
Data Structure Design
Theory and Practice

Gerth Stølting Brodal
Aarhus University

Denmark
48th International Conference on Current Trends in Theory and Practice of Computer Science, Nový Smokovec, Slovakia, January 15-19, 2023

Gerth Stølting Brodal

Research
Data structures 1993 –

Teaching
Algorithms and Data Structures 2002 –
Introduction to Programming (Python) 2018 –
Bachelor project advising

Algorithms

Efficient Algorithms
= Algorithms + Data structures

Hardware
Language

and
Compiler

influence on
algorithm design,

computational models,
cost models

TIOBE Programming Community Index

www.tiobe.com/tiobe-index/

Extendable Arrays – Reallocation Strategies

0 7654321

-363712 4 9

87654321 9 10 11 12 13 14 150

-363712 4 9 13

append(13)

static int

list_resize(PyListObject *self, Py_ssize_t newsize)

{

PyObject **items;

size_t new_allocated, num_allocated_bytes;

Py_ssize_t allocated = self->allocated;

if (allocated >= newsize && newsize >= (allocated >> 1)) {

assert(self->ob_item != NULL || newsize == 0);

Py_SIZE(self) = newsize;

return 0;

}

new_allocated =

(size_t)newsize + (newsize >> 3) + (newsize < 9 ? 3 : 6);

…

}

Python list
+ 12.5 %

private int newCapacity(int minCapacity) {

// overflow-conscious code

int oldCapacity = elementData.length;

int newCapacity = oldCapacity + (oldCapacity >> 1);

if (newCapacity - minCapacity <= 0) {

if (elementData == DEFAULTCAPACITY_EMPTY_ELEMENTDATA)

return Math.max(DEFAULT_CAPACITY, minCapacity);

if (minCapacity < 0) // overflow

throw new OutOfMemoryError();

return minCapacity;

}

return (newCapacity - MAX_ARRAY_SIZE <= 0)

? newCapacity

: hugeCapacity(minCapacity);

}

Java ArrayList
+ 50 %

size_type

_M_check_len(size_type __n, const char* __s) const

{

if (max_size() - size() < __n)

__throw_length_error(__N(__s));

const size_type __len = size() + (std::max)(size(), __n);

return (__len < size() || __len > max_size())

? max_size()

: __len;

}

C++ vector
+ 100 %

for (int i=0; i < size; i++)

if (A[i] <= threshold)

small ++;

A random floats in range [0, 1]
0 size-1

threshold time (seconds)

0.0 0.045

0.5

1.0

0.458

0.046

Branches

Threshold Counting

11th Gen Intel Core i7-1165G7 @ 2.80GHz, Windows 10 + cygwin, gcc –O2, performed 227 comparisons (repeatedly ran over array)

size of branch
prediction table

symmetric,
predict as majority

for (int i=0; i < size; i++)

if (A[i] <= threshold)

small ++;

.L7: comiss (%rax), %xmm6

jb .L5

addq $1, %r14

.L5: addq $4, %rax

cmpq %rbx, %rax

jne .L7

.L7: comiss (%rax), %xmm6

sbbq $-1, %r14

addq $4, %rax

cmpq %rbx, %rax

jne .L7

gcc -O2gcc -O2 -fno-if-conversion -fno-if-conversion2

Binary Search

int low = 0, high = size;

while (low < high) {

int mid = low+(int)((high-low)*bias);

if (A[mid] <= x)

low = mid + 1;

else

high = mid;

}

A ≤ x ? > x

0 low mid high size

bias 1-bias

Binary Search

Summary Branch Mispredictions

▪ Mispredictions can slow done programs by a factor 10

▪ Binary search faster with biased pivot

▪ Binary search trees faster with biased pivots
[B. and Moruz, ESA 2004]

▪ QuickSort faster with biased pivot
[Kaligosi and Sanders, ESA 2006]
– also analyzed different prediction models

▪ InsertionSort O(n2) comparisons but O(n) mispredictions

▪ MergeSort with InsertionSort for small problems
(used in standard libraries)

▪ Sorting [B. and Moruz, WADS 2005]
O(d·n·log n) comparisons ⇒ Ω(n·logd n) mispredictions

Binary search trees
[B. and Moruz, ESA 2004]

QuickSort
[Kaligosi and Sanders, ESA 2006]

MergeSort
[Moruz]

Pointer Chasing

x 66

position = 0;

for (int i=0; i < iterations; i++)

position = A[position];

A

0 sizestep

step time (seconds)

1 0.297

1024 19.5

(size = 16777216)

L1 cache
48 KB

(size 16384)

Pointer Chasing

page size 4 KB (step 1024)
cache line size 64 bytes (step 16)

L2 cache
512 KB

(size 131072)

L3 cache
12 MB

(size 4194304)

8 way cache associativity

TLB misses ?

