A Characterization of Data Exchange between Visual Analytics Tools

Lars Nonnemann*, Heidrun Schumann*, Bodo Urban*, Mario Aehnelt! and Hans-Jorg Schulz*
*Institute of Visual and Analytic Computing, University of Rostock, Rostock, Germany
Email: lars.nonnemann@uni-rostock.de, heidrun.schumann@ uni-rostock.de, bodo.urban@ uni-rostock.de

TCompetence Center for Visual Assistance Technologies, Fraunhofer Institute for Computer Graphics Research, Rostock, Germany

Email: mario.aehnelt@igd-r.fraunhofer.de
j5Department of Computer Science, Aarhus University, Aarhus, Denmark
Email: hjschulz@cs.au.dk

Abstract—Over the past years, the visualization of large and
complex data sets brought up various Visual Analytics (VA)
tools in order to solve domain-specific tasks. These VA tools
are typically implemented as individual software components
in data-flow-oriented models, meaning that data is transferred
from one component to the next. While most VA frameworks
rely on a monolithic architecture with features for the inte-
gration of specialized analysis methods, we consider a loose
coupling of independent applications, where autonomous VA
tools are used in predefined analysis sequences. To this end,
we provide a characterization of the data exchange process
among individual VA tools in the form of a taxonomy. This
taxonomy can be used as a checklist to identify characteristics
and improve the data flow of one’s own multi-tool VA setup.
For this purpose, we conducted a systematic investigation of the
individual aspects of data exchange that are commonly found
across different usage scenarios. We apply our taxonomy to
three existing multi-tool frameworks, the open-source library
ReVize, the toolchain editor AnyProc, and the visualization
and monitoring framework Plant@Hand3D.

Index Terms—Data Analysis, Visual Analytics, Data Exchange

1. Introduction

Visual Analytics (VA) tools are available in a variety
of proprietary or open-source software, from analysis li-
braries [1] to full-fledged frameworks [2]. A common ab-
straction to be found in these VA solutions is that of a data-
flow modeling how data is exchanged between individual
software components (often termed operators) of a VA
framework. This conceptual understanding of data being
funneled through a series of operators, each making its
changes and then handing the results off to the next operator,
was first captured in Chi’s Data State Reference Model [3].
Heer and Agrawala later enshrined it in the Operator design
pattern for visualization software [4], which stands at the
core of many of today’s VA solutions, such as KNIME [5]
or VisFlow [6].

Today, specialized application domains require specific
analysis methods that are often not included in the generic
VA frameworks. Instead multiple, developed standalone
tools are used within their respective application domain.
This is the point where the conventional intra-tool data-
flow model ends, and the jerry-rigging of some form of
inter-tool data exchange via custom scripts starts. Conse-
quently, the need for a more structured and reusable form of
data exchange between independent applications is echoed
throughout many application fields from biology [7] to
geosciences [8].

Some approaches to exchange data across tools have
been explored in the past. For example, North and Shnei-
derman’s Snap-Together visualizations [9] use an underly-
ing relational database system as a central broker among
independent tools. Whereas Rogowitz and Matasci’s Meta-
Data Mapper [10] utilizes a service-based infrastructure to
distribute data to multiple tools. Yet, these software archi-
tectural considerations are only one side of the coin. The
other side being how the tools are actually used together:
Are the tools used only once or repeatedly, subsequently
or concurrently, symmetrically or asymmetrically, etc.? We
strongly believe that these two sides of the same coin must
match each other — i.e., the underlying architecture must
be a good fit to enact the necessary prerequisites for data
exchange for a given cross-tool VA usage scenario.

In this paper, we systematically investigate how data
exchange between independent VA tools can be realized.
By answering the five W-questions of What kind of data is
exchanged?, Why, Where, and When is it exchanged?, and
finally Which type of access is granted to the tool? we create
a taxonomy that describes the most important characteristics
of data exchange. Such a taxonomy can be advantageous in
several ways. Kerracher and Kennedy [11] point out that
taxonomies help us to specify the “space of possible” and
make sense of what already exists. Moreover, they argue that
taxonomies provide a common vocabulary that allows us
to describe and compare different approaches. In particular,
taxonomies can help systematize the design by abstracting
from domain specifics and underlying technologies. With
our taxonomy of data exchange between VA tools, we aim to

support the evaluation, comparison, and design of different
exchange strategies. To substantiate these aspects, we apply
our taxonomy to three demonstrating examples.

2. Related Work

Each software or hardware solution for VA has three
layers that must fulfill the analyst’s requirements: data man-
agement, analytics, and visualization [12]. These three layers
cover separate research areas on their own, each coming
with its own significant challenges [13]-[15]. As a result,
research questions regarding these layers are often dealt with
in isolation, developing solutions that work on one layer, but
are ill-fitting for the others.

Recently, data management and analysis tools have
begun to converge through the use of multiple technolo-
gies, including grids, cloud computing, and general-purpose
graphics processing [12], [16]. Therefore, data management
and visual analysis get involved in the creation of data-
flow-oriented models. In 1995, Lee and Parks [17] intro-
duced one of the most common data-flow models for VA
systems, and it is still widely used in various visualization
systems, including ConMan [18], AVS [19], SCIRun [20],
and VTK-based systems such as Paraview [21], Vislt [22],
and VisTrails [23]. These systems incorporate different data
management, analysis, and visualization operators into an
overall system, and implement the data exchange between
these modules in a system-specific manner. However, when
it comes to conducting data analysis using a number of
independent VA tools, such system-specific solutions are no
longer applicable.

The idea of analyzing data across a set of multiple
independent tools in a sequential form is well established
and captured in the concept of analysis pipelines. In contrast,
more flexible analysis scenarios of using different tools
repeatedly in a back-and-forth manner or even concurrently
in a side-by-side manner have only recently been introduced
[24], [25]. The main idea behind them is to generalize the
unidirectional linear analysis pipeline into a more encom-
passing graph model, representing VA tools as its nodes, and
different communication layers between VA tools as directed
edges. The subsequent use of VA tools charts a path through
that graph, which we call toolchain [26]. These toolchains
describe a flexible, loose coupling of tools that follows a
specific analysis process, rather than their integration into
an “all-encompassing” VA system. However, it is hardly
investigated in more detail how the data can be exchanged
between such individual VA tools. As for most visualization
systems, data exchange is usually expected to work, but far
away from a systematic treatment. This might be due to the
overlap with the area of data management.

