
Mechanized Logical Relations for
Termination-Insensitive Noninterference

Simon O. Gregersen
joint work with Johan Bay, Amin Timany, and Lars Birkedal

POPL 2021, January 20 - 22, Online

The prevailing basic semantic notion of secure information flow is noninterference.

program e

public input public output

secret input secret output

1

Program e satisfies termination-insensitive noninterference, abbr. TINI(e), when

e[v1/x] ⇓ o1 and e[v2/x] ⇓ o2 implies o1 ≃ o2

for all secrets v1 and v2.

2

The problem

Information-flow control enforcement is often specified using a static type system:

Γ ⊢ e : tℓ implies TINI(e)

To be useful, it must support the same features as modern programming languages:

• higher types,
• reference types,
• abstract types,
• . . .

The difficulty of proving the type system sound, however, increases.

3

The problem

Information-flow control enforcement is often specified using a static type system:

Γ ⊢ e : tℓ implies TINI(e)

To be useful, it must support the same features as modern programming languages:

• higher types,
• reference types,
• abstract types,
• . . .

The difficulty of proving the type system sound, however, increases.

3

This work

The main goal of this work is to

• show that such a rich type system satisfies termination-insensitive noninterference
• using a semantic model

⇒ compositional integration of syntactically well-typed and ill-typed components:

Γ, x : τ2 ⊢ e1 : τ1 and e2 ∈ Jτ2K then TINI(e1[e2/x])

• with full mechanization of all results in Coq

4

This work

The main goal of this work is to

• show that such a rich type system satisfies termination-insensitive noninterference
• using a semantic model

⇒ compositional integration of syntactically well-typed and ill-typed components:

Γ, x : τ2 ⊢ e1 : τ1 and e2 ∈ Jτ2K then TINI(e1[e2/x])

• with full mechanization of all results in Coq

4

Example (Multiplying by zero)

λ v. v ∗ 0

cannot be syntactically typed at N⊤ → N⊥.

Example (Temporary explicit leak)

letx = ! l in l← !h; . . . ; l← x

is not syntactically well-typed.

More interesting examples found at the end of the presentation and in the paper.

5

Example (Multiplying by zero)

λ v. v ∗ 0

cannot be syntactically typed at N⊤ → N⊥.

Example (Temporary explicit leak)

letx = ! l in l← !h; . . . ; l← x

is not syntactically well-typed.

More interesting examples found at the end of the presentation and in the paper.

5

Language

τ ::= tℓ

t ::= B | N | τ × τ | τ + τ |

τ
ℓ→ τ | ref(τ) | α | ∀ℓ α. τ | ∀ ℓ κ. τ | ∃α. τ | µα. τ

ℓ ::= κ | l ∈ L | ℓ ⊔ ℓ

Consider if secret then f () — if f has public side-effects we would leak secret.

For this presentation, we consider L = {⊥,⊤} where ⊥ ⊑ ⊤ and ⊤ ̸⊑ ⊥.

6

Language

τ ::= tℓ

t ::= B | N | τ × τ | τ + τ |

τ
ℓ→ τ | ref(τ) | α | ∀ℓ α. τ | ∀ ℓ κ. τ | ∃α. τ | µα. τ

ℓ ::= κ | l ∈ L | ℓ ⊔ ℓ

Consider if secret then f () — if f has public side-effects we would leak secret.

For this presentation, we consider L = {⊥,⊤} where ⊥ ⊑ ⊤ and ⊤ ̸⊑ ⊥.

6

Language

τ ::= tℓ

t ::= B | N | τ × τ | τ + τ |

τ
ℓ→ τ | ref(τ) | α | ∀ℓ α. τ | ∀ ℓ κ. τ | ∃α. τ | µα. τ

ℓ ::= κ | l ∈ L | ℓ ⊔ ℓ

Consider if secret then f () — if f has public side-effects we would leak secret.

For this presentation, we consider L = {⊥,⊤} where ⊥ ⊑ ⊤ and ⊤ ̸⊑ ⊥.