A

0 sizestep

Belianska cave ?

randomly permute pointer cells

Pointer Chasing A

0 sizestep

Memory Hierarchy

L1 L2 L3

M
em

o
ry

 (
R

A
M

)

H
ar

d
d

is
k

Computation
(ALU) Bus

64 KB
5 ns

64 bytes

20 MB
30 ns

64 bytes

512 KB
20 ns

64 bytes
32 GB
60 ns

64 bytes 1 TB
5.000.000 ns
4.096 bytes

Cache size
Access time
Block size

CPU

[Jurkiewicz, Mehlhorn, The cost of address translation, ALENEX 2013]

Cost of Address Translation

Time / RAM complexity

log n

External Memory and Cache-Oblivious Models

M

B

[Aggarwal, Vitter, The input/output complexity of sorting and related problems, 1988]
[Frigo, Leiserson, Prokop, Ramachandran, Cache-Oblivious Algorithms, 1999]

IO

▪ External memory model parameters B and M

▪ Scanning O(N/B) IOs

▪ Sorting O(N/B∙logM/B (N/B)) IOs

▪ Searching O(logB N) IOs

▪ Cache oblivious model is like external memory model
... but algorithms do not know B and M
(assume optimal cache replacement strategy)

▪ Optimal on all memory levels
(under some assumptions)

M

B

[Prokop, MIT MSc thesis Cache-Oblivious Algorithms, 1999]

Binary tree Search O(logB N) IOs
Range Searches O(logB N + k/B) IOs

Recursive Tree Layout
(van Emde Boas layout)

Random Searches in Perfectly Balanced Search Trees

van Emde Boas Layout

random layouts

[B., Fagerberg, Jacob, Cache-Oblivious Search Trees via Binary Trees of Small Height, SODA 2002]

No Balanced Search Trees in Python ?

▪ Python standard library does not contain balanced search trees

▪ insert_left inserts into a sorted list [binary search O(log n) + memcopy O(n)]

▪ SortedList in sortedcollections essentially combines list-of-lists with bisect

[[1, 5, 15, 28], [35, 38, 38, 41, 44], [46, 61, 63], [70, 87, 89]]

updates O(n) and queries O(log n)

Python shell

> L = [0, 10, 20, 30, 40, 50, 60, 70, 80, 90]

> bisect.insort_left(L, 42)

> print(L)

| [0, 10, 20, 30, 40, 42, 50, 60, 70, 80, 90]

grantjenks.com/docs/sortedcollections/

Summary Hardware Influence

▪ Random Access Machine (RAM) model great for designing and
analyze algorithms

▪ … but final program performance depends on hardware

▪ Have an idea of what the bottleneck is in your computation and
choose an appropriate abstract model

An Unexpected Journey

▪ Bachelorproject = shortest paths on Open Street Map graphs

▪ Students have trouble implementing Dijkstra's algorithm in JavaTM

Dijkstra’s Algorithm (1956)

▪ Non-negative edge weights

▪ Visits nodes in increasing distance from source

source

+∞

+∞

+∞ +∞

A ED

C

B
2

4

4 1

1 2

2

4
3

6
4

6

Q = ⟨0,A⟩

⟨2,B⟩ ⟨4,C⟩

⟨3,C⟩ ⟨6,D⟩

⟨4,D⟩

⟨6,E⟩

0

relax

Fibonacci heaps
(Fredman, Tarjan 1984)
⇒ O(m + n ∙ log n)

O(log n) Remove
⇒ O(m ∙ log n)

relax

The Challenge - Java’s Builtin Binary Heap

▪ No decreasekey

▪ remove O(n) time ⇒ Dijkstra O(m ∙ n)

Repeated Insertions

▪ Relax inserts new copies of item

▪ Skip outdated items

outdated ?

relax
= reinsert

source

+∞

+∞

+∞ +∞

A ED

C

B
2

4

4 1

1 2

2

4
3

6
4

6

Q = ⟨0,A⟩

⟨2,B⟩ ⟨4,C⟩

⟨3,C⟩ ⟨4,C⟩ ⟨6,D⟩

⟨4,D⟩ ⟨6,D⟩

⟨6,D⟩ ⟨6,E⟩

0

⟨4,C⟩ ⟨4,D⟩ ⟨6,D⟩

⟨6,E⟩

Using a Visited Set

source

+∞

+∞

+∞ +∞

A ED

C

B
2

4

4 1

1 2

2

4
3

6
4

6

Q = ⟨0,A⟩

⟨2,B⟩ ⟨4,C⟩

⟨3,C⟩ ⟨4,C⟩ ⟨6,D⟩

⟨4,D⟩ ⟨6,D⟩

⟨6,D⟩ ⟨6,E⟩

0

⟨4,C⟩ ⟨4,D⟩ ⟨6,D⟩

⟨6,E⟩

bitvector

A Shaky Idea…

d never used

▪ Q only store nodes
(save space)

