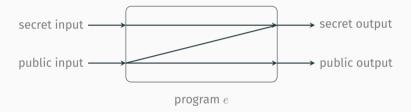
Mechanized Logical Relations for Termination-Insensitive Noninterference

Simon O. Gregersen joint work with Johan Bay, Amin Timany, and Lars Birkedal

POPL 2021, January 20 - 22, Online

The prevailing basic semantic notion of secure information flow is noninterference.



Program e satisfies termination-insensitive noninterference, abbr. $\mathrm{TINI}(e)$, when

 $e[v_1/x] \Downarrow o_1$ and $e[v_2/x] \Downarrow o_2$ implies $o_1 \simeq o_2$

for all secrets v_1 and v_2 .

The problem

Information-flow control enforcement is often specified using a static type system:

$$\Gamma \vdash e : t^{\ell}$$
 implies $TINI(e)$

To be useful, it must support the same features as modern programming languages

- higher types,
- reference types,
- abstract types,
- ٠ . .

The difficulty of proving the type system sound, however, increases.

The problem

Information-flow control enforcement is often specified using a static type system:

$$\Gamma \vdash e : t^{\ell}$$
 implies $TINI(e)$

To be useful, it must support the same features as modern programming languages:

- higher types,
- reference types,
- abstract types,
- ...

The difficulty of proving the type system sound, however, increases.

This work

The main goal of this work is to

- show that such a rich type system satisfies termination-insensitive noninterference
- · using a semantic model

⇒ compositional integration of syntactically well-typed and ill-typed components:

```
\Gamma, x: 	au_2 \vdash e_1: 	au_1 and e_2 \in \llbracket 	au_2 
rbracket then TINI(e_1[e_2/x])
```

· with full mechanization of all results in Coq

This work

The main goal of this work is to

- show that such a rich type system satisfies termination-insensitive noninterference
- · using a semantic model
 - ⇒ compositional integration of syntactically well-typed and ill-typed components:

$$\Gamma, x : \tau_2 \vdash e_1 : \tau_1$$
 and $e_2 \in \llbracket \tau_2 \rrbracket$ then $\mathrm{TINI}(e_1[e_2/x])$

· with full mechanization of all results in Coq

Example (Multiplying by zero)

$$\lambda v.v*0$$

cannot be syntactically typed at $\mathbb{N}^{\top} \to \mathbb{N}^{\perp}$.

Example (Temporary explicit leak)

$$let x = ! l in l \leftarrow ! h; \ldots; l \leftarrow x$$

is not syntactically well-typed

More interesting examples found at the end of the presentation and in the paper.

Example (Multiplying by zero)

$$\lambda v.v*0$$

cannot be syntactically typed at $\mathbb{N}^{\top} \to \mathbb{N}^{\perp}$.

Example (Temporary explicit leak)

$$let x = ! l in l \leftarrow ! h; \ldots; l \leftarrow x$$

is not syntactically well-typed.

More interesting examples found at the end of the presentation and in the paper.

Language

$$\begin{split} \tau &::= t^{\ell} \\ t &::= \mathbb{B} \mid \mathbb{N} \mid \tau \times \tau \mid \tau + \tau \mid \\ \tau &\xrightarrow{\ell} \tau \mid \operatorname{ref}(\tau) \mid \alpha \mid \forall_{\ell} \, \alpha. \, \tau \mid \forall_{\ell} \, \kappa. \, \tau \mid \exists \alpha. \, \tau \mid \mu \, \alpha. \, \tau \\ \ell &::= \kappa \mid l \in \mathcal{L} \mid \ell \sqcup \ell \end{split}$$

Language

$$\begin{split} \tau &::= t^{\ell} \\ t &::= \mathbb{B} \mid \mathbb{N} \mid \tau \times \tau \mid \tau + \tau \mid \\ \tau &\xrightarrow{\ell} \tau \mid \mathsf{ref}(\tau) \mid \alpha \mid \forall_{\ell} \, \alpha. \, \tau \mid \forall_{\ell} \, \kappa. \, \tau \mid \exists \alpha. \, \tau \mid \mu \, \alpha. \, \tau \\ \ell &::= \kappa \mid l \in \mathcal{L} \mid \ell \sqcup \ell \end{split}$$

Consider if secret then f() — if f has public side-effects we would leak secret.

