donald Trump’s tax returns1 to the infection numbers of respira-
tory diseases including the COVID-19 virus2. These charts are made possible,
as a clever ordering of the layers can reduce the readability problem of stacked
area chart to some degree. This is done by finding an ordering of layers that
minimises fluctuations, so that it eases the estimation of their thickness and
does not convey a volatility that is not supported by the underlying data.

To achieve such an ordering that flattens the layers for better readability, ex-
isting algorithms focus on a quality metric called “wiggle” [3]. Generally speak-
ing, wiggle is a measure of the fluctuations of a layer – i.e., its ups and downs.
Different approaches for how to quantify a layer’s wiggle have been proposed.
They all have in common that they are based on the first derivative of a layer.
In combination with an optimisation algorithm that aims to order the layers, so
that the sum of their wiggle becomes minimal, the literature offers already good
solutions to find suitable layer orderings for stacked area charts.

The first contribution of this paper is to show that there is more to the
layout of stacked area charts than wiggle. We capture a set of aesthetic criteria
for stacked area charts including means to quantify and combine them in one
objective function: flatness, straightness, continuity, and significance. In their
combination, these criteria yield a more balanced visual appearance for stacked
area charts than it can be achieved by the mere optimisation of a chart’s wiggle.

The second contribution of this paper is to give a novel optimisation algo-
rithm with a stricter optimality guarantee than the state-of-the-art approach,
which in turn yields better orderings for most charts. Where the state-of-the-art
approach guarantees that no individual layer can be swapped with a neighbour-
ing layer to improve the layout [5], our algorithm guarantees that no individual
layer can be moved to any other position to improve the layout. This enables
us to generate layouts that cannot be produced with the state-of-the-art algo-
rithm – for example, where moving a layer to a better position would involve a

1 https://www.nytimes.com/interactive/2020/09/27/us/donald-trump-taxes-

timeline.html
2 https://publichealthinsider.com/2020/09/10/alongside-the-ongoing-

transmission-of-covid-19-common-colds-are-on-the-rise-in-seattle-

and-king-county/
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number of intermediate swaps that do not improve the overall layout. Together
with other supplementary material, a Python implementation of our algorithm
is available at https://vis-au.github.io/stackedcharts/.

2 Related work

Stacked area charts have been around for a long time, making it impossible to
pinpoint their concrete origin or inventor. Already Willard Briton mentions them
in his 1914 book “Graphic Methods for Presenting Facts” under the heading
component parts shown by curves [2, ch.8]. In 1938, the American Standards
Association approved design guidelines for stacked area charts [1, pp.64–65].
These guidelines were prepared by the Committee on Standards for Graphic
Presentation of the American Society of Mechanical Engineers and they included
advice on layout, gridding, scales, shading, and labelling. Some of these aspects
still receive attention these days, as it is underlined by a novel labelling algorithm
proposed in 2012 that seeks unused space to label layers [14]. Interestingly, the
guidelines contain a list of circumstances under which stacked area charts should
not be used:

– if accurate reading of values is desired, in the case of more than one layer,
– if irregular layers will unduly distort the contours of the others above it, or
– if changes in the series are abrupt, causing distortion of the layers’ width.

In particular the latter two restrictions have ever since tickled the imagina-
tion of visualization designers, and a series of alternatives and improvements
have been suggested to work around them. This resulted in an entirely new un-
derstanding of when and how stacked area charts can be used, as it is illustrated
in Fig. 1. The most prominent of these layout alternatives is certainly the The-
meRiver™ technique [7] or its modern instance: the stream graph [3]. Though
using different underlying algorithms, both yield very similar and appealing,

Fig. 1. The classic vs. the modern use of stacked area charts: On the left an example
from 1914 that follows the then existing understanding that stacked area charts should
only be used for mostly regular layers without any abrupt changes [2, p.147]. On the
right an example from 2016 that shows the much more relaxed understanding prevalent
today that, given the proper aesthetic optimisations, stacked area charts can also be
used for very irregular bands that do not even persist across the entire chart [13].
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flow-like stacked diagrams for irregular layers. Using the terminology from the
stream graphs algorithm, these techniques reduce the distortion introduced by
irregular layers by means of a curved baseline instead of a flat x-axis. This curve
allows for a better distribution of the irregularities by vertically stacking layers
not only above it, but also below it.