▪ Comparator

▪ Key = current distance dist

Heap invariants break

The Challenge - Java’s Builtin Binary Heap

▪ Comparator function

Experimental Study

▪ Implemented Dijkstra4 in Python

▪ Stress test on random cliques

▪ Binary heaps failed (default priority queue in Java and Python)

visited = set()

Q = Queue()

Q.insert(Item(0, source))

while not Q.empty():

u = Q.extract_min().value

if u not in visited:

visited.add(u)

for v in G.out[u]:

dist_v = dist[u] + G.weights[(u, v)]

if dist_v < dist[v]:

dist[v] = dist_v

parent[v] = u

Q.insert(Item(dist[v], v))

outdated wrong
placement

not smallest
key

ignored
since visited

Binary Heaps Fail using dist in a Comparator

Experimental Study

▪ Implemented Dijkstra4 in Python

▪ Stress test on random cliques

▪ Binary heaps

▪ Skew heaps

▪ Leftist heaps

▪ Pairing heaps

▪ Binomial queues

▪ Post-order heaps

▪ Binary heaps with top-down insertions

failed

worked

worked

worked

worked

worked

worked

(default priority queue in Java and Python)

Implicit (space efficient)

Pointer based

visited = set()

Q = Queue()

Q.insert(Item(0, source))

while not Q.empty():

u = Q.extract_min().value

if u not in visited:

visited.add(u)

for v in G.out[u]:

dist_v = dist[u] + G.weights[(u, v)]

if dist_v < dist[v]:

dist[v] = dist_v

parent[v] = u

Q.insert(Item(dist[v], v))

u
n

ex
p

ec
te

d

Binary Heap Insertions : Bottom-up vs Top-down

2

3 5

9 4 8 12

10 14 6 20 17

2

3 5

9 4 7 12

10 14 6 20 17 8

Insert(7)

bottom-
up

top-down

7

▪ Theorem Skew, left, pairing, binomial, post-order, binary top-down heaps
Theorem support a generalized notion of heap order with decreasing keys

▪ Theorem Dijkstra4 works correctly

Experimental Evaluation of Various Heaps
▪ Cliques with uniform random weights

▪ With decreasing keys less comparisons (outdated items removed earlier)

⟨key, value⟩ pairs decreasing keys

smaller

Reduction in Comparisons

comparisons decreasing keys / comparisons ⟨key, value⟩ pairs

Summary of the Unexpected Journey

▪ Introduced notion of priority queues with decreasing keys
… as an approach to deal with outdated items in Dijkstra’s algorithm

▪ Experiments identified priority queues supporting decreasing keys
… just had to prove it

▪ Builtin priority queues in Java and Python are binary heaps
… do not support decreasing keys

▪ Binary heaps with top-down insertions do support decreasing keys
… and also

skew heaps, leftist heaps, pairing heaps,
binomial queues, post-order heaps

The reviewer is always right

”If there was a implementation where the authors
verified that everything did what it was supposed
to, I would be more confident that things were
correct (I am not talking about a practical
implementation, I am talking about one to make
sure all invariants hold).”

Anonymous reviewer

Strict Fibonacci Heaps

Binary heap
[Williams 1964]

worst-case

Fibonacci heap
[Fredman, Tarjan 1984]

amortized

Strict Fibonacci heap
[B., Lagogiannis, Tarjan 2012]

worst-case

Insert O(log n) O(1) O(1)

ExtractMin O(log n) O(log n) O(log n)

DecreaseKey O(log n) O(1) O(1)

Meld - O(1) O(1)

Strict Fibonnacci Heaps

+ many structural invariants

Python Implementation
▪ 1589 lines

▪ 215 assert statements

▪ All claimed invariants turned into assert statements

▪ Validation methods to traverse full structure to verify all claimed invariants

▪ Stress test using random inputs

▪ Supported the theory

www.cs.au.dk/~gerth/strict_fibonacci_heaps.py

Code coverage

▪ Used the Python module coverage

▪ Some code rarely executed

▪ Repeat random test 1.000.000 times

▪ Most code executed at least once

▪ Realized there was code for cases which provably never can occur

▪ Implementation → new invariants discovered

coverage.readthedocs.io

Branch coverage

▪ Thought code coverage would find all ”logical errors”

▪ Found several if statements with no else part,
where condition provably would always be true

▪ Implementation → new invariants discovered (and assertions added)

coverage.readthedocs.io

always exists

”The first main suggestion is to have at least one figure
with a logical diagram of a non-trivial example
structure, […]. This would go a long way in giving some
idea of what the structure is.”

Anonymous reviewer

▪ Hard to manually create a figure that was guaranteed to be a real example

▪ Could use implementation to automatically generate (LaTeX tikz) figures

▪ Generated random inputs

▪ Formalized requirements to figure as a loop condition

▪ Repeat until happy

Data Structure Design

Theory Practice

confirm & evaluate theory

theoretical insights, computational model considerations

