Mechanized Logical Relations for
Termination-Insensitive Noninterference

Simon O. Gregersen
joint work with Johan Bay, Amin Timany, and Lars Birkedal

Chalmers ProglLog/Security Seminar, 4 November 2020

Information-flow control tracks how information gets propagated through a program
making sure the information is handled securely.

Explicit flow
l<'h

Implicit flow

| « false;

if Athen! < true

The prevailing basic semantic notion of secure information flow is noninterference.

(7

secret input secret output

public input public output

program e

The prevailing basic semantic notion of secure information flow is noninterference.

secret input

public input

7

~N

program e

secret output

public output

Intuitively, public outputs should be independent of secret inputs: if ¢ depends on a
secret x then NI(e) holds when

e[vr/x] § 01

and

e[va/x] | 02

implies

01 =X 02

The problem

IFC enforcement is often specified using a static type system:

Tke:t* implies NI(e)

The problem

IFC enforcement is often specified using a static type system:
Tke:t* implies NI(e)
To be useful, it must support the same features as modern programming languages:

« higher types,
- reference types,
« abstract types,

The difficulty of proving the type system sound, however, increases.

The main goal of this work is to

+ show that such a rich type system satisfies termination-insensitive noninterference
+ using a semantic model

« with full mechanization of all results

The main goal of this work is to

+ show that such a rich type system satisfies termination-insensitive noninterference
+ using a semantic model
= compositional integration of syntactically well-typed and ill-typed components:

Tz:mbe:m and es € [2] then TINI (e1]e2/z])

« with full mechanization of all results

Example (Multiplying by zero)
Av.v * 0
cannot be syntactically typed at NT — N+,

Example (Temporary explicit leak)
letz =!linl+h; ...;l < x

is not syntactically well-typed.

Example (Temporary implicit leak)
(if 'hthenl < lelsel < 0);1+ 0

is not syntactically well-typed.

Contributions

In summary, we address three major challenges:

« combining unary and binary models in the presence of higher-order state and
impredicative polymorphism?,

TRajani and Garg (2018, 2020) sidestep all these difficulties by using syntactic worlds.

Contributions

In summary, we address three major challenges:
« combining unary and binary models in the presence of higher-order state and
impredicative polymorphism?,

- constructing “logical” logical-relations models for termination-insensitive
reasoning, while

TRajani and Garg (2018, 2020) sidestep all these difficulties by using syntactic worlds.

Contributions

In summary, we address three major challenges:
« combining unary and binary models in the presence of higher-order state and
impredicative polymorphism?,

« constructing “logical” logical-relations models for termination-insensitive
reasoning, while

- soundly allowing syntactically ill-typed but semantically secure programs to be
composed with syntactically well-typed programs.

TRajani and Garg (2018, 2020) sidestep all these difficulties by using syntactic worlds.

ex= ... |\x.e|eelref(e) | le|e«e|Ae|ANel|e_|
fold e | unfold e | packe | unpackeaszine

Lo=r|lel]|lUl

7=t

tu= ... |7 ST |ref(r) || Vea.T | Vek. 7| Fa.T | paT

ex= ... |\x.e|eelref(e) | le|e«e|Ae|ANel|e_|
fold e | unfold e | packe | unpackeaszine

Lo=r|lel]|lUl

T o=t

tu= ... |77 |ref(r) || Vea.7 | Yok 7| Fa.T | pa.T

Consider if hthen f () —if f has low side-effects we would leak A.

Typing judgment

Typing judgment

Typing judgment

Type-level context

Typing judgment

Type-level context

Label context

Typing judgment

Type-level context Program counter label

Label context

T-NAT T-BINOP
n €N E|¥|Thpeer: N E|U|Thpex:N2 ©:NxN=t

E‘\I/H—‘}_Z,CTLZNL E|\I}|F|—pcel@e2:t€1Ufz

T-LAM T-TLAM
E|U|T,z:m by, e: 7 Ea|U Tk e:T

E| T Fpe Mz.e: (1 25 m) E|U|T Fpe Ae: (Yo, a.7) "

T-IF
E|U|Thpee: B Vie{1,2}.2|¥|Thppe:7 UF7N\/

E|W|T F, ifethenegelsees : 7

T-STORE
E|U|T bpe eq :ref(r)Y E|U|Dhpeen:T ThrN\ pell
p p

E|U|T Fpe g < ep: 1t

Theorem (Termination-Insensitive Noninterference)
Given LC Tand T Z L, if

|- |z:BT kL e: B,
-|~|~|_J_’U11[BT, Clnd-‘-|~|_J_U22BT

then

(0, e[v1/x]) =* (o1,v]) and (0, e[ve/x]) =* (02, v5) then v] = v).