6

Typing judgment

Ξ |Ψ |Γ ⊢pc e : τ

7

Typing judgment

Ξ |Ψ |Γ ⊢pc e : τ

Term-level context

7

Typing judgment

Ξ |Ψ |Γ ⊢pc e : τ

Term-level context

Type-level context

7

Typing judgment

Ξ |Ψ |Γ ⊢pc e : τ

Term-level context

Type-level context

Label context

7

Typing judgment

Ξ |Ψ |Γ ⊢pc e : τ

Term-level context

Type-level context

Label context

Program counter label

7

Type system

T-if
Ξ |Ψ |Γ ⊢pc e : Bℓ ∀i ∈ {1, 2} .Ξ |Ψ |Γ ⊢pc⊔ℓ ei : τ Ψ ⊢ τ ↘ ℓ

Ξ |Ψ |Γ ⊢pc if e then e1 else e2 : τ

T-store
Ξ |Ψ |Γ ⊢pc e1 : ref(τ)ℓ Ξ |Ψ |Γ ⊢pc e2 : τ Ψ ⊢ τ ↘ pc ⊔ ℓ

Ξ |Ψ |Γ ⊢pc e1 ← e2 : 1⊥

T-tlam
Ξ, α |Ψ |Γ ⊢ℓe e : τ

Ξ |Ψ |Γ ⊢pc Λ e :
(
∀ℓe α. τ

)⊥

8

Type system

T-if
Ξ |Ψ |Γ ⊢pc e : Bℓ ∀i ∈ {1, 2} .Ξ |Ψ |Γ ⊢pc⊔ℓ ei : τ Ψ ⊢ τ ↘ ℓ

Ξ |Ψ |Γ ⊢pc if e then e1 else e2 : τ

T-store
Ξ |Ψ |Γ ⊢pc e1 : ref(τ)ℓ Ξ |Ψ |Γ ⊢pc e2 : τ Ψ ⊢ τ ↘ pc ⊔ ℓ

Ξ |Ψ |Γ ⊢pc e1 ← e2 : 1⊥

T-tlam
Ξ, α |Ψ |Γ ⊢ℓe e : τ

Ξ |Ψ |Γ ⊢pc Λ e :
(
∀ℓe α. τ

)⊥

8

Type system

T-if
Ξ |Ψ |Γ ⊢pc e : Bℓ ∀i ∈ {1, 2} .Ξ |Ψ |Γ ⊢pc⊔ℓ ei : τ Ψ ⊢ τ ↘ ℓ

Ξ |Ψ |Γ ⊢pc if e then e1 else e2 : τ

T-store
Ξ |Ψ |Γ ⊢pc e1 : ref(τ)ℓ Ξ |Ψ |Γ ⊢pc e2 : τ Ψ ⊢ τ ↘ pc ⊔ ℓ

Ξ |Ψ |Γ ⊢pc e1 ← e2 : 1⊥

T-tlam
Ξ, α |Ψ |Γ ⊢ℓe e : τ

Ξ |Ψ |Γ ⊢pc Λ e :
(
∀ℓe α. τ

)⊥

8

Theorem (Termination-Insensitive Noninterference)

If

x : B⊤ ⊢⊥ e : B⊥, ⊢⊥ v1 : B⊤, and ⊢⊥ v2 : B⊤

then

(∅, e[v1/x])→∗ (σ1, v
′
1) and (∅, e[v2/x])→∗ (σ2, v

′
2) then v′1 = v′2.

9

Theorem (Termination-Insensitive Noninterference)

If

x : B⊤ ⊢⊥ e : B⊥, ⊢⊥ v1 : B⊤, and ⊢⊥ v2 : B⊤

then

(∅, e[v1/x])→∗ (σ1, v
′
1) and (∅, e[v2/x])→∗ (σ2, v

′
2) then v′1 = v′2.

9

Theorem (Termination-Insensitive Noninterference)

If

x : B⊤ ⊢⊥ e : B⊥, ⊢⊥ v1 : B⊤, and ⊢⊥ v2 : B⊤

then

(∅, e[v1/x])→∗ (σ1, v
′
1) and (∅, e[v2/x])→∗ (σ2, v

′
2) then v′1 = v′2.