An important consideration for stream graphs has always been the layout
of grouped (e.g., clustered) layers [15, 17, 4]. In particular the idea of accommo-
dating the display of “complementary evolution” of multiple layers has received
some attention in the literature. Complementarity means in this case that the
fluctuations of two or more layers cancel each other out at least in some part –
i.e., when one layer gets thicker, another get thinner and vice versa. It is assumed
that complementary layers are somehow related to each other – i.e., forming a
group or cluster – and thus one wants to place them side-by-side in the chart.
One way to address this layout challenge is to add a term capturing complemen-
tarity to the evaluation function of the chart’s quality, so that it will be taken
into account by the ordering algorithm [11].

The work most related to ours is the research on the ordering of layers to
reduce distortions due to irregularities. Byron and Wattenberg [3] were the first
to point out the ordering problem and to address it by introducing the notion of
wiggle. They proposed to order the layers by a heuristic called OnSet – i.e., the
first occurrence of a non-zero value for a time series fi determined the vertical
position of its layer in the stack. Bartolomeo and Hu [5] later argued that not all
datasets exhibit this property of time series appearing at different time points,
which limits the usefulness of OnSet for other data. They propose two new
heuristics: BestFirst for finding an initial ordering and TwoOpt for iteratively
improving that ordering. BestFirst uses a greedy approach, where the next
layer to be added to a stack is the one which adds the least wiggle to the chart.
Its output is then improved by TwoOpt, which iteratively swaps adjacent layers
if this will improve the wiggle. Their algorithm is the current state of the art.

While both OnSet and the combination BestFirst+TwoOpt have been pro-
posed for stream graphs, their principal approach as well as the notion of wiggle
are likewise applicable to “plain-old” stacked area charts. So, even though we
are not focusing on stream graphs, but on stacked area charts, our contributions
detailed in the following sections build very much on top of these two approaches.

3 Aesthetic criteria for stacked area charts

It is not easy to pinpoint what makes a stacked area chart look aesthetically
pleasing and why. So far, having minimal wiggle is usually considered as the only
criterion in this regard. Yet in our layout experiments with different datasets,3

we encountered a number of curious glitches and imperfections in the resulting
charts that apparently are not captured (well) by wiggle alone. These observa-
tions have sparked our investigation into a broader set of aesthetic criteria to

3 See https://vis-au.github.io/stackedcharts/ for a list of datasets used in this
work.
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create more balanced charts that trade some of that reduced wiggle for being a
little less disagreeable in some other regards. In the following, we describe the
four aesthetic criteria we found most useful in optimising the layout of stacked
area charts.

As a layer can be geometrically captured in a variety of ways – e.g., through
its centre line [3] or through its top and bottom outlines [5] – we introduce
the quality metrics associated with the aesthetic criteria for a line li that is
representative of layer fi. Different options for choosing representative lines are
discussed at the end of this section.

3.1 Flatness: Minimising wiggle

The idea behind flatness is that a layer looks nicer and is easier to judge in terms
of its vertical span if it is as horizontal as possible. The latter is rooted in the
line width illusion [9], which is a bias that leads us to perceive sloped layers as
thinner than they actually are. The smaller the absolute slope of a layer is, the
more this perceptual bias will be reduced. Minimising the slope is exactly what
Byron and Wattenberg [3] proposed with their wiggle metric: the less wiggle a
layer exhibits, the flatter it is. Hence, we can capture flatness in the same way
by measuring the absolute slope between time points tj−1 and tj for a layer’s
representative line li:

wigglei,j = |l′i(tj)| · (tj − tj−1) with l′i(tj) =
li(tj)− li(tj−1)

tj − tj−1
(1)

The effect of optimising a whole chart for flatness is illustrated in Fig. 2b,
which reorders the layers from the chart in Fig. 2a to minimise the wiggle of all
shown layers, flattening them out as best as possible. As one can see, the overall
course of the layers is more horizontal with a less ragged and more orderly look
to them as compared to the random order in Fig. 2a. This does not only help
in tracing them from left to right, but also in estimating and comparing their
respective vertical spans, which we call the thickness of a layer.