10

Theorem (Termination-Insensitive Noninterference)
Given LC Tand T Z L, if

-\-\:1::13[. e: B,
|- |-FLv:BT,and - |- |-FL v BT

then

(0, e[v1/x]) =* (o1,v]) and (0, e[ve/x]) =* (02, v5) then v] = v).

10

Theorem (Termination-Insensitive Noninterference)
Given LC Tand T Z L, if

-|~|:E:IB3T}—J_6:IEBJ',
|- FLv BT and - |- | kL v BT

then

(0, e[v1/x]) =* (o1,v]) and (0, e[ve/x]) =* (02, v5) then v] = v).

10

Theorem (Termination-Insensitive Noninterference)
Given LC Tand T Z L, if

|- |z:BT kL e: B,
|- |-FLv:BT,and - |- |-FL v BT

then

(0, e[vy /z]) =* (o1,v}) and (0, e[va/z]) —* (02, vh) then v} = v).

10

What we want to do

We set up a (logical) relation
E|V|ITEe;=ey:T

such that

E|U|[Thpe:r = E|U|Tkem~e:r
E|V|ITEexe:T = TINI (e)

However, this requires manipulating and defining step-indexed Kripke models over
recursive worlds which induces a lot of complexity.

1"

What we do

We combat this complexity by using Iris and iProp for defining our semantic domain.

+ The later modality (>) to reason about step-indices,
« User-definable ghost resources,
« The update modality (=) for reasoning about ghost resources, and

« We can use the Coq formalization and IPM to mechanize our proofs.

12

What we do

We combat this complexity by using Iris and iProp for defining our semantic domain.

+ The later modality (>) to reason about step-indices,

« User-definable ghost resources,

« The update modality (=) for reasoning about ghost resources, and
« We can use the Coq formalization and IPM to mechanize our proofs.

While hiding details, we still have to think in terms of step-indices and updates...

12

What we do cont'd

Existing works on defining “logical” logical relations are aimed at proving (contextual)
refinements: Intuitively, ¢; refines e, if

61@’[)1:>62U'02/\U1%1)2.

13

What we do cont'd

Existing works on defining “logical” logical relations are aimed at proving (contextual)
refinements: Intuitively, ¢; refines e, if

elljvl :>€2U'02/\1)1 ~ V2.
This can expressed using Iris-style weakest precondition predicates, i.e.,

Wp e {Ul. es Jvo Ay = 1}2}.

13

What we do cont'd

Existing works on defining “logical” logical relations are aimed at proving (contextual)
refinements: Intuitively, ¢; refines e, if

e1 v = ex | vo Ay = vs.

This can expressed using Iris-style weakest precondition predicates, i.e.,
wp ey {v1. ea | va Avy = 0o}

However, we need a termination-insensitive notion:

ell}leegi}vgﬁvlsvg.

13

Nested weakest preconditions do not work ...

Nested weakest preconditions, e.g., using
e1 ~ ey = Wp ey {vi. Wpes {ve. v1 & va}}
does not admit a strong enough bind rule:

wp e {w. wp K[w] {v. wp e {w'. wp K'[w'] {v'.v~v'}}}} WP-ON + WP-BIND

wp e {w. wp K[w] {v. wp K'[e/] {v'. v~ v'}}}
wp Kle] {v. wp K'[¢'] {v. v =~ v'}}

WP-BIND

14

Semantic model

Semantic model

Our semantic model formalizes an observer-sensitive equivalence
E|U|TEerce T

forany ¢ € L.