Data management is a longstanding research topic of
computer science with the goal to ensure data consistency,
avoid duplication and handle data transactions in a formal
way. Most traditional database management systems rely on
relational database models to exchange and integrate data by
exploiting a highly optimized and standardized data access
interface through the SQL query language. Over the past

years, modern solutions such as data warehousing, OLAP
(On-Line Analytical Processing), and data mining have been
applied in this area more often, as these techniques are
intended to support visualizations, strategic analyses, and
decision processes. Obstacles for data management stem
from the fact that data sets are often very large and growing
incrementally, while their sources are heterogeneous, au-
tonomous, and typically distributed. It becomes increasingly
complex to provide unified and transparent access to large
volumes of data in an organized way.

Thus, the management and transformation of data are
an essential part of VA research, as described by Thomas
and Cook [27], Keim et al. [16], and Fekete [12]. Never-
theless, we found that data exchange between independent
VA tools is usually not discussed. This might be due to the
immense wealth of modern information systems in terms of
acquisition, computation, and storage, which are usually no
primary concerns for visualization research. In this paper,
we aim at bridging this gap by introducing a taxonomy to
characterize the data exchange among individual VA tools.

3. A Taxonomy of Data Exchange between VA
tools

Our taxonomy is meant to provide a classification of
data exchange between independent VA tools in order to
capture the range of possibilities by detailing their individual
characteristics. Our classification approach follows the Five
W’s Model [28] that asks for different aspects of a concept
through five questions of What?, Why?, Where?, When?, and
Who?. For our case, we adjusted the Who? into a Which?,
as we are talking about the communication between VA
tools instead of users. This leaves us with five characterizing
questions shown in Figure 1.

In the following, we look at these questions in detail
and identify common answers to each — i.e., the resulting
characteristics. For each of these characteristics, we then
discuss their implications for the data-flow-oriented analysis
between multiple VA tools in three demonstrating examples
summarized in Section 4.

| e L] @i GRS Data Characteristics
exchanged?
- | Why is data Function
2 o exchanged? Characteristics
s &
"8 ;
S5 Where is data Topology
g exchanged? Characteristics
g2
=) ’
= | When is data Chronology
exchanged? Characteristics
L_[Which type of access is Availability
granted to the tool? Characteristics

Figure 1. Our five characterizing questions for data exchange between
independent VA tools

3.1. Data Characteristics

Data is a versatile term usually used for a certain
quantity of information ranging from a huge number of
values in a data source to a few parameters synchronized
between two applications. Starting from this basic idea about
data, we investigate the diversity of this term by answering
the following questions: What type of information can be
extracted from a data source?, What type of information is
commonly used by tools?, and What partition of information
should be exchanged?.

3.1.1. Informational Contents. If we talk about data for
visual analysis, we usually refer to it as some sort of vari-
ables that hold information about the usage scenario such
as n-dimensional vector fields, 3D geometry, or geospatial
sensor-data. However, this is not the only type of informa-
tional content that is used for analytical tasks.

A Data set is a collection of values, items, or facts,
which are described by primitives (for example numbers,
strings, or vectors) based on predefined value scales. This
refers to most information, which is stored in simple file
structures that either hold raw data, prepared data, focus
data, geometric data, or image data.

A Data descriptor, on the other side, encapsulates basic
information about the data set such as provenance infor-
mation, storage schemata, uncertainties, or general meta-
data [29]. This type of information can be used by the
overarching system during the subsequent analysis to au-
tomatically recognize possible data transformations, catego-
rize similar VA tools, or adequately parametrize views and
highlight or exclude data items. Examples of such metadata
are semantic information through tags or keywords as in
HTML or CSS elements, or editorial information such as
date, time, and authorship in stored documents.

3.1.2. Data Formats. Over the past years, countless data
formats have been proposed and even today, new file formats
are still being created in order to provide application-specific
properties. Combining data sources independent of their
origin is therefore a challenge, which is discussed in various
research papers [13], [30] and patent applications [31], [32].
In order to understand the fundamental differences of data
from an abstract view, it is therefore common to categorize
data on their structuredness.

Structured Data refers to organized information that
follows a predefined data model (also called schema) [33].
These types of data formats are typically used in rela-
tional databases management systems (RDBMS), where
fields store attributes in different columns of a table [34].
Common examples for structured data are reports, logs, tags,
or objects in large repositories (e.g. payroll, inventory, or
account management).

Unstructured Data is essentially the opposite as it in-
cludes data with no pre-defined schema [33]. Unstructured
data originates from machine- or human-generated infor-
mation and is categorized into two common types [34]:
Non-textual unstructured data are multimedia files such

as images, sounds, or videos while Textual unstructured
data define readable files such as email messages, office
documents, or metadata.

Semi-structured Data includes predefined structure ele-
ments such as tags or other markers and free-form unstruc-
tured components to separate semantic elements and enforce
hierarchies of records and fields within the correspond-
ing information [35], [36]. Therefore, it is also known as
schemaless or self-describing structure. Common examples
for semi-structured data formats are usually based on the
extensible Markup-Language (XML) or the Javascript object
notation (JSON).

3.1.3. Quantity of Exchanged Data. The previous sections
showed that the information within a data source can be di-
verse. In order to achieve a high-performing and responsive
coordination, it may be necessary to partition the number of
variables that are exchanged via the systems architecture. We
describe this quantity using three different characteristics.

A Full Data Exchange is the simplest solution for the
information transfer, as the entire data set is exchanged
as a whole. A common example are snapshots, which can
store the state of a system at a certain time [37]. This is
especially useful for a coherent analysis experience forward
and backward along toolchains.

A Segmented Data Exchange is used to enhance the
performance of toolchains. Therefore, data is split into seg-
ments over time to provide a fast and efficient information
processing. This is especially important for the progressive
refinement of visualizations [38]. The way in which segmen-
tation is performed depends strongly on the data type. For
example, while graph data is divided topologically, whereas
time data is partitioned into sensible intervals.

A Delta Data Exchange is carried out by exchanging
only a the changed part of the data source that is selected
based on the urgency or priority of operations. Examples
for this are small selections of groups or single parameter
manipulations in one VA tool that result in an immediate
update of the visual representation in another VA tool.