Language

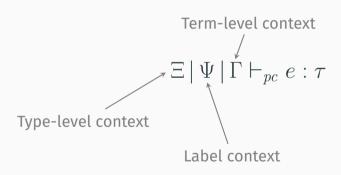
$$\begin{split} \tau &::= t^{\ell} \\ t &::= \mathbb{B} \mid \mathbb{N} \mid \tau \times \tau \mid \tau + \tau \mid \\ \tau &\stackrel{\ell}{\to} \tau \mid \mathsf{ref}(\tau) \mid \alpha \mid \forall_{\ell} \, \alpha. \, \tau \mid \forall_{\ell} \, \kappa. \, \tau \mid \exists \alpha. \, \tau \mid \mu \, \alpha. \, \tau \\ \ell &::= \kappa \mid l \in \mathcal{L} \mid \ell \sqcup \ell \end{split}$$

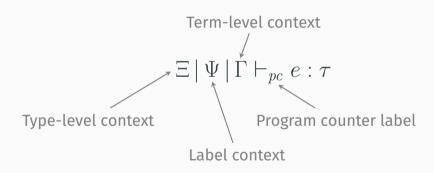
Consider if secret then f() — if f has public side-effects we would leak secret.

For this presentation, we consider $\mathcal{L}=\{\bot,\top\}$ where $\bot\sqsubseteq\top$ and $\top\not\sqsubseteq\bot$.

$$\Xi \mid \Psi \mid \Gamma \vdash_{pc} e : \tau$$

Term-level context
$$\Xi \,|\, \Psi \,|\, \overset{/}{\Gamma} \vdash_{pc} e : \tau$$





Type system

$$\begin{split} \frac{\Xi \mid \Psi \mid \Gamma \vdash_{pc} e : \mathbb{B}^{\ell} & \forall i \in \{1,2\} \,.\, \Xi \mid \Psi \mid \Gamma \vdash_{pc \sqcup \ell} e_i : \tau & \Psi \vdash \tau \searrow \ell \\ & \Xi \mid \Psi \mid \Gamma \vdash_{pc} \text{if } e \text{ then } e_1 \text{ else } e_2 : \tau \end{split} } \\ \frac{\Xi \mid \Psi \mid \Gamma \vdash_{pc} e_1 : \text{ref}(\tau)^{\ell} & \Xi \mid \Psi \mid \Gamma \vdash_{pc} e_2 : \tau & \Psi \vdash \tau \searrow pc \sqcup \ell \\ & \Xi \mid \Psi \mid \Gamma \vdash_{pc} e_1 \leftarrow e_2 : 1^{\perp} \end{split} } \\ \frac{\Xi \mid \Psi \mid \Gamma \vdash_{pc} e_1 \leftarrow e_2 : 1^{\perp}}{\Xi \mid \Psi \mid \Gamma \vdash_{\ell_e} e : \tau} \\ \frac{\Xi \mid \Psi \mid \Gamma \vdash_{pc} \Lambda e : \left(\forall_{\ell_e} \alpha . \tau\right)^{\perp}}{\Xi \mid \Psi \mid \Gamma \vdash_{pc} \Lambda e : \left(\forall_{\ell_e} \alpha . \tau\right)^{\perp}} \end{split}$$

Type system

$$\begin{split} \frac{\text{T-IF}}{\Xi \left| \Psi \right| \Gamma \vdash_{pc} e : \mathbb{B}^{\ell}} & \forall i \in \{1,2\} \,.\, \Xi \left| \Psi \right| \Gamma \vdash_{pc \sqcup \ell} e_i : \tau \quad \Psi \vdash \tau \searrow \\ & \Xi \left| \Psi \right| \Gamma \vdash_{pc} \text{if e then e_1 else e_2 : $\tau} \end{split}$$

$$\begin{split} \frac{\text{T-STORE}}{\Xi \left| \Psi \right| \Gamma \vdash_{pc} e_1 : \text{ref}(\tau)^{\ell}} & \Xi \left| \Psi \right| \Gamma \vdash_{pc} e_2 : \tau \quad \Psi \vdash \tau \searrow pc \sqcup \ell \\ & \Xi \left| \Psi \right| \Gamma \vdash_{pc} e_1 \leftarrow e_2 : 1^{\perp} \end{split}$$

$$\begin{split} \frac{\text{T-TLAM}}{\Xi \left| \Psi \right| \Gamma \vdash_{\ell_e} e : \tau} & \Xi \left| \Psi \right| \Gamma \vdash_{\ell_e} e : \tau \\ & \Xi \left| \Psi \right| \Gamma \vdash_{pc} \Lambda e : \left(\forall_{\ell_e} \alpha . \tau \right)^{\perp} \end{split}$$

