
Computational Math / Science

A short report on the course:
“Introduction to Programming with Scientific Applications”

Gerth Stølting Brodal

Department of Computer Science

Computational Thinking Seminar, Center for Computational Thinking and Design (CCTD), Aarhus University, May 16, 2018

Background

 Summer 2017 major Study Reform at Science and Technology @ AU:
• 4 quarters replaced by 2 semesters (5 ECTS  10 ECTS courses)

 Previously many non-computer science (CS) students were required
to follow the CS introduction to programming course in Java
• need expressed by other educations to have a more specifically target course

 Together with mathematics department (Niels Lauritzen) defined
new programming course, targeted towards math students
• Python

• Some project work / applications

• Dynamic programming (+ basic sorting and binary search)

• Basic understanding of differences/similarities between Python and Java

Course content

1. Introduction to Python 10. Functions as objects 19. Linear programming

2. Python basics / if 11. Object oriented programming 20. Generators, iterators, with

3. Basic operations 12. Class hierarchies 21. Modules and packages

4. Lists / while / for 13. Exceptions and files 22. Working with text

5. Tuples / comprehensions 14. Doc, testing, debugging 23. Relational data

6. Dictionaries and sets 15. Decorators 24. Clustering

7. Functions 16. Dynamic programming 25. Graphical user interfaces (GUI)

8. Recursion 17. Visualization and optimization 26. Java vs Python

9. Recursion and Iteration 18. Multi-dimensional data 27. Final lecture

Basic programming
Advanced / specific python

Libraries & applications

27 lectures (2 x 45 min) + 14 exercise sessions (3 hours) + 5 hours studie café / week + 10 handins
+ PeerWise + MentiMeter + 1 final project (1 month, 25% of grade) + MCQ exam (75%, 2 hours)

https://blackboard.au.dk/webapps/blackboard/content/listContentEditable.jsp?content_id=_1639577_1&course_id=_110424_1

https://blackboard.au.dk/webapps/blackboard/content/listContentEditable.jsp?content_id=_1639577_1&course_id=_110424_1

Personal goal
At the end of the course the students should...

 master basic programming concepts

 know and have used more advanced programming features
(recursive functions & data types, OO, λ, decorators)

 have basic knowledge of some common Python packages
• numpy, matplotlib, pandas, tkinter, scipy, Jupyter, doctest, ...

 be able to navigate in the Python ecosystem

Population (realized one week before the course)
• Mathematics (25, 2nd year)
• Mathematics-Economics (26, 2nd year)
• Chemistry (22, elective, 3rd – 4th year)
• Minor in Mathematics (20, ~ 4th year) - primary user of the study café

Binomial Coefficient
Dynamic programming using decorator

 Use a decorator (@memoize) that implements the functionality of
remembering the results of previous function calls

www.python-course.eu/python3_memoization.php

bionomial_decorator.py

def memoize(f):

answers[args] = f(*args)

answers = {}

def wrapper(*args):

if args not in answers:

answers[args] = f(*args)

return answers[args]

return wrapper

@memoize

def binomial(n, k):

if k==0 or k==n:

return 1

else:

return binomial(n-1, k) + binomial(n-1, k-1)

https://www.python-course.eu/python3_memoization.php

Math / scientific concepts covered
 Recursion recurring theme (recursive functions,

recursive data types, recursive objects, recursive OO
method calls, handins on comparing phylogenetic trees)

 Dynamic programming (recursion + decorator) and
recurrences

 Plot of data (matplotlib.pyplot)
 Matrices and multidimensional data (numpy)
 Least squares fit (numpy.polyfit)
 Linear programming (scipy.optimize.linprog)
 Maximum flow problems (vha scipy.optimize.linprog)
 Eigenvector, PageRank (numpy.linalg.eig)
 Minimum of functions (scipy.optimize.minimize)

• minimum enclosing circle