3.2. Function Characteristics

After knowing about the information within the ex-
changed data, the next task is to examine its function in the
exchange process. In this context, it is important to answer
the question: Why is data exchanged?

The Import and Export of data is the most fundamental
operation in our data exchange process, as we assume
that VA tools consume and produce information from data
sources. The full data set is thereby exchanged in order to
be used by the corresponding VA tool.

It is inevitable that information in a data source will
be changed during the analysis. This Modification of data is
commonly performed by saving the progress of one VA tool
within a file. Depending on the system’s infrastructure and
the quantity of information, data can thereby be exchanged
via full or segmented data exchange.

Another possible operation is the Update of information
by sending additional data in chunked segments to refresh
the visual representation. The transmission rate can be de-
fined by certain time intervals or triggered by specific action
events. An example of this would be streaming services,
where frequent updates are performed by sending the new
generated data over the system’s infrastructure to the corre-
sponding VA tool [39], [40].

Synchronization among tools refers to the process of
aligning data and parameters between them — i.e. a change
to the data in one of them will be reflected in the other. An
example of this would be the linking & brushing mecha-
nism [41], where selections in one tool trigger a highlighting
in another tool. This process is usually realized through a
bidirectional delta data exchange.

3.3. Topology Characteristics

So far, we considered data exchange as a communication
process. However, in order to perform the communication,
there needs to be some sort of medium. Thus, we need to
cover the questions Where is the data exchanged?, Where
does the data come from?, and Where is the data going?

3.3.1. Infrastructure. There are multiple software infras-
tructures for the data exchange between different tools.
However, all of these infrastructures can be divided in two
fundamental architectures.

A Centralized Architecture is a single software solution
that exchanges data between multiple VA tools through a
uniform platform. The typical way of pursuing this is by us-
ing a relational database that acts as model in a model-view-
controller mechanism. Examples for such a centralized data
storage are systems like Snap-together [9] or EdiFlow [42].
Another possibility for a centralized architecture is the em-
ployment of a service bus to broker messages among tools.
An example for such a service-oriented architectures is the
Metadata Mapper [10].

A Decentralized Architecture provides data exchange
through a variety of different mechanisms without a uniform
platform. Therefore, custom connectors are applied in order
to access content from websites or shared network data.
Common techniques for this are web mining and extensive
browsing as in Intertwine [43], or mashup tools like Mash-
room+ [44] or VisMashup [45].

3.3.2. Relations. Previous work describes VA tools as black
boxes that can handle input and output information [26].
Following up on this, we define data sources to be either
initial input or resulting output information of a VA tool
that may be stored in a data format. Hence, with multiple
tools, it is obvious that there are multiple possibilities for
inputs and outputs. Therefore, we consider four key relations
between data sources and VA tools.

The One-to-One Relationship provides each tool with
exactly one data source. This is the simplest use case that
could be used for the initialization of a VA tool or the

transport of output data between two subsequently used VA
tools.

The One-to-Many Relationship is applied when multiple
data sources are used by a single VA tool. For this to work,
data transformation such as merging between the data sets
needs to be applied for all used data sources. This problem
gets increasingly hard with a multitude of data formats.

The Many-to-One Relationship refers to one data source
that is used by multiple tools. Clear communication between
the independent VA tools about the chronological order is
needed, as simultaneous access to information can lead to
problems with multiple versions of the same data source.

The Many-to-Many Relationship is essentially a combi-
nation of the two previously discussed relationships, where
multiple data sources are used by multiple VA tools.

3.3.3. Directionality. Another important aspect for the data
exchange is the direction of the communication process,
which we describe to be either unilateral or bidirectional.

For the Unilateral data exchange, data is transmitted
exclusively from one VA tool which is the sender, to another
VA tool, which is the receiver of information. A simple
example for this would be the data exchange between tools
with single functionality such as simple command-line tools
or data format converters that are used only once, without
the need for specific parameter adjustments. Therefore, data
is just passed through in one direction of the toolchain.

The Bilateral data exchange, on the other side, offers an
open communication between VA tools in both directions.
This corresponds to continuous analysis tasks with frequent
parameter changes such as the parallel display or dynamic
switches between VA tools. Example use cases are data
exchanges between multi-functional tools that offer the right
parameters for a comparative or advanced visualization of
information.

3.4. Chronology Characteristics

As data exchange, especially for big data visualization,
is a time-dependent task, it is necessary to schedule the data
transfer — an aspect that is often conveniently left out of the
discussion [46]. Therefore, we need to answer the questions
When is the information exchange planned? and When is
the exchange executed?

3.4.1. Timeline. We define the timeline for the data ex-
change process between two VA tools as a planned execution
of different data transfers. A data transfer is thereby the
process of passing portions of the data from one VA tool to
another. We define this process to be either synchronous or
asynchronous.

The Synchronous Data Transfer is performed, if both VA
tools are available for sending and/or receiving data at the
same time. This requires an open communication channel
that is not closed during the exchange process.

The Asynchronous Data Transfer allows a delayed data
exchange, where both VA tools are available for sending

Aspects

Characteristics

Content

Data Set: a collection of values, items or facts

Data Descriptors: data about a collection of values, items or facts

Formats

Quantity

Data Characteristics

Structured Data: follows a predefined data model

Unstructured Data: follows no predefined data model

Full Data Exchange: exchanges the entire data in one big chunk
Segmented Data Exchange: exchanges the data in multiple chunks

Delta Data Exchange: exchanges only a modified delta partition of the data

Operations

Function
Characteristics

Input / Output: exchanges data between tools to perform their basic operations on
Modification: exchanges data to reflect changes
Updates: exchanges data to incorporate new information

Synchronization: exchanges state changes (selection, bookmarking, etc.) of data

Infrastructure

Cardinality

Topology Characteristics

Directionality

Centralized Architecture: exchanges data through a single, unified platform

Decentralized Architecture: exchanges data through a variety of different mechanisms
One-to-One Relationship: data is initiated or exchanged between two tools

One-to-Many Relationship: data from one tool is exchanged with multiple others
Many-to-One Relationship: data from multiple tools are exchanged with a single tool
Many-to-Many Relationship: data from multiple tools are exchanged with multiple other tools
Unidirectional Process: data is exchanged exclusively from one to another tool