9

Theorem (Termination-Insensitive Noninterference)

If

x : B⊤ ⊢⊥ e : B⊥, ⊢⊥ v1 : B⊤, and ⊢⊥ v2 : B⊤

then

(∅, e[v1/x])→∗ (σ1, v
′
1) and (∅, e[v2/x])→∗ (σ2, v

′
2) then v′1 = v′2.

9

Our approach

We set up a binary (logical) relation

Ξ |Ψ |Γ ⊨ e1 ≈ e2 : τ

such that

Ξ |Ψ |Γ ⊢pc e : τ ⇒ Ξ |Ψ |Γ ⊨ e ≈ e : τ

Ξ |Ψ |Γ ⊨ e ≈ e : τ ⇒ TINI(e)

However, this requires manipulating and defining a complex semantic model.

10

Our approach cont’d

We combat this complexity by using the separation logic framework Iris.

• Convenient modalities to express the relation,
• High-level logic to reason within, and
• Coq formalization and the Iris Proof Mode to mechanize proofs.

11

Our approach cont’d cont’d

Existing works on “logical” logical relations prove (contextual) refinements.

Intuitively, e1 refines e2 if

e1 →∗ v1 ⇒ e2 →∗ v2 ∧ v1 ≈ v2.

However, we need a termination-insensitive notion:

e1 →∗ v1 ∧ e2 →∗ v2 ⇒ v1 ≈ v2.

For this, we define a novel theory of modal weakest preconditions.

12

Our approach cont’d cont’d

Existing works on “logical” logical relations prove (contextual) refinements.

Intuitively, e1 refines e2 if

e1 →∗ v1 ⇒ e2 →∗ v2 ∧ v1 ≈ v2.

However, we need a termination-insensitive notion:

e1 →∗ v1 ∧ e2 →∗ v2 ⇒ v1 ≈ v2.

For this, we define a novel theory of modal weakest preconditions.

12

Our approach cont’d cont’d

Existing works on “logical” logical relations prove (contextual) refinements.

Intuitively, e1 refines e2 if

e1 →∗ v1 ⇒ e2 →∗ v2 ∧ v1 ≈ v2.

However, we need a termination-insensitive notion:

e1 →∗ v1 ∧ e2 →∗ v2 ⇒ v1 ≈ v2.

For this, we define a novel theory of modal weakest preconditions.

12

Semantic model

A central idea in the model is to interpret types both as a

Binary relation for relating terms that are publicly equivalent and as a
Unary relation for characterizing terms that do not have public side-effects.

Consider
⊨ if v then e1 else e2 ≈ if v′ then e1 else e2 : t⊤

where ⊨ v ≈ v′ : B⊤ meaning v, v′ ∈ {true, false}. This means proving, e.g.,

⊨ e1 ≈ e2 : t⊤

Crucially, they may not modify public references.

13

Semantic model

A central idea in the model is to interpret types both as a

Binary relation for relating terms that are publicly equivalent and as a
Unary relation for characterizing terms that do not have public side-effects.

Consider
⊨ if v then e1 else e2 ≈ if v′ then e1 else e2 : t⊤

where ⊨ v ≈ v′ : B⊤ meaning v, v′ ∈ {true, false}.

This means proving, e.g.,

⊨ e1 ≈ e2 : t⊤

Crucially, they may not modify public references.

13

Semantic model

A central idea in the model is to interpret types both as a

Binary relation for relating terms that are publicly equivalent and as a
Unary relation for characterizing terms that do not have public side-effects.

Consider
⊨ if v then e1 else e2 ≈ if v′ then e1 else e2 : t⊤

where ⊨ v ≈ v′ : B⊤ meaning v, v′ ∈ {true, false}. This means proving, e.g.,

⊨ e1 ≈ e2 : t⊤

Crucially, they may not modify public references.

13

Semantic model

A central idea in the model is to interpret types both as a

Binary relation for relating terms that are publicly equivalent and as a
Unary relation for characterizing terms that do not have public side-effects.

Consider
⊨ if v then e1 else e2 ≈ if v′ then e1 else e2 : t⊤

where ⊨ v ≈ v′ : B⊤ meaning v, v′ ∈ {true, false}. This means proving, e.g.,

⊨ e1 ≈ e2 : t⊤

Crucially, they may not modify public references.