(a) Chart without any opti-
misation (random order)

(b) Same chart as 2a, but
optimised for flatness

(c) Same chart as 2a, but op-
timised for straightness

Fig. 2. The visual effect of ordering the layers for flatness or straightness. Note that
the colouring of layers is consistent across all three examples.
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(a) wiggle = 16.19, bump = 20.5 (b) wiggle = 26.19, bump = 4.5

Fig. 3. Ordering the coloured layers for flatness (a) or straightness (b).

3.2 Straightness: Minimising bumps

Merely optimising for flatness can create charts that are made to be as horizontal
as possible, no matter what. Yet in particular for charts that exhibit a large
overall increase or decrease, that means for the optimisation to work against
that overall trend of the chart. It does so by ordering the layers in a way that
they meander between up and down to keep them as horizontal as possible. This
results in a bumpy or wavy look for the individual layers that also shows in
Fig. 2b. This bumpy look is an artefact of ordering the layers for flatness (i.e.,
minimal wiggle) and not inherent in the data.

To counter this visual effect, we introduce straightness, which is a criterion
that aims to reduce those bumps and to keep the layers as steady and even as
possible. This is schematically exemplified in Fig. 3b, where the order of the red
and blue layers from Fig. 3a is reversed to maximise their straightness. As a re-
sult, the horizontal but bumpy look achieved by ordering for flatness is traded for
a sloped but straight look – i.e., fewer, smaller bumps. The bumpiness of a layer
can be captured using its second derivative as measure for how concave/convex
it is. For a time point tj and a representative line li, the second derivative can
be computed using the first derivative from Eqn. 1:

bumpi,j = |l′′i (tj)| with l′′i (tj) = l′i(tj+1)− l′i(tj) (2)

Fig. 2c shows the effects of maximising the straightness for an entire chart
– the same chart that was optimised for flatness in Fig. 2b. By disregarding
their flatness, the layers of this ordering look much calmer and steadier. They
also better support the overall increasing trend of the silhouette, which remains
somewhat of a baffling sight in Fig. 2b with its mostly horizontal layers.

3.3 Continuity: Minimising broken layers

In particular when layers appear or disappear suddenly, large singular jumps can
sometimes occur in the chart which may “break” layers – i.e., have them end at
time point tj at a y-coordinate that is very different from the y-coordinate at
which they continue at time point tj+1. This is illustrated in Fig. 4, showing how
this problem depends very much on the aspect ratio of the chart (left chart vs.
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Fig. 4. Illustration of the effect of layer thickness and aspect ratio on the appearance
of broken layers caused by sudden vertical shifts. Data: subset of unempl

right chart) and on the width of the layer (red layer vs. blue layer). This is not
only a cosmetic problem, but also a problem for a chart’s effectiveness: breaks
can make it tricky if not impossible to follow a layer – especially if there are
many thin layers and the layers are shifted by many multiples of their thickness.

Hence, we introduce continuity as an additional aesthetic criterion. We cap-
ture continuity by measuring the vertical displacement of a layer in relation to
its average thickness. We call this measure break and we define it for a time
point tj , a layer fi, and a representative line li as:

breaki,j =

∣∣∣∣ l′i(tj)

fi(tj) + fi(tj−1)

∣∣∣∣2 · (tj − tj−1) (3)

Using continuity by itself to generate an optimised layer ordering does not
yield aesthetic results – it just removes the breaks. It is rather useful as an “add-
on” to ordering by flatness or straightness to prevent breaks from appearing as
optimal solutions when optimising for these criteria. This can be seen in Fig. 5,
where we optimise solely for flatness in Fig. 5a, which introduces four breaks in
the chart. Fig. 5b shows the same chart, but this time also optimised to minimise
breaks. It has less breaks, but they are not entirely gone – for example, the light
blue layer still exhibits a break at the position of the second arrow from the left.