Bidirectional Process: data is exchanged both ways between two tools

Timeline

Order

Chronology
Characteristics

Synchronous Process: data is sent and received at the same time
Asynchronous Process: data is sent and received at different times
Pull Strategy: data exchange is initiated by the receiving tool

Push Strategy: the data exchange is initiated by the sending tool

Restriction

Availability
Characteristics

Retention

Full Access: data can be freely exchanged between tools

Restricted Access: data exchange between tools is throttled or otherwise constrained but still possible

Access via Bypassing: data is not meant to be exchanged and needs to be exfiltrated/infiltrated using workarounds
Persistent process: exchanged data remains available at any later point in time

Transient process: exchanged data is only available for the duration of the exchange

Figure 2. Our taxonomy for the characterization of data exchange between independent tools. Each aspect is thereby included in one of the five categories.

and/or receiving data at different times. This communica-
tion is usually established by the system’s infrastructure,
allowing data to be prepared for subsequent analysis tasks
(e.g. initiation of start-up processes). The effectiveness of
this approach is limited to the number of VA tools used
during an analytical task, since performance can be affected
by the high number of different simultaneous preparation
steps.

3.4.2. Order. While the timeline of the data exchange pro-
cess is used to plan the execution of the data exchange, there
are also different strategies for the status of the data during

the execution order. Di Lorenzo et al. [47] mentions two
strategies that are based on the invocation of said VA tools.

The Pull Strategy is based on frequent and repetitive
requests that are initiated by the receiving VA tool — e.g.,
in a data-flow model, an idle operator would poll its pre-
decessor(s) in the toolchain for new data to work on. The
polling frequency should thereby set to be lower than the
average update frequency of the data source itself in order
to control the amount of performed operations.

The Push Strategy, on the other side, is initiated by the
sending VA tool — e.g., in a data-flow model, an operator
that has completed its computation would send off its results

to its successor(s) in the toolchain. If the successors are not
known to the operator, a central broadcast to all operators
may also be possible where the individual operators then
decides itself whether to accept or decline the data.

3.5. Availability Characteristics

So far, we considered data exchange as a process by
which a receiving VA tool obtains information from a send-
ing VA tool over the system’s infrastructure. However, in
order to carry out this process, we need to cover if data is
even available for the exchange process by answering the
questions of: Which data can be accessed? and For which
time period is the access granted?

3.5.1. Restriction. Data can be obtained in many different
ways, whether it is through a file system or databases,
by adding data values as URL tokens or as inter-process
communication. However, data may not always be available
due to security restrictions.

In the case of Full access to data sources, information
can be freely exchanged between tools over the system
infrastructure.

However, sometimes Restricted access might be applied,
so that data exchange is throttled or otherwise constrained.
One way of relaxing this restriction are tool-specific appli-
cation programming interfaces (APIs) through which data
can be requested and sent.

For otherwise proprietary applications, data retrieval is
possible through access by bypassing. This applies to all
situations, where data is not meant to be exchanged, so
that minimally invasive workarounds like screen poking
and screen scraping [48], [49] need to be applied. While
screen poking is used to generate synthetic mouse and
keyboard events for inputting data as if done manually,
screen scraping is used for the opposite direction of extract-
ing information from an application’s Ul If no structured
information about the screen contents are available, this can
be done via OCR and image processing [50]. Yet if such
information is available — e.g., the Document Object Model
(DOM) of a website — an extractor or wrapper can be used
to find and obtain the relevant information [51]. Another
way of information retrieval is the parsing of rendered user
interfaces [48] to extract content types from similar visual
features in the synchronized views. Examples of toolkits for
scraping data from different sources are the combinations
of Firegoose [52], and the Gaggle Tool Creator [53] or
SideCache [54] and SideKick [55], which are used in the
biomedical domain.

3.5.2. Retention. Beside access restrictions to data sources,
there is also the problem of time-dependent availability as
the retention of data might differ during the analysis task.
Persistent Access is granted to a VA tool in order to
keep data available at any later point in time. The data is
thereby only modified by the VA tool, which requested the
access until all needed operations are finished. This ensures
a consistency of the selected data within a VA tool. However,

this behavior will lead to conflicts, if the data is shared
between multiple VA tools.

Transient Access is granted to a VA tool for the duration
of the exchange process itself. An example for this would
be a unidirectional analysis process with a sequential use
of multiple VA tools one after another. In this scenario,
it is not necessary to keep access to a data source, as the
analysis tasks enforces a subsequent execution of VA tools.

In summary, we have introduced a taxonomy with five
categories to classify the data exchange between indepen-
dent VA tools. The categories capture what kind of data is
why, where, and when exchanged, and which type of access
is granted for the tool. Each category describes particular
aspects of the data exchange independent of the underlying
technology (see Figure 2).

4. Demonstrating Examples

In this section, we showcase how our taxonomy can be
used to describe the data exchange in existing multi-tool VA
setups, as well as its ability to pinpoint those data exchange
characteristics that require changes if new features are to
be realized. To that end, we discuss three visual analytics
frameworks: the open-source library ReVize, the toolchain
editor AnyProc, and the visualization and monitoring frame-
work Plant@Hand3D.

4.1. ReVize

Our first example is the open-source library ReVize [56]
that can be used to add data exchange capabilities between
different web tools using the Vega-Lite visualization gram-
mar [57]. The ReVize framework makes use of the fact that
Vega-Lite is able to declaratively describe certain aspects
of the visualization toolchains from preprocessing the data
to its mapping onto visual elements. This way, changes
to any part of the visualization are reflected in the same
visualization description, which simply gets updated and
amended accordingly.

4.1.1. Classification. What kind of data is exchanged?

ReVize exchanges data sets without metadata in full. The
data is exchanged as JSON and thus semi-structured.

Why is data exchanged?

ReVize specifically supports the import and export of
visualizations to be used or modified in otherwise closed
web tools that were originally not designed to handle Vega-
Lite.

Where is data exchanged?

ReVize makes no assumptions about the infrastructure,
relationships, or directionality of the data exchange.

When is data exchanged?

ReVize makes no assumptions about the timeline or
order of the data exchange.

Which type of access is granted to the tool?