Theorem (Binary fundamental theorem)

If E|¥ | Thpce:T then V(.E|V|TFerce: T

15

Semantic model cont’d

A central idea in the model is to interpret types both as a

Binary relation for relating terms that are observationally equivalent and as a
Unary relation for characterizing terms that have no “illegal” side-effects.

Semantic model cont’d

A central idea in the model is to interpret types both as a

Binary relation for relating terms that are observationally equivalent and as a
Unary relation for characterizing terms that have no “illegal” side-effects.

If T Z¢and

e:t! and et

then the programs can—individually—do “whatever they feel like” while being
observationally equivalent as long as they do not have observable side-effects.

Semantic model cont’d

A central idea in the model is to interpret types both as a

Binary relation for relating terms that are observationally equivalent and as a
Unary relation for characterizing terms that have no “illegal” side-effects.

If T Z¢and

e:t! and et

then the programs can—individually—do “whatever they feel like” while being
observationally equivalent as long as they do not have observable side-effects.

The logical relation

We define both unary and binary variants of

« an expression relation £[7]% for closed expressions, and

+ avalue relation [7]g

as is custom for logical relations models. From these,
E|V|ITEe~ce : 7T

follows by closing with well-typed substitutions.

Value relations

We define
[7]& : Val x Val — iProp [7]4 : Val — iProp
[t]% : Val x Val — iProp [¢]A : Val — iProp
where

p: LabelVar — L
O : TypeVar — Rel x Pred x Pred
A : TypeVar — Pred

given Rel £ Val x Val — iProp and Pred = Val — iProp.

Binary-unary subsumption property

It will be crucial that

Vo, v [7]§ (v,v") HTHgL(”) & [[T]]gH (v)

holds where ©, £ 1,00 and O £ 7530 6.

19

Binary-unary subsumption property

It will be crucial that

Vo, v [7]§ (v,v") HTHgL(”) & [[T]]gH (v)

holds where ©, £ 1,00 and O £ 7530 6.

When interpreting type variables,

[a]& = m1 (6())

this requires that © is coherent:

Coh(©) £ >I< O (Vo,v". (v, v") = &L (v) * Pr(v")).

(P,2,,Pr)EIm(O)

19

Binary value interpretation of labeled types

To interpret labeled types, we make use of an interpretation of syntactic labels.

[1, : Label; — L
[£], = p(x)
[, &1

[61 U 2], £ [a], U [£2],-

This allows us to formally express the intuition given previously:

[t]6 (v, v") if [¢],C¢
72 (v,0') & =) 4
e {[[t]]%L(U) * [t]g, (") if [, Z¢

20

Binary value interpretation of unlabeled types

Mostly standard, but we have to make sure the subsumption property holds.

[B]%(v,v") £ v =" € {true, false}

21

Binary value interpretation of unlabeled types

Mostly standard, but we have to make sure the subsumption property holds.

[<5 o5 (v,v") £ O (Vw,w'. [11]5 (w,w") - E[r2]S (v w,v’ w')) *

[=5 7208, (v) * [r1 =5 718, ()

21

Binary value interpretation of unlabeled types

Mostly standard, but we have to make sure the subsumption property holds.

Nioot (152"

[ref(T)]% (v,v") £ 3, v =1xv" =0 x| 3w, w0 = wx =g w * [7]8(w,w')

21

Binary value interpretation of unlabeled types

Mostly standard, but we have to make sure the subsumption property holds.

O (VP : Rel. V@, P : Pred.
O (Yv,v". &(v,) = D1 (v) * Pr(V)) ~* E[TIG 0 (0,6, 00 (¥ = V' _))*

[Ve, 0. 718, (v) * [Ve, 0. 7], (v")

21

Binary value interpretation of unlabeled types

Mostly standard, but we have to make sure the subsumption property holds.

Ve, 5. 715 (v,0") £ O (Vl c E.S[Tﬂgmﬁl(v v _)) * [V, k.7]%, (v) * [V, £.7]&, (V)

21

Modal weakest preconditions

We develop a theory of modal weakest preconditions
mwp™Mi® e (@}
with the intuitive meaning
Vo,o' v. (e,0) =" (v,0") = M(P(v)).