Type system

$$\begin{split} \frac{\text{T-IF}}{\Xi \left|\Psi\right|\Gamma \vdash_{pc}e:\mathbb{B}^{\ell}} &\quad \forall i \in \{1,2\} \,.\, \Xi \left|\Psi\right|\Gamma \vdash_{pc \sqcup \ell}e_{i}:\tau \quad \Psi \vdash \tau \searrow \tau \\ &\quad \Xi \left|\Psi\right|\Gamma \vdash_{pc}\text{if e then e_{1} else $e_{2}:$}\tau \end{split}$$

$$\frac{\text{T-store}}{\Xi \left|\Psi\right|\Gamma \vdash_{pc}e_{1}:\text{ref}(\tau)^{\ell}} &\quad \Xi \left|\Psi\right|\Gamma \vdash_{pc}e_{2}:\tau \quad \Psi \vdash \tau \searrow pc \sqcup \ell \\ &\quad \Xi \left|\Psi\right|\Gamma \vdash_{pc}e_{1} \leftarrow e_{2}:1^{\perp} \end{split}$$

$$\frac{\text{T-TLAM}}{\Xi \left|\Psi\right|\Gamma \vdash_{pc}\Lambda e:\left(\forall \ell_{e}\alpha.\tau\right)^{\perp}} \end{split}$$

If

$$x: \mathbb{B}^{\top} \vdash_{\perp} e: \mathbb{B}^{\perp}, \qquad \vdash_{\perp} v_1: \mathbb{B}^{\top}, \qquad \textit{and} \qquad \vdash_{\perp} v_2: \mathbb{B}^{\top}$$

then

$$(\emptyset, e[v_1/x]) \rightarrow^* (\sigma_1, v_1') \text{ and } (\emptyset, e[v_2/x]) \rightarrow^* (\sigma_2, v_2') \text{ then } v_1' = v_2'.$$

If

$$x: \mathbb{B}^{\top} \vdash_{\perp} e: \mathbb{B}^{\perp}, \qquad \vdash_{\perp} v_1: \mathbb{B}^{\top}, \qquad \textit{and} \qquad \vdash_{\perp} v_2: \mathbb{B}^{\top}$$

then

$$(\emptyset, e[v_1/x]) \rightarrow^* (\sigma_1, v_1') \text{ and } (\emptyset, e[v_2/x]) \rightarrow^* (\sigma_2, v_2') \text{ then } v_1' = v_2'.$$

If

$$x: \mathbb{B}^{\top} \vdash_{\perp} e: \mathbb{B}^{\perp}, \qquad \vdash_{\perp} v_1: \mathbb{B}^{\top}, \qquad \textit{and} \qquad \vdash_{\perp} v_2: \mathbb{B}^{\top}$$

then

$$(\emptyset, e[v_1/x]) \rightarrow^* (\sigma_1, v_1') \text{ and } (\emptyset, e[v_2/x]) \rightarrow^* (\sigma_2, v_2') \text{ then } v_1' = v_2'.$$

If

$$x: \mathbb{B}^{\top} \vdash_{\perp} e: \mathbb{B}^{\perp}, \qquad \vdash_{\perp} v_1: \mathbb{B}^{\top}, \qquad \textit{and} \qquad \vdash_{\perp} v_2: \mathbb{B}^{\top}$$

then

$$(\emptyset, e[v_1/x]) \rightarrow^* (\sigma_1, v_1') \text{ and } (\emptyset, e[v_2/x]) \rightarrow^* (\sigma_2, v_2') \text{ then } v_1' = v_2'.$$

Our approach

We set up a binary (logical) relation

$$\Xi \mid \Psi \mid \Gamma \vDash e_1 \approx e_2 : \tau$$

such that

$$\Xi \mid \Psi \mid \Gamma \vdash_{pc} e : \tau \qquad \Rightarrow \qquad \Xi \mid \Psi \mid \Gamma \vDash e \approx e : \tau$$

$$\Xi \mid \Psi \mid \Gamma \vDash e \approx e : \tau \qquad \Rightarrow \qquad \text{TINI}(e)$$

However, this requires manipulating and defining a complex semantic model.

Our approach cont'd

We combat this complexity by using the separation logic framework Iris.