ReVize requires full and persistent access to the Vega-
Lite description defining the visualization. Even if a VA

Content Formats Quantity

Data Characteristics

Data Sets without Metadata Semi-structured Data Full Data Exchange

Operations

Function Characteristics Import, Export and

Modification

Infrastructure Relations Directionality

Topology Characteristics

Timeline Order

Chronology Characteristics

Restriction Retention

Availability Characteristics

Handles full access Persistent access required

Figure 3. Classification of data exchange using ReVize

tool merely changes some data values in the data object of
a Vega-Lite specification, ReVize needs to parse this object
in full and re-insert the changes afterwards.

4.1.2. Discussion. As a library, ReVize has one very specific
goal: to handle the data input/output of Vega-Lite based
visualization descriptions. Hence, it does not provide or
specify any concrete means of actually getting the data from
one VA tool to the next — see Figure 3. This way, one can
even use the manual exchange of data via the clipboard
as a lightweight possibility to couple VA tools via ReVize.
Its versatility of integrating with any such means of data
exchange makes ReVize a good fit for very heterogeneous
ensembles of web-based VA tools in which no single mode
of data transfer can be established.

One starting point for future extension of ReVize is to
replace this approach with an automated one that allows for
versioning of the exchanged Vega-Lite specifications, and
thus for a cross-tool undo mechanism. Revisiting Figure 3
for this scenario points to the following changes:

Function Characteristics — Operations: The exchange mech-
anism needs to support update and synchronization oper-
ations, so as to inform VA tools about new versions of
data sets and about roll-backs to an older version.

Topology Characteristics — Infrastructure: A centralized ar-
chitecture will be necessary for the versioning. E.g., a Git
server could be used to provide this functionality.

Chronology Characteristics — Timeline: The whole idea of
versioning implies a synchronous data transfer to ensure
that data updates (new version, or undo to an older
version) are taken into account as they happen, so that
all VA tools work on the current version of the data.

4.2. AnyProc

Our second example is a prototype application for the
configuration and execution of toolchains — i.e. AnyProc
(analytical Process Constructor). It provides a visual editor
that allows us to couple data sources and VA tools as nodes
of a directed graph. The created toolchains can further be
saved to be executed in a step-by-step manner. The data
exchange between the linked VA tools is based either on

loading data from a data source or transferring data from
a previously executed VA tool to the next one. A first
version of AnyProc is available under Public License as a
download on the Website of the Visual Computing Research
and Innovation Center [58].

4.2.1. Classification. What kind of data is exchanged?

AnyProc makes no assumptions about the content or
formats of a data source, but instead uses references to the
connected VA tools to import the connected data through
independent commands. Data is exchanged as a whole.

Why is data exchanged?

The core idea of AnyProc surrounds the import and
export of data sets between independent VA tools. Thus,
no other operations are considered for the visual analysis
tool as modification is only done within each independent
VA tool and further exported as a new data source.

Where is data exchanged?

Information in AnyProc is exchanged without any cen-
tral infrastructure by linking data source and tool nodes
through the graph model. AnyProc makes no assumptions
about the relations or direction of data exchange between
VA tools, since both depend on the output of the previous
VA tools.

When is data exchanged?

The data exchange process is manually started by the
user through a small navigation window to synchronously
push information from one VA tools to the next.

Which type of access is granted to the tool?

Our current prototype can handle any type of local or
remote information as long as there is a compatible VA tool
that has persistent access to it.

4.2.2. Discussion. As a visual editor for the configuration
of analytical processes, AnyProc provides the necessary
flexibility for the loose coupling of independent VA tools.
Therefore, it does not aim to specify data source structures
or operations performed within each VA tools (see Figure 4).

However, the incompatibility of different data source
is a major problem for the current prototype application.
Therefore, concepts of data conversion should be considered
in further development. Revisiting Figure 4 for this scenario
points to the following changes:

Content Formats Quantity

Data Characteristics
Full Data Exchange

Operations

Function Characteristics
Import and Export

Infrastructure Relations Directionality

Topology Characteristics Decentralized exchange

between tools

Timeline Order

Chronology Characteristics

Synchronous exchange Push strategy

Restriction Retention

Availability Characteristics

Handles full access Persistent access required

Figure 4. Classification of data exchange in AnyProc

Data Characteristics — Contents & Formats: For the con-
version of data sources, it is necessary to know whether
the contents is enriched with data descriptors or if the
tools are handling pure data sets. Furthermore the systems
requires to know about the used formats for each VA
tool to provide possible conversions for structured, semi-
structured or unstructured data.

Function Characteristics — Operations: Conversion itself is
a modification of data. This aspect needs to be included
in the current data exchange characterization.

4.3. Plant@Hand3D

Our last example is Plant@Hand3D [59], a system for
the visualization and real-time monitoring of industrial man-
ufacturing processes. The three-dimensional model of the
factory site acts as a digital twin, which enables fast switches
between several existing VA tools embedded through inte-
grated application windows.

4.3.1. Classification. What kind of data is exchanged?

Plant@Hand3D exchanges data from enterprise
databases as well as raw sensors data, which are available
as either structured or semi-structured input formats for the
corresponding VA tools. The data is thereby exchanged as
a whole or through delta data exchange.

Why is data exchanged?

Plant@Hand3D aims to model and visually encode do-
main environments by providing an interface that enables
import, modification, updates, and synchronization between
multiple VA tools.

Where is data exchanged?

Plant@Hand3D uses a centralized service bus that offers
a bidirectional communication between multiple VA tools
through One-to-One relationships.

When is data exchanged?

The exchange process is initiated for a synchronous pull
strategy each time a new VA tool is opened up by interacting
with the three dimensional model.

Which type of access is granted to the tool?

Its infrastructure offers a wide accessibility for
databases, web services, and local file systems. However,
data is only used if it is supported by the service architecture
in terms of content, format, and restriction of data.

4.3.2. Discussion. As a comprehensive visual analysis tool,
Plant@Hand3D provides the user with fully specified data
exchange capabilities to model real-world environments in
a digital twin of industrial factories. Therefore, all charac-
teristics for data exchange are described by the technical
infrastructure (see Figure 5). Its organized infrastructure and
visually compelling interface makes Plant@Hand3D a stable
foundation for various usage scenarios. A first step in this
direction is an inherited application for the medical domain
called Health@Hand [60], which provides a module for the
storage of predefined toolchains.

However, the alteration of usage scenarios results some-
times in an unexpected amount of data to be processed.