13

Semantic typing

Recall

Ξ |Ψ |Γ ⊢pc e : τ ⇒ Ξ |Ψ |Γ ⊨ e ≈ e : τ

Ξ |Ψ |Γ ⊨ e ≈ e : τ ⇒ TINI(e)

Importantly, the semantic relation is not defined in terms of the syntactic relation.

At the same time,
x : τ2 ⊨ e1 ≈ e1 : τ1 and ⊨ e2 ≈ e2 : τ2

implies
⊨ e1[e2/x] ≈ e1[e2/x] : τ1

14

Semantic typing

Recall

Ξ |Ψ |Γ ⊢pc e : τ ⇒ Ξ |Ψ |Γ ⊨ e ≈ e : τ

Ξ |Ψ |Γ ⊨ e ≈ e : τ ⇒ TINI(e)

Importantly, the semantic relation is not defined in terms of the syntactic relation.

At the same time,
x : τ2 ⊨ e1 ≈ e1 : τ1 and ⊨ e2 ≈ e2 : τ2

implies
⊨ e1[e2/x] ≈ e1[e2/x] : τ1

14

Value-dependent classification

Consider

valDep ≜ λ f . let d = ref(true, secret) in

f d;

let (b, v) = ! d in

if b then 42 else v

The program does not syntactically type check at N⊥ but, ideally,

secret : N⊤ ⊨ valDep f ≈ valDep f : N⊥

for “well-behaved” f . We can use the logic to express and prove these requirements.

15

Value-dependent classification

Consider

valDep ≜ λ f . let d = ref(true, secret) in

f d;

let (b, v) = ! d in

if b then 42 else v

The program does not syntactically type check at N⊥

but, ideally,

secret : N⊤ ⊨ valDep f ≈ valDep f : N⊥

for “well-behaved” f . We can use the logic to express and prove these requirements.

15

Value-dependent classification

Consider

valDep ≜ λ f . let d = ref(true, secret) in

f d;

let (b, v) = ! d in

if b then 42 else v

The program does not syntactically type check at N⊥ but, ideally,

secret : N⊤ ⊨ valDep f ≈ valDep f : N⊥

for “well-behaved” f . We can use the logic to express and prove these requirements.

15

Value-dependent classification cont’d

However, this burdens the client with proof obligations. Instead, we can exploit
existential types to conceal the proof obligations. E.g.,

valDepPack ≜ let get = λ d. let (b, v) = ! d in if b then inj1 v else inj2 v in

let setL = λ d, v. d← (false, v) in

let setH = λ d, v. d← (true, v) in

pack (ref(true, secret), get , setL, setH)

for which it holds

secret : N⊤ ⊨ valDepPack ≈ valDepPack :

∃α.
(
α⊥ ×

(
α⊥ ⊤→ N⊤ + N⊥

)
×

(
α⊥ ⊤→ N⊥ ⊥→ 1

)
×

(
α⊥ ⊤→ N⊤ ⊥→ 1

))

16

Conclusion

In summary, we have

• defined a novel semantic model of an expressive IFC type system with support for
impredicative polymorphism, label polymorphism, recursive types, and general
references,

• unary and binary logical-relations models
• a theory of Modal Weakest Preconditions

• showed that the type system entails termination-insensitive noninterference, and
• illustrated how the model can be used to reason about syntactically ill-typed but

semantically secure code with compositional integration.

17

Conclusion

In summary, we have

• defined a novel semantic model of an expressive IFC type system with support for
impredicative polymorphism, label polymorphism, recursive types, and general
references,

• unary and binary logical-relations models
• a theory of Modal Weakest Preconditions

• showed that the type system entails termination-insensitive noninterference, and
• illustrated how the model can be used to reason about syntactically ill-typed but

semantically secure code with compositional integration.

17

Thank you for watching

Contact gregersen@cs.au.dk

Paper https://cs.au.dk/~gregersen/papers/2021-tiniris.pdf

Coq artefact https://github.com/logsem/iris-tini

17

mailto:gregersen@cs.au.dk
https://cs.au.dk/~gregersen/papers/2021-tiniris.pdf
https://github.com/logsem/iris-tini