(a) Ordering solely for flatness. (b) Ordering for flatness and continuity.

Fig. 5. The effect of introducing continuity as an additional criterion to reduce the
sudden vertical shifts visible at the indicated time points. Data: unempl
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This could be fixed by moving the green layer starting at that position atop the
light blue layer. Yet, this would apparently introduce so much additional wiggle
for the green layer, that the algorithm took this as the better trade-off.

3.4 Significance: Minimising the influence of thin layers

Treating all layers equally results in layouts that are close to optimal in a mathe-
matical sense, but not by their visual appearance. The reason is that thin layers
are optimised for their aesthetics in the same way as thick layers, even though
thicker layers are visually much more salient. Sacrificing flatness or straightness
of a prominently visible thick layer to improve the aesthetics of a barely visible
thin layer is not a good visual trade-off. Whereas, getting the layout right for
those thick layers contributes greatly towards an overall aesthetic chart and can
make up for a number of thin layers which are not placed quite as optimally.

We propose the criterion of significance, which prioritises thicker layers in
the layout process – or rather: thicker parts of the layers as thickness may vary
over time and thus a layer maybe more important to the layout during one time
interval than during another. Additionally, parts of the layers with zero thickness
(i.e., a layer disappearing from the chart for some time) should not be counted at
all at those time points, since they do not impact the aesthetics of the chart while
they are not visible. To capture this, we weight each layer’s aesthetic scores by
its thickness. Already Byron and Wattenberg used a quadratic wiggle function
to emphasise the importance of the thicker layers in the chart [3], and we extend
this practice to all aesthetic measures in this section. Yet often a mere linear
weighting does not give the thicker layers the prominence in the optimisation
that they have in the visual appearance of a chart. Hence, we further introduce
variable exponents to these weights to increase or decrease the effect of the
weighting as needed. These exponents can be varied to adjust the weighting
from chart to chart and from one aesthetic criterion to the next. This procedure
yields the following three formulas for wiggle, bump, and break values as they
are aggregated over all m time points for a layer fi using line li and exponent s:

wigglei =

m−1∑
j=1

(
fi(tj) + fi(tj−1)

2

)s

· wigglei,j

bumpi =

m−2∑
j=1

fi(tj)
s · bumpi,j

breaki =

m−1∑
j=1

(
fi(tj) + fi(tj−1)

2

)s

· breaki,j

(4)

Note that the weight for bumpi is not an average, but depends on the thick-
ness of a layer at the time point fi(tj) where the bump is expressed. In other
terms: wigglei and breaki use the first derivative defined between two time points
tj−1 and tj and we thus use the average thickness between these two time points.
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(a) s = 0 (b) s = 1 (c) s = 0.9

Fig. 6. Using different exponents for weighting the layout aesthetics – in this case
straightness – by the layers’ thickness. (a) employs no weighting and thus all thinner
layers are placed at the bottom to “straighten out” as many layers as possible to reduce
the overall bump measure. (b) employs linear weighting, which places all the thicker
layers at the bottom as their straightness is prioritised. (c) uses an exponent in between
0 and 1 to get a compromise solution between (a) and (b). Data: stocks

But bumpi uses the second derivative defined between three time points tj−1,
tj , and tj+1 and we thus use the thickness fi(tj) at tj directly.

Using the exponent s, we can either remove the weighting by setting s = 0,
use a linear weighting by setting s = 1, or increase s further to emphasise thicker
layers even more. This can be seen in Fig. 6, where we optimise for straightness
using different exponents for weighting the layers’ thickness.