Content Formats Quantity

Data Characteristics Full and Delta Data

Exchange

Structured or Semi-

Data Sets without Metadata structured Data

Operations

Function C istic: Import,
Updates and
Synchronization

Infrastructure Relations Directionality

Topology Characteristics One-to-One and One-to-

Many Relationships

Centralized exchange

B ional
through a service bus directional

Timeline Order

Chronology Characteristics

Synchronous exchange Pull strategy

Restriction Retention

Availability Characteristics

Handles full access Persistent access required

Figure 5. Classification of data exchange in Plant@Hand3D

Therefore Plant@Hand3D would benefit from improve-
ments in performance and interaction feedback. One ap-
proach to achieve this could be the increased use of progres-
sive analytics. Revisiting Figure 5 for this scenario points
to the following changes:

Data Characteristics — Quantity: To reduce the amount of
processed information through progressive analytics, it is
necessary, that Plant@Hand3D establishes a segmented
data exchange.

Chronology Characteristics — Timeline & Order: Beside the
reduction for the spatial reduction of information, it is
also required to make use of the time-oriented distribution
of content. Therefore, a push strategy should be applied
for asynchronous updates in different parts of the system
whenever changes appear.

5. Conclusion

In this paper, we presented a taxonomy for the classi-
fication of data exchange between independent VA tools.
To this end, we performed a systematic investigation for
different aspects of the data exchange process based on a
refined definition of the Five W’s Model [28]. We found
data, function, topology, chronology, and availability char-
acteristics to classify data exchange between multiple VA
tools. Our resulting taxonomy (see Figure 2) is therefore
a generalized solution, that describes the problem of data
exchange on an abstract layer without considering the un-
derlying technology. Therefore it can be applied to specific
implementations in order to classify characteristic aspects
and find criteria for the evaluation, comparison, and design
of visual analysis tools. We demonstrated the feasibility of
this approach on three existing visual analysis tools, each
offering a different way for the loose coupling of VA tools.
We discussed the found “space of possible” for each of
these systems to provide ideas for further improvement in
the data-flow model as a first step towards the necessary
bridge between the visual analysis processes and technical
coordination

The comprehensive digital twin Plant@Hand3D [59]
offered a full definition of data exchange through our tax-
onomy, while the prototype application AnyProc [58] and

the description library ReVize [56] had some missing val-
ues for different aspects of our characterization. However,
these gaps are by no means negative as they just show
the clear correlation between the robustness of a specific
solution and the flexibility of a general solution: While
Plant@Hand3D offers a specialized model for data exchange
that is strictly bound to its implementation architecture,
ReVize and AnyProc offer a flexible approach that leaves
some technical challenges unanswered. The discussion for
each of these systems underlines that our taxonomy can be
used to pinpoint those aspects of data exchange that need
to be altered for providing further extensions, like version
control, data transformation, or progressive analytics.

In the future, we envision that our taxonomy can be
enhanced from research communities with different per-
spectives to provide a rich set of characteristics for data
exchange processes. Furthermore, we want to investigate
the dependencies of VA tools and specific usage scenarios
to define rules for the construction and identify possibilities
for the combination or reduction of toolchains. We think that
this approach could support the user by performing tedious
tasks automatically or semi-automatically so that the domain
expert can focus on analyzing information at different layers
of abstraction.

Acknowledgments

We thank the anonymous reviewers for their thoughtful
comments, as well as the German Research Foundation
(DFG) for financial support of this research within the
project UnIVA.

References

[1] E. Ventocilla and M. Riveiro, “Visual Analytics Solutions as ‘off-the-
Shelf” Libraries,” in Proc. of IV. 1EEE, 2017, pp. 281-287.

[2] M. Behrisch, D. Streeb, F. Stoffel, D. Seebacher, B. Matejek, S. H.
Weber, S. Mittelstadt, H. Pfister, and D. Keim, “Commercial Visual
Analytics Systems—Advances in the Big Data Analytics Field,” Trans-
actions on Visualization and Computer Graphics, vol. 25, no. 10, pp.
3011-3031, 2019.

[3] E. H.-H. Chi and J. T. Riedl, “An operator interaction framework for
visualization systems,” in Proc. of IV. 1EEE, 1998, pp. 63-70.

[4] J. Heer and M. Agrawala, “Software Design Patterns for Information
Visualization,” Transactions on Visualization and Computer Graph-
ics, vol. 12, no. 5, pp. 853-860, 2006.

[5] M. R. Berthold, N. Cebron, F. Dill, T. R. Gabriel, T. Kotter, T. Meinl,
P. Ohl, K. Thiel, and B. Wiswedel, “KNIME — The Konstanz In-
formation Miner: Version 2.0 and Beyond,” SIGKDD Explorations
Newsletter, vol. 11, no. 1, pp. 26-31, 2009.

[6] B. Yu and C. T. Silva, “VisFlow - Web-based Visualization Frame-
work for Tabular Data with a Subset Flow Model,” Transactions on
Visualization and Computer Graphics, vol. 23, no. 1, pp. 251-260,
2017.

[7] J. C. Bare and N. S. Baliga, “Architecture for interoperable software
in biology,” Briefings in Bioinformatics, vol. 15, no. 4, pp. 626-636,
2012.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

P. Baumann, P. Mazzetti, J. Ungar, R. Barbera, D. Barboni, A. Bec-
cati, L. Bigagli, E. Boldrini, R. Bruno, A. Calanducci, P. Cam-
palani, O. Clements, A. Dumitru, M. Grant, P. Herzig, G. Kakaletris,
J. Laxton, P. Koltsida, K. Lipskoch, A. R. Mahdiraji, S. Mantovani,
V. Merticariu, A. Messina, D. Misev, S. Natali, S. Nativi, J. Oost-
hoek, M. Pappalardo, J. Passmore, A. P. Rossi, F. Rundo, M. Sen,
V. Sorbera, D. Sullivan, M. Torrisi, L. Trovato, M. G. Veratelli, and
S. Wagner, “Big Data Analytics for Earth Sciences: the EarthServer
approach,” International Journal of Digital Earth, vol. 9, no. 1, pp.
3-29, 2016.

C. North and B. Shneiderman, “Snap-together Visualization: A User
Interface for Coordinating Visualizations via Relational Schemata,”
in Proc. of AVI. ACM, 2000, pp. 128-135.