- · Convenient modalities to express the relation,
- · High-level logic to reason within, and
- Coq formalization and the Iris Proof Mode to mechanize proofs.

Our approach cont'd cont'd

Existing works on "logical" logical relations prove (contextual) refinements.

Intuitively, e_1 refines e_2 if

$$e_1 \to^* v_1 \quad \Rightarrow \quad e_2 \to^* v_2 \quad \land \quad v_1 \approx v_2.$$

Our approach cont'd cont'd

Existing works on "logical" logical relations prove (contextual) refinements.

Intuitively, e_1 refines e_2 if

$$e_1 \to^* v_1 \quad \Rightarrow \quad e_2 \to^* v_2 \quad \land \quad v_1 \approx v_2.$$

However, we need a termination-insensitive notion:

$$e_1 \to^* v_1 \quad \land \quad e_2 \to^* v_2 \quad \Rightarrow \quad v_1 \approx v_2.$$

Our approach cont'd cont'd

Existing works on "logical" logical relations prove (contextual) refinements.

Intuitively, e_1 refines e_2 if

$$e_1 \to^* v_1 \quad \Rightarrow \quad e_2 \to^* v_2 \quad \land \quad v_1 \approx v_2.$$

However, we need a termination-insensitive notion:

$$e_1 \to^* v_1 \quad \land \quad e_2 \to^* v_2 \quad \Rightarrow \quad v_1 \approx v_2.$$

For this, we define a novel theory of modal weakest preconditions.

A central idea in the model is to interpret types both as a

Binary relation for relating terms that are publicly equivalent and as a **Unary relation** for characterizing terms that do not have public side-effects.

A central idea in the model is to interpret types both as a

Binary relation for relating terms that are publicly equivalent and as a **Unary relation** for characterizing terms that do not have public side-effects.

```
Consider
```

```
\vDash \quad \text{if } v \text{ then } e_1 \text{ else } e_2 \quad \approx \quad \text{if } v' \text{ then } e_1 \text{ else } e_2 \quad : \quad t^\top where \vDash v \approx v' : \mathbb{B}^\top meaning v, v' \in \{\text{true}, \text{false}\}.
```

A central idea in the model is to interpret types both as a

Binary relation for relating terms that are publicly equivalent and as a **Unary relation** for characterizing terms that do not have public side-effects.

```
Consider
```

```
\models \quad \text{if } v \text{ then } e_1 \text{ else } e_2 \quad \approx \quad \text{if } v' \text{ then } e_1 \text{ else } e_2 \quad : \quad t^\top where \models v \approx v' : \mathbb{B}^\top meaning v, v' \in \{\text{true}, \text{false}\}. This means proving, e.g., \models \quad e_1 \quad \approx \quad e_2 \quad : \quad t^\top
```

A central idea in the model is to interpret types both as a

Binary relation for relating terms that are publicly equivalent and as a **Unary relation** for characterizing terms that do not have public side-effects.

Consider

```
\models \quad \text{if } v \text{ then } e_1 \text{ else } e_2 \quad \approx \quad \text{if } v' \text{ then } e_1 \text{ else } e_2 \quad : \quad t^\top where \vdash v \approx v' : \mathbb{B}^\top meaning v, v' \in \{\text{true}, \text{false}\}. This means proving, e.g., \vdash \quad e_1 \quad \approx \quad e_2 \quad : \quad t^\top
```

Crucially, they may not modify public references.

Semantic typing

Recall

$$\Xi \mid \Psi \mid \Gamma \vdash_{pc} e : \tau \qquad \Rightarrow \qquad \Xi \mid \Psi \mid \Gamma \vDash e \approx e : \tau$$

$$\Xi \mid \Psi \mid \Gamma \vDash e \approx e : \tau \qquad \Rightarrow \qquad \text{TINI}(e)$$

Importantly, the semantic relation is not defined in terms of the syntactic relation.

Semantic typing

Recall

$$\Xi \mid \Psi \mid \Gamma \vdash_{pc} e : \tau \qquad \Rightarrow \qquad \Xi \mid \Psi \mid \Gamma \vDash e \approx e : \tau$$

$$\Xi \mid \Psi \mid \Gamma \vDash e \approx e : \tau \qquad \Rightarrow \qquad \text{TINI}(e)$$

Importantly, the semantic relation is not defined in terms of the syntactic relation.