With a valid modality M, the connective admits several general structural rules

22

MWP instances

Crucially, we get a unary connective mwp”=> ¢ {@} that implies
Vo,o' v. (e,0) =* (v,0") = ®(v)
and a binary connective mwp e; ~ ez {®} that implies

Voi,00,v. (e1,01) = (v,07) —*

Voo, oh,w. (e2,02) =* (w,05) = D(v,w)

23

MWP instances cont’d

Lemma (Binary MWP - bind)

mwp e ~ €' {v,v". mwp K[v] ~ K'[v'] {®}}
mwp Kle] ~ K'[e/] {®}

24

Expression relations

We can now define the binary expression relation
Elr]% (e €’) & mwper ~ ez {[7]5}
as well as the unary expression relation

EpelTIA(e) = [pcl, Z ¢ = mwp”te> e{[rIA}-

25

More Examples

Static semantic typing instead of dynamic enforcement

Fennel and Thiemann (2013) consider a report processing application with

sendToManager : ref(Report') 5 1

sendToFacebook : ref(Report™) = 1

26

Static semantic typing instead of dynamic enforcement

Fennel and Thiemann (2013) consider a report processing application with

sendToManager : ref(Report') 5 1

sendToFacebook : ref(Report™) = 1
with the extension

addPrivileged £)\ isPrivileged, worker, report.
if isPrivileged then report < ! report 4+ ! helse ()

worker report

addPrivileged true sendToManager syntactically type checks but
addPrivileged false sendToFacebook does not.

26

Static semantic typing instead of dynamic enforcement cont’d

While Fennel and Thiemann propose a gradual type system, we can prove that the
program is semantically well-typed.

Given addPFB £ addPrivileged false sendToFacebook then

-| - |- F addPFB ~; addPFB : ref(Report™) = 1

27

Value-dependent classification

Consider

valDep £)\ f.let d = ref(true, secret) in

[d;
let (b,v) =!din
if bthen 42 else v

Ideally, [N*](valDep f,valDep f), but only for f that maintain the invariant

Hb,”UL,”UR.dL —r (b,’UL) * dR —R (b,”UR) * HNifbthenTaSELH (UL.,UR)

28

Value-dependent classification cont’d

However, this burdens the client with proof obligations. Instead, we can exploit
existential packs to conceal the proof obligations. E.g.,

valDepPack £ let get = \d.let (b,v) = !dinif btheninj; velseinjp vin
let setL = Ad,v.d « (false,v) in
let setH = Ad,v.d + (true,v)in
pack (ref(true, secret), get, setL, setH)

for which it holds

- | - |- E valDepPack =~ valDepPack :
Jav. (oﬂ‘ X (oﬂ‘ ;NT+NL) X (al SNt S 1) X (oﬂ‘ 5SNT S 1))

29

In summary, we have

+ defined a novel semantic model of an expressive IFC type system with support for
impredicative polymorphism, label polymorphism, recursive types, and general
references,

 showed that the type system entails termination-insensitive noninterference, and

« illustrated how the model can be used to reason about syntactically ill-typed but
semantically secure code with compositional integration.

30

In summary, we have

+ defined a novel semantic model of an expressive IFC type system with support for
impredicative polymorphism, label polymorphism, recursive types, and general
references,

« unary and binary logical-relations models
« atheory of Modal Weakest Preconditions

- showed that the type system entails termination-insensitive noninterference, and

« illustrated how the model can be used to reason about syntactically ill-typed but
semantically secure code with compositional integration.

30

So, what's next?

With our model, we believe to have a very strong methodology for establishing TINI.

- Other security notions (termination-sensitive, progress-sensitive, ...)?
« Security libraries (LIO, MAC, ...)
« Concurrency

« Declassification

. 77

2See Frumin et al. (S&P "21) for an approach in Iris.

31

Thank you

Extra slides

Unary-binary MWP lemma

Lemma (Unary-binary step-taking update MWPs)

mWP?AE» € {v. mwpéwbb ea {w. ®(v, w)}} — mwp e; ~ e {P}

M M
mwpe P ey {w mwpg = an {v. @(v,w)}} — mwp e ~ ey {P}

Why the binary-unary subsumption property?