3.5 Choosing one or more representative lines

So far, Secs. 3.1- 3.4 have not specified for which concrete line li of a layer to
compute the aesthetics. Byron and Wattenberg [3] advocate the use of the centre
line ci of a layer – i.e., the line halfway between the bottom and the top of a
layer. This line ci can easily be determined by averaging bottom and top y-values
of a layer at each time point tj . Another option given by Bartolomeo and Hu [5]
is to compute the aesthetics separately for the bottom line gi and for the top
line gi+1 (the top line of fi being the bottom line of fi+1) and then to average
the resulting values to yield a single aesthetic quantity per layer. The three lines
li ∈ {gi, gi+1, ci} of a layer fi can be computed in a straightforward manner:

gi =

i−1∑
k=0

fk gi+1 = gi + fi ci =
gi + gi+1

2
(5)

The main argument that speaks for using the outer lines gi and gi+1 is that
they are actually visible to the viewer. I.e., while the centre line is an “imaginary”
line running in the middle of each layer, the outer lines are the borders to the
respective next layers and thus shown in the chart. Hence, they are the ones
that potentially produce a layer’s wiggly or bumpy look, so it makes sense to
optimise the layout with respect to them.

The main argument that speaks for using the centre line is its sensitivity
to certain changes in a layer’s thickness. This is illustrated in Fig. 7, where
the centre line is able to capture the difference between the examples shown
on the left and on the right. For example, in Fig. 7a, the wiggle values (i.e.,
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(a) wigglec(t2) = 0.0, wiggleo(t2) = 0.5 (b) wigglec(t2) = 0.5, wiggleo(t2) = 0.5

(c) bumpc(t2) = 0, bumpo(t2) = 1 (d) bumpc(t2) = 1, bumpo(t2) = 1

Fig. 7. Computing wiggle and bump values for centre line (dotted) and outer lines
(dashed) of a layer. With the centre line, one can distinguish between left and right.

absolute slopes) between t1 and t2 are 0.5 for both top and bottom line, so their
average wiggle is 0.5. In Fig. 7b, outer lines again yield a wiggle value of 0.5 (the
average of 0 for the bottom line and 1 for the top line). So, measured by their
outer lines, left and right side would be considered equally good, even though
the left example distributes the increase in thickness in a much nicer and more
even way. Though, the wiggle values of the centre line reflect this nicer look of
the left variant through a smaller value (0 on the left vs. 0.5 on the right). The
same is true in Figs. 7c and 7d, which show a similar example for straightness
and its associated bump values.

Hence, none of the two options is clearly superior to the other. Therefore,
we propose a convex combination of all three lines with the weights α, β, and γ
summing up to 1 for an aesthetic criterion criti ∈ {wigglei, bumpi, breaki}:

criti = α · criti(gi) + β · criti(ci) + γ · criti(gi+1) (6)

Setting α = 0, β = 1, γ = 0 yields Byron and Wattenberg’s procedure, while
setting α = 0.5, β = 0, γ = 0.5 yields Bartolomeo and Hu’s procedure. Any
other setting can be used to go beyond these two approaches, even combining
all three lines with each other if desired. In the latter case, it has to be noted
that the outer line at the top of one layer is at the same time the outer line at
the bottom of the next layer and will thus be taken into account twice. Hence,
weighing α = β = γ does not actually put all lines on par with each other,
but will instead emphasise the outer lines over the centre line. Another more
intricate option follows from the observations in Fig. 7 and would dynamically
shift the weights so that when a layer’s thickness changes the middle line gets
higher weights, and when it is steady the outer lines get weighted more.
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4 Ordering layers

Being able to quantify a chart’s aesthetics does not automatically yield a better
chart. To that end, we need to combine the different criteria into an objective
function and then search the space of all possible layer orderings for one that
minimises that function.

4.1 Objective function

Integrating the individual aesthetic criteria into one objective function is not
quite straightforward due to the very different value ranges their respective
quality measures produce. We chose an approach that multiplies the individ-
ual metrics with each other. To weight their influence on the overall outcome,
we introduce the following weight function:

w(x,wmetric) = 1− wmetric + x · wmetric (7)

This function takes a value x ∈ R and a weight wmetric ∈ [0 . . . 1] with
metric ∈ {wiggle, bump, break}. It produces a weighted output of x, returning 1
if wmetric = 0 and x if wmetric = 1, so it will have no effect on the multiplication
in the objective function if set to 0 and full effect if set to 1.