B. E. Rogowitz and N. Matasci, “Metadata Mapper: a web service
for mapping data between independent visual analysis components,
guided by perceptual rules,” in Human Vision and Electronic Imaging
XVI, B. E. Rogowitz and T. N. Pappas, Eds. SPIE, 2011, vol. 7865,
pp. 165-177.

N. Kerracher and J. Kennedy, “Constructing and Evaluating Visual-
isation Task Classifications: Process and Considerations,” Computer
Graphics Forum, vol. 36, no. 3, pp. 47-59, 2017.

J.-D. Fekete, “Visual Analytics Infrastructures: From Data Manage-
ment to Exploration,” IEEE Computer, vol. 46, no. 7, pp. 22-29,
2013.

M. Magnani and D. Montesi, “A unified approach to structured,
semistructured and unstructured data,” University of Bologna, De-
partment of Computer Science, Tech. Rep. 2004-9, 2004.

D. Keim, G. Andrienko, J.-D. Fekete, C. Gorg, J. Kohlhammer, and
G. Melancon, “Visual Analytics: Definition, Process, and Challenges,”
in Information Visualization, ser. Lecture Notes in Computer Science,
A. Kerren, J. Stasko, J.-D. Fekete, and C. North, Eds. Springer, 2008,
vol. 4950, pp. 154-175.

A. Kadadi, R. Agrawal, C. Nyamful, and R. Atiq, “Challenges of data
integration and interoperability in big data,” in Proc. of Big Data.
IEEE, 2014, pp. 38-40.

D. Keim, J. Kohlhammer, G. Ellis, and F. Mansmann, Eds., Mas-
tering the information age: Solving problems with visual analytics.
Eurographics Association, 2010.

E. A. Lee and T. M. Parks, “Dataflow process networks,” Proc. of
the IEEE, vol. 83, no. 5, pp. 773-801, 1995.

P. E. Haeberli, “ConMan: A visual programming language for inter-
active graphics,” in Proc. of SIGGRAPH. ACM, 1988, pp. 103-111.

C. Upson, T. A. Faulhaber, D. Kamins, D. Laidlaw, D. Schlegel,
J. Vroom, R. Gurwitz, and A. van Dam, “The application visualization
system: a computational environment for scientific visualization,”
Computer Graphics and Applications, vol. 9, no. 4, pp. 30-42, 1989.

S. G. Parker and C. R. Johnson, “SCIRun: A scientific programming
environment for computational steering,” in Proc. of ICS. ACM,
1995, p. 52.

J. P. Ahrens, B. Geveci, and C. C. W. Law, “ParaView: An End-User
Tool for Large-Data Visualization,” in The Visualization Handbook,
C. D. Hansen and C. R. Johnson, Eds. Elsevier, 2005, pp. 717-731.

H. Childs, E. Brugger, B. Whitlock, J. Meredith, S. Ahern, D. Pug-
mire, K. Biagas, M. Miller, G. H. Weber, H. Krishnan et al., “VisIt:
An end-user tool for visualizing and analyzing very large data,” in
High Performance Visualization: Enabling Extreme-Scale Scientific
Insight, E. W. Bethel, H. Childs, and C. Hansen, Eds. CRC Press,
2012, pp. 357-372.

J. T. Morisette, C. S. Jarnevich, T. R. Holcombe, C. B. Talbert,
D. Ignizio, M. K. Talbert, C. Silva, D. Koop, A. Swanson, and N. E.
Young, “VisTrails SAHM: visualization and workflow management
for species habitat modeling,” Ecography: Pattern and Diversity in
Ecology, vol. 36, no. 2, pp. 129-135, 2013.

(24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

(34]

[35]

[38]

[39]

[40]

[41]

[42]

D. Giirdiir, F. Asplund, J. El-khoury, F. Loiret, and M. Torngren,
“Visual Analytics Towards Tool Interoperabilty: A Position Paper,”
in Proc. of VISAPP. SciTePress, 2016, pp. 139-145.

H.-J. Schulz, M. Rohlig, L. Nonnemann, M. Aehnelt, H. Diener,
B. Urban, and H. Schumann, “Lightweight Coordination of Mul-
tiple Independent Visual Analytics Tools,” in Proc. of VISAPP.
SciTePress, 2019, pp. 106-117.

H.-J. Schulz, M. Rohlig, L. Nonnemann, M. Hogrifer, M. Aehnelt,
B. Urban, and H. Schumann, “A Layered Approach to Lightweight
Toolchaining in Visual Analytics,” in Computer Vision, Imaging and
Computer Graphics Theory and Applications, ser. Communications
in Computer and Information Science, A. P. Cldudio, K. Bouatouch,
and M. Chessa, Eds. Springer, 2020, pp. 313-337.

J. J. Thomas and K. A. Cook, Illuminating the Path: The Research
and Development Agenda for Visual Analytics. 1EEE, 2005.

J. Zhang and M. L. Huang, “5Ws Model for Big Data Analysis and
Visualization,” in Proc. of CSE. 1EEE, 2013, pp. 1021-1028.

H.-J. Schulz, T. Nocke, M. Heitzler, and H. Schumann, “A systematic
view on data descriptors for the visual analysis of tabular data,”
Information Visualization, vol. 16, no. 3, pp. 232-256, 2017.

P. Lo Giudice, L. Musarella, G. Sofo, and D. Ursino, “An approach to
extracting complex knowledge patterns among concepts belonging to
structured, semi-structured and unstructured sources in a data lake,”
Information Sciences, vol. 478, pp. 606-626, 2019.

D. R. Judd, B. Karsh, R. Subbaroyan, T. Toman, R. Lahiri, and
P. Lok, “Apparatus and method for searching and retrieving struc-
tured, semi-structured and unstructured content,” 2004, US Patent
App. 10/439,338.

F. Miiller, “Data extraction engine for structured, semi-structured and
unstructured data with automated labeling and classification of data
patterns or data elements therein, and corresponding method thereof,”
2018, US Patent App. 15/387,070.

M. Barbulescu, R. Grigoriu, I. Halcu, G. Neculoiu, V. C. Sandulescu,
M. Marinescu, and V. Marinescu, “Integrating of structured, semi-
structured and unstructured data in natural and build environmental
engineering,” in Proc. of RoEduNet. 1EEE, 2013, pp. 1-4.