Let's prove the compatibility lemma for conditional expressions:

Lemma
E|W¥|T Eifethene; elseey & if €' thene] elsees : 7

given well-typed sub-terms and Z |V [T F e ~¢ e : B, Z| V| Ee; m¢ € i 7, and 7N\ L.

Why the binary-unary subsumption property?

Let's prove the compatibility lemma for conditional expressions:
Lemma
E|W¥|T Eifethene; elseey & if €' thene] elsees : 7
given well-typed sub-terms and Z |V [T F e ~¢ e : B, Z| V| Ee; m¢ € i 7, and 7N\ L.

Proof.

Unfolding the definition of the judgment, we have to show

ELT14if e[/ F] then 1T/ T else [T/ 7], if /[v'/ 7] then e} [v7/ 7] else e [/ 7).

—
i

given G[I']4 (7, v") and Coh(O).

Why the binary-unary subsumption property? cont'd

The proof continues by considering the label ¢ of the guard:

< if[f], C ¢

- if {4, ¢

Why the binary-unary subsumption property? cont'd

The proof continues by considering the label ¢ of the guard:

- if [, EC
= el vande || v such that [B]g (v, v’) meaning v = v'.

- if 4, ¢

Why the binary-unary subsumption property? cont'd

The proof continues by considering the label ¢ of the guard:

< if[f], C ¢
= el vande || v such that [B]g (v, v’) meaning v = v'.
= We have to show E[7] (e1[V/Z], e [T/ Z]) and E[7]4 (1 [T/ 2], €1 [T/ 2]). V'

- if 4, ¢

Why the binary-unary subsumption property? cont'd

The proof continues by considering the label ¢ of the guard:

< if[f], C ¢
= el vande || v such that [B]g (v, v’) meaning v = v'.
= We have to show E[7] (e1[V/Z], e [T/ Z]) and E[7]4 (1 [T/ 2], €1 [T/ 2]). V'

- if 4, ¢
= el vande | v such that [B]S(v) and [B]g (v")

Why the binary-unary subsumption property? cont'd

The proof continues by considering the label ¢ of the guard:

- if [, EC

= el vande || v such that [B]g (v, v’) meaning v = v'.

= We have to show E[7] (e1[V/Z], e [T/ Z]) and E[7]4 (1 [T/ 2], €1 [T/ 2]). V'
- if e, 2 ¢

= el vande | v such that [B]S(v) and [B]g (v")

= We have 4 cases

- ElrS(ealB/), 4[T/T]) Y
. E[r15 (e2[T/ T, 4[T/Z]) V'
- E[r15 (e1[T/], [T/ 7))
- €[5 (e2(T/T], €4 [T/ 7))

Why the binary-unary subsumption property? cont'd cont'd

Given 7 =t as [¢], Z ¢ and 7 \, £ then [¢'], Z ¢.

Hence

Why the binary-unary subsumption property? cont'd cont'd

Given 7 =t as [¢], Z ¢ and 7 \, £ then [¢'], Z ¢.
Hence

Elr1e(ex[V/T], €5[V/T]) = mwp e [V/Z] ~ e
=mwpe[T/T] ~e
With the unary-binary MWP lemma and the fundamental theorem, we should be done.
Theorem (Unary fundamental theorem)
If E|¥|Tkpe:7 then E|U|Tkpe:T

—
!

However, we need G[I']% (V) and G[I']4 (v")—which follows from subsumption!

Type system cont'd

T-TLAM
Ea|lU Tk e:T

2| |Thpe Ae: (Yo, 7)™

T-LAPP
E|V|TFpee: (WEH.T)Z UEpelUl T L)k UE Tl /K] \(¢ FV(¢) C W
E|U|Tkpee_:7[¢/K]

Type system cont'd

T-LLAM
E|U,k|Tky e:7 FV(¢.) C P U{k}

S| |T by Ae: (Vo k7)

T-LAPP
E|V|TFpee: (WEH.T)Z U pelUl T L)k UE Tl /K] \(¢ FV(¢) C o
E|U|Tkpee_:7[l/K]