Given that we aim to solve a minimisation problem, we formulate the objec-
tive function as a cost function, so as to reduce the values of wiggle, bump, and
break. Its output depends on i, which specifies the layer and thus the time series
fi for which it shall be computed, as well as on its bottom line gi produced by
the underlying stack of layers on which layer i is placed and whose fluctuations
add onto those of layer i itself:

costlayer(i, gi) =

w

(
wigglei∑
chart

, wwiggle

)
· w
(
bumpi∑
chart

, wbump

)
· w
(
breaki∑
chart

, wbreak

)
(8)

The normalisation is done with
∑
chart =

∑n−1
i=0

∑m−1
j=0 fi(tj). Without loss

of generality, all other parameters (e.g., the significance exponents s or the
weights α, β, γ for the convex combination of lines) are assumed as globally de-
fined to keep the equations as well as the following algorithms readable. For all
practical purposes, a reasonable default parameterisation is to set s, β, wwiggle,
wbump to 1 and α, γ, wbreak to 0. The resulting chart can then be used as a start-
ing point to fine-tune individual parameters, like increasing the weight wbreak if
indeed breaks occur and need to be taken care of.

The cost for the whole chart is derived by summing its layers’ costs:

costchart(stack) =

n−1∑
i=0

costlayer(i, gi) (9)

Both variants, the cost per layer and the cost of the whole chart, are being
used in the following when describing our optimisation algorithm.
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4.2 Optimisation procedure

Our ordering algorithm – called UpwardsOpt – improves the ordering of an initial
stack of layers w.r.t. a given cost function costchart. UpwardsOpt iterates over
all layers starting from the bottom and stopping at the top, hence its name.
At each iteration i, UpwardsOpt (1) removes layer i from the stack, (2) calls
a function FindBestPosition to determine the best position of layer i in the
remaining stack, and (3) reinserts layer i there. After having gone through all
layers, UpwardsOpt compares the cost values of the initial stack and of the re-
sulting stack. If the cost improved by more than a given threshold, UpwardsOpt
is run again on the resulting stack. Otherwise the algorithm terminates.

As for a suitable initial ordering, we recommend sorting the layers by their
average thickness starting with the thickest layer at the bottom of the stack
and then decreasing towards the top. Beginning with our incremental ordering
algorithm from this sorted initial order can speed-up its runtime drastically, cut-
ting down on the number of necessary executions of UpwardsOpt before passing
the termination threshold. This is due to the fact that this particular ordering
ensures an early consideration of the thick layers, whose impact on the overall
layout is usually substantial. Once the thicker layers are moved to suitable po-
sitions, all the thinner layers can then fall in place around them. If the thicker
layers were considered at a later point, many of the already well-positioned thin-
ner layers would need to be repositioned again, requiring more executions of
UpwardsOpt to converge on the final order. In our experiments, such an initial
ordering by average thickness combined with a threshold of a minimum improve-
ment of 1% resulted in 2 to 4 executions of UpwardsOpt before termination.

A näıve implementation of the algorithm described above would result in a
cubic runtime complexity: For each execution of UpwardsOpt, we iterate over
n layers, testing for each layer n different positions in the stack, and for each
tested position we compute costchart by summing the costlayer function for all n
layers in the stack. Yet our implementation of the FindBestPosition function
(shown as Algorithm 1) brings the computation down to quadratic complexity
by eliminating the need to recompute costchart each time a new position is tested
for a layer. This is done by preprocessing and storing three types of costs:

– costBelow (line 5) holds the layer cost under the assumption that the layer
in question is below the layer i that is to be positioned – i.e., layer i does
not add into the bottom line gBelow of that layer.

– costAbove (line 6) holds the layer cost under the assumption that the layer
in question is above the layer i that is to be positioned – i.e., layer i adds
into the bottom line gAbove of that layer.