K. Sambrekar, V. S. Rajpurohit, and J. Joshi, “A Proposed Technique
for Conversion of Unstructured Agro-Data to Semi-Structured or
Structured Data,” in Proc. of ICCUBEA. 1EEE, 2018, pp. 1-5.

J. A. Sanchez, C. Proal, and F. Maldonao-Naude, “Supporting struc-
tured, semi-structured and unstructured data in digital libraries,” in
Proc. of ENC. 1EEE, 2004, pp. 368-375.

S. Abiteboul, P. Buneman, and D. Suciu, Data on the Web: from
relations to semistructured data and XML. Morgan Kaufmann, 2000.

M. Streit, H.-J. Schulz, A. Lex, D. Schmalstieg, and H. Schumann,
“Model-driven design for the visual analysis of heterogeneous data,”
Transactions on Visualization and Computer Graphics, vol. 18, no. 6,
pp- 998-1010, 2012.

M. Angelini, G. Santucci, H. Schumann, and H.-J. Schulz, “A Review
and Characterization of Progressive Visual Analytics,” Informatics,
vol. 5, no. 3, pp. 31:1-31:27, 2018.

P. C. Wong, H. Foote, D. Adams, W. Cowley, and J. Thomas,
“Dynamic visualization of transient data streams,” in Proc. of InfoVis.
IEEE, 2003, pp. 97-104.

R.J. Crouser, L. Franklin, and K. Cook, “Rethinking Visual Analytics
for Streaming Data Applications,” Internet Computing, vol. 21, no. 4,
pp. 72-76, 2017.

M. Waldner, W. Puff, A. Lex, M. Streit, and D. Schmalstieg, “Visual
links across applications,” in Proc. of GI. Canadian Information
Processing Society, 2010, pp. 129-136.

V. Benzaken, J.-D. Fekete, P.-L. Hémery, W. Khemiri, and
I. Manolescu, “EdiFlow: Data-intensive interactive workflows for
visual analytics,” in Proc. of ICDE. 1EEE, 2011, pp. 780-791.

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

A. Fourney, B. Lafreniere, P. Chilana, and M. Terry, “InterTwine:
Creating interapplication information scent to support coordinated use
of software,” in Proc. of UIST. ACM, 2014, pp. 429-438.

C. Liu, J. Wang, and Y. Han, “Mashroom+: An Interactive Data
Mashup Approach with Uncertainty Handling,” Journal of Grid Com-
puting, vol. 12, no. 2, pp. 221-244, 2014.

E. Santos, L. Lins, J. Ahrens, J. Freire, and C. Silva, “VisMashup:
streamlining the creation of custom visualization applications,” Trans-
actions on Visualization and Computer Graphics, vol. 15, no. 6, pp.
1539-1546, 2009.

J. A. Cottam and A. Lumsdaine, “Automatic Application of the Data-
State Model in Data-Flow Contexts,” in Proc. of IV. 1EEE, 2010,
pp. 5-10.

G. Di Lorenzo, H. Hacid, H.-y. Paik, and B. Benatallah, “Data
integration in mashups,” ACM SIGMOD Record, vol. 38, no. 1, p. 59,
2009.

J. 1. Fernandez Villamor, J. Blasco Garcia, C. A. Iglesias Fernandez,
and M. Garijo Ayestaran, “A semantic Scraping Model for Web
Resources - Applying Linked Data to Web Page Screen Scraping,”
in Proc. of ICAART. SciTePress, 2011, pp. 451-456.

B. Hartmann, S. Doorley, and S. R. Klemmer, “Hacking, mashing,
gluing: Understanding opportunistic design,” Pervasive Computing,
vol. 7, no. 3, pp. 46-54, 2008.

A. Moumtzidou, V. Epitropou, S. Vrochidis, S. Voth, A. Bassoukos,
K. Karatzas, J. Mofigraber, 1. Kompatsiaris, A. Karppinen, and
J. Kukkonen, “Environmental Data Extraction from Multimedia Re-
sources,” in Proc. of MAED. ACM, 2012, pp. 13-18.

M. Goebel and M. Ceresna, “Wrapper Induction,” in Encyclopedia
of Database Systems, L. Liu and M. T. Ozsu, Eds. Springer, 2009,
pp. 3560-3565.

J. C. Bare, P. T. Shannon, A. K. Schmid, and N. S. Baliga, “The
Firegoose: two-way integration of diverse data from different bioin-
formatics web resources with desktop applications,” BMC Bioinfor-
matics, vol. 8, no. 1, pp. 456:1-456:12, 2007.

D. Tenenbaum, J. C. Bare, and N. S. Baliga, “GTC: A web server
for integrating systems biology data with web tools and desktop
applications,” Source Code for Biology and Medicine, vol. 5, no. 1,
pp. 7:1-7:3, 2010.

M. S. Doderer, C. Burkhardt, and K. A. Robbins, “SIDECACHE:
Information access, management and dissemination framework for
web services,” BMC research notes, vol. 4, no. 1, pp. 182:1-182:7,
2011.

M. S. Doderer, K. Yoon, and K. A. Robbins, “SIDEKICK: Genomic
data driven analysis and decision-making framework,” BMC Bioin-
formatics, vol. 11, no. 1, pp. 611:1-611:12, 2010.

M. Hogrifer and H.-J. Schulz, “ReVize: A Library for Visualization
Toolchaining with Vega-Lite,” in Proc. of STAG. Eurographics
Association, 2019, pp. 129-139.

A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-
Lite: A Grammar of Interactive Graphics,” Transactions on Visual-
ization and Computer Graphics, vol. 23, no. 1, pp. 341-350, 2017.

L. Nonnemann, AnyProc, 2020, accessed March 10, 2020. [Online].
Available: https://veric.igd-r.fraunhofer.de/univa

M. Aechnelt, H.-J. Schulz, and B. Urban, “Towards a Contextual-
ized Visual Analysis of Heterogeneous Manufacturing Data,” in Ad-
vances in Visual Computing, ser. Lecture Notes in Computer Science.
Springer, 2013, vol. 8034, pp. 76-85.

L. Nonnemann, M. Haescher, M. Aehnelt, G. Bieber, H. Diener, and
B. Urban, “Health@Hand A Visual Interface for eHealth Monitoring,”
in Proc. of ISCC. IEEE, 2019, pp. 1093-1096.