At the same time,

$$x: \tau_2 \vDash e_1 \approx e_1: \tau_1$$
 and $\vDash e_2 \approx e_2: \tau_2$

implies

$$\vDash e_1[e_2/x] \approx e_1[e_2/x] : \tau_1$$

Value-dependent classification

Consider

```
\label{eq:valDep} \textit{$\Rightarrow$ $\lambda$} f. \, \mathsf{let} \, d = \mathsf{ref}(\mathsf{true}, secret) \, \mathsf{in} f \, d; \mathsf{let} \, (b, v) = ! \, d \, \mathsf{in} \mathsf{if} \, b \, \mathsf{then} \, 42 \, \mathsf{else} \, v
```

Value-dependent classification

Consider

```
\label{eq:valDep} \textit{$\Rightarrow$ $\lambda$} f. \, \textit{let} \, d = \textit{ref}(\textit{true}, \textit{secret}) \, \textit{in} f \, d; \label{eq:eta} \textit{let} \, (b, v) = ! \, d \, \textit{in} \label{eq:eta} \textit{if} \, b \, \textit{then} \, 42 \, \textit{else} \, v
```

The program does not syntactically type check at \mathbb{N}^\perp

Value-dependent classification

Consider

$$\textit{valDep} \triangleq \lambda \, f. \, \mathsf{let} \, d = \mathsf{ref}(\mathsf{true}, secret) \, \mathsf{in}$$

$$f \, d;$$

$$\mathsf{let} \, (b, v) = ! \, d \, \mathsf{in}$$

$$\mathsf{if} \, b \, \mathsf{then} \, 42 \, \mathsf{else} \, v$$

The program does not syntactically type check at \mathbb{N}^{\perp} but, ideally,

$$secret: \mathbb{N}^{\top} \vDash valDep \ f \approx valDep \ f: \mathbb{N}^{\perp}$$

for "well-behaved" f. We can use the logic to express and prove these requirements.

Value-dependent classification cont'd

However, this burdens the client with proof obligations. Instead, we can exploit existential types to conceal the proof obligations. E.g.,

$$\begin{aligned} \textit{valDepPack} &\triangleq \det get = \lambda \, d. \, \det \left(b, v \right) = ! \, d \, \text{in} \, \text{if} \, b \, \text{then} \, \text{inj}_1 \, v \, \text{else} \, \text{inj}_2 \, v \, \text{in} \\ &\det setL = \lambda \, d, v. \, d \leftarrow (\mathsf{false}, v) \, \text{in} \\ &\det setH = \lambda \, d, v. \, d \leftarrow (\mathsf{true}, v) \, \text{in} \\ &\det (\mathsf{ref}(\mathsf{true}, secret), get, setL, setH) \end{aligned}$$

for which it holds

$$secret: \mathbb{N}^{\top} \vDash \textit{valDepPack} \approx \textit{valDepPack}:$$

$$\exists \alpha. \ \left(\alpha^{\bot} \times \left(\alpha^{\bot} \stackrel{\top}{\rightarrow} \mathbb{N}^{\top} + \mathbb{N}^{\bot}\right) \times \left(\alpha^{\bot} \stackrel{\top}{\rightarrow} \mathbb{N}^{\bot} \stackrel{\bot}{\rightarrow} 1\right) \times \left(\alpha^{\bot} \stackrel{\top}{\rightarrow} \mathbb{N}^{\top} \stackrel{\bot}{\rightarrow} 1\right)\right)$$

Conclusion

In summary, we have

- defined a novel semantic model of an expressive IFC type system with support for impredicative polymorphism, label polymorphism, recursive types, and general references,
 - unary and binary logical-relations models
 - · a theory of Modal Weakest Preconditions
- · showed that the type system entails termination-insensitive noninterference, and
- illustrated how the model can be used to reason about syntactically ill-typed but semantically secure code with compositional integration.

Conclusion

In summary, we have

- defined a novel semantic model of an expressive IFC type system with support for impredicative polymorphism, label polymorphism, recursive types, and general references,
 - · unary and binary logical-relations models
 - a theory of Modal Weakest Preconditions
- · showed that the type system entails termination-insensitive noninterference, and
- illustrated how the model can be used to reason about syntactically ill-typed but semantically secure code with compositional integration.

Thank you for watching

gregersen@cs.au.dk

https://cs.au.dk/~gregersen/papers/2021-tiniris.pdf

https://github.com/logsem/iris-tini