– costLayer (line 7) holds the cost of layer i if being moved to position pos.
This means at index pos, costLayer[pos] contains the cost of layer i sitting
on the stack of layers 0 through pos− 1. The cost of layer i being positioned
all the way at the top is added in line 11.

During testing, we then use these costs to determine the chart’s overall cost
if layer i is moved to position pos in the stack. This is done by combining the
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Algorithm 1 FindBestPosition

1: procedure FindBestPosition(order, fi)
2: gBelow ← 0; gAbove← fi . Preprocessing Stage
3: costBelow, costAbove, costLayer ← []
4: for pos = 0 to length(order)− 1 do
5: costBelow.add(costlayer(order[pos], gBelow))
6: costAbove.add(costlayer(order[pos], gAbove))
7: costLayer.add(costlayer(fi, gBelow))
8: gBelow ← gBelow + order[pos]
9: gAbove← gAbove + order[pos]

10: end for
11: costLayer.add(costlayer(fi, gBelow))
12:
13: currentCost← costLayer[0] +

∑j−2
l=0 costAbove[l] . Testing Stage

14: bestIndex← 0, bestCost← currentCost
15: for pos = 1 to length(order)− 1 do
16: currentCost += costBelow[pos− 1]− costAbove[pos− 1]
17: currentCost += costLayer[pos]− costLayer[pos− 1]
18: if currentCost < bestCost then
19: bestIndex← pos, bestCost← currentCost
20: end if
21: end for
22: return bestIndex
23: end procedure

overall cost from costBelow for all layers below pos, from costLayer for the costs
of layer i being placed at pos, and from costAbove for all layers above pos:

costchart(g0) =

pos−1∑
l=0

costBelow[l] + costLayer[pos] +

n−2∑
l=pos

costAbove[l] (10)

While this saves us from re-computing the cost function for all layers each
time we try a new position for layer i, we can even get rid of the summations in
Eqn. 10. This is done by testing new positions for layer i from bottom to top,
moving it up one position at a time. When moving layer i up to a new position
pos, we do not need to recompute the cost for the whole stack, but only to adjust
the cost value computed for the last position pos− 1 that we tested:

newCost = currentCost

+ costBelow[pos− 1]− costAbove[pos− 1]

+ costLayer[pos]− costLayer[pos− 1]

(11)

This exact procedure can be found in Algorithm 1 in lines 16 and 17. This
way, we only need to sum over the full stack once in the beginning for pos = 0
(line 16), i.e., testing the very bottom position for layer i. Afterwards, the above
procedure can make use of the preprocessed cost values without having to run
the cost function and without iterating over the full stack again.
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5 Benchmarking

We implemented our ordering algorithm (UpwardsOpt) as well as the state-of-
the-art algorithm (BestFirst+TwoOpt) as a Python 3.6 backends to a Tableau
v.2019 chart. All benchmarks were run on a 2017 27” iMac 5K with a 3.4 GHz
Intel Core i5 processor and 40 GB RAM. The datasets used in our benchmarks
were chosen to span the different possibilities from only a few time series with
many time points, all the way to many time series with only a few time points.
They can be found at https://vis-au.github.io/stackedcharts/.

We restricted the benchmark to two cases: optimising only for flatness (min-
imising wiggle) and optimising only for straightness (minimising bumps). The
significance exponent was set to s = 1. We used only outer lines – i.e., α =
0.5, β = 0.0, γ = 0.5 – and a 1% threshold of minimum improvement. As a
neutral reference point, we generated 100, 000 randomly ordered stacks for each
dataset and averaged their costchart values. We then computed the optimised or-
derings using BestFirst only, the combination of BestFirst+TwoOpt, as well as
our algorithm UpwardsOpt. Their costchart values were then set in relation to the
averaged values to see how much each improves over the average random order.
We further logged the runtimes of BestFirst+TwoOpt and of UpwardsOpt.