Type system cont'd

T-TAPP ,
E|U|Tbpee: (Yo, a.7) UEpeUlCl, FV(t) C

E|U|T Fpee_:T[t/q]

[1]

T-LAPP
E|V|TFpee: (V[EI{.’T)Z UEpelUlC L)k UE Tl /K] \(¢ FV(¢) C W
E|U|Tkpee_:7[l/K]

What we want to do cont’d

Intuitively, this is done by defining

e1 ey :T=e = v Aey =* vy = [7] (v, v2)

What we want to do cont’d

Intuitively, this is done by defining
e1 ey T2 e =F v Aeg =F vo = [7](v1,v2)
However, as we have references, we hit the type-world circularity problem:

[ref(T)J(W) ={¢| ¢ € dom(W) AW () = [7]}

What we want to do cont’d

Intuitively, this is done by defining
e1 ey T2 e =F v Aeg =F vo = [7](v1,v2)
However, as we have references, we hit the type-world circularity problem:
[ref(MI(W) = {¢ | ¢« € dom(W) AW () = []}
implies

[r]: T
T = World — Pred(Val)
World = Loc — T

but this domain does not exist ...

MWP instances

Example (Unary step-taking update modality)

mwpé\/lbb e{®} =Vo,0’,v,n.(e,0) =" (v,0') =+ S(c) —*

(B o "25)" B, (@(v) * S(0)) .

Example (Binary step-taking update modality)

mwpg e1 ~ eg {®} =Voi,0],v,n.(e1,01) =" (v,07) = Si(01) =

anaUéawam' (62702) = (U),Ué) —* 52(02) —*

("> "25)" B (P(v, w) * Si(a}) * Sa(ah))

Semantic typing judgment

Our semantic typing judgment now follows:

VO ,v,v dom(Z) € dom(O) * dor C dom(p) —
I LY. (%) € dom(®) » dom(¥) < dom()
' "v'/Z])

Coh(®) G[T15 (T, v) + E[715 (e[T/T), €' [
given

Q[H}g)(e, €) £ True

GIT, a : 718 (Tw, vu') 2 GITIE (T, 0) * [7]4 (w, w')

Unary value relation

[t]A (v) = [t]A(v)
[=5 2]A(v) £ O Vw. [n]a(w) = &, [R]A (v w))
[ref(t)]A (v) & F,N.v = e x R(A, p, 1, £, N)

Unary value relation

[t]A (v) = [t]A(v)
[= m]A(v) £ OVw. [n]A(w) = &, [r]A (v w))
[ref(t)]A (v) & F,N.v = e x R(A, p, 1, £, N)

Unary value relation

[t°]A(v) £ [t]A(v)
[r1 55 mlA(v) 2 O (V. [1]4 (W) ~ &, [r]A (v w))
[ref(t)]A (v) & F,N.v = e x R(A, p, 1, £, N)
where R(A, p, ¢, ¢, N') is defined by cases:
« if [¢], C ¢ then
Jw. v —; w * [T]A (w) *
ELEW
e £ = (= D(((m»—x,;w*[[T]}"A(w)) E\N € True)))
« if [{], Z ¢ then
Jw. v 5 w* [T (w) *
D%,Nggé(gg\ﬂfb(1w [rA(w)))

3w .o w' o] (w' EWN=E Trye
A

Computing with memoization

Consider the following memoization utility

memoize £ \f, init.
let cache = ref(init, f init)in
let recompute = \v. let result = f vin cache < (v, result); result in
M. let (w, result) = ! cache in

if v = w then result else recompute v

We would like that, e.g., for f : N 5 N’ then memoize f 0 is interchangeable with f.
However, we cannot statically type memoize.

Computing with memoization cont’d

Moreover, f needs to satisfy a semantic condition; if not, consider e.g.

let counter = ref(0)in
let f/ = memoize (\ _. counter < (! counter + 1);! counter) 0'in
if secret then f’ O else ();

fo
However, for any “purely acting” function f, we have that

-| - |- E memoize f 0 ~; memoize f 0 : N* 5 N*

	Semantic model
	More Examples
	Appendix