The results are documented in Table 1 and Fig. 8. In terms of quality and
speed, we can observe that all trends persist for both, flatness and straightness.
We can also observe that UpwardsOpt produces better, but slower outputs than
BestFirst+TwoOpt throughout all datasets. The use of the BestFirst heuristic
by itself produces very mixed results, from close to optimal orderings (e.g., for
movies) to worse than the average random ordering (e.g., for hotel).

Quality-wise, UpwardsOpt performs only slightly better than BestFirst+
textttTwoOpt for datasets with only few layers (e.g., for unempl or sandy), as
well as for rather similar layers that do not exhibit much individual traits (e.g.,
for liquor). In both cases, the search space is not that large for both algorithms
to find much different solutions – either because there are only a few layers
to reorder in the first place, or because no reordering would much affect the
outcome. Yet, for some datasets that have a mix of longer and shorter layers
(e.g., messages), UpwardsOpt improves significantly over BestFirst+TwoOpt.

Table 1. Results of our benchmarking. Lower values are better. Costs are relative:
cost = 1.00 denotes the quality of an average random order derived from 100, 000
random trials, cost = 0.00 denotes perfect quality with no wiggle or bumps.

relative costs, flatness relative costs, straightness times (secs), flatness times (secs), straightness
dataset n m BF BF+2Opt UOpt BF BF+2Opt UOpt BF+2Opt UOpt BF+2Opt UOpt

unempl 28 443 1.06 0.82 0.81 1.04 0.73 0.67 3.79 3.58 2.05 4.29
sandy 183 33 0.92 0.73 0.69 0.89 0.74 0.65 2.59 15.67 1.77 11.81
covid 206 113 0.86 0.83 0.74 0.81 0.77 0.65 4.51 59.36 4.71 69.75
hotel 334 115 1.13 0.90 0.59 1.10 1.00 0.54 16.47 214.02 12.85 196.42

messages 604 135 1.08 0.98 0.58 1.23 0.97 0.49 45.50 640.39 58.64 1002.37
liquor 695 240 0.95 0.88 0.84 0.96 0.92 0.89 167.38 1014.19 180.45 1264.28
movies 881 51 0.73 0.71 0.64 0.77 0.76 0.60 28.55 504.54 31.11 589.37
names 1000 135 1.01 0.94 0.69 1.00 0.98 0.74 165.47 2500.90 178.67 2024.34
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(a) Flatness (b) Straightness

Fig. 8. Relative layout costs from Table 1. Lower is better.

BestFirst will pick the shorter layers first, because they barely increase the
overall cost. But in the end, only longer layers remain and will be placed on top
of the shorter ones, creating a far from optimal starting point for TwoOpt.

Runtime-wise, we see that UpwardsOpt takes roughly about one order of
magnitude more time to complete than BestFirst+TwoOpt. The only exception
is the smallest dataset unempl, for which no significant differences could be
observed. The measured runtimes increase mainly with the number of layers, but
they are also dependent on the structure of the dataset itself. An example is the
movies dataset with 881 layers, but its runtime is well below the liquor dataset
with only 695 layers. This is due to the fact that the layers in the movies dataset
only span rather short time intervals. As a result, reordering them disturbs only
a small part of the chart, so that fewer iterations of UpwardsOpt are needed.

6 Conclusion

We have presented aesthetic criteria that allow for a flexible configuration of
layout properties. We have further introduced a novel ordering algorithm that
yields results of higher quality. Specifically, it guarantees that no better ordering
can be obtained by moving any individual layer to another position in the chart.
It has to be noted though, that our algorithm does not necessarily find the
global optimum, as moving multiple layers to different positions at once might
still yield an even better ordering. First benchmarks of our algorithm show that
in ideal situations (i.e., layers with high fluctuations) our algorithm can increase
the layout quality up to 25% − 50% over the state-of-the-art approach. This
improvement comes at the cost of longer runtimes, which we deem acceptable
for two reasons: First, stacked area charts are hardly ever used for thousands
of time series, so that runtimes usually remain tolerable. Second, stacked area
charts are usually generated for presentation purposes. It is hence sensible to
spend some computation time to yield ready-to-print charts that look their best.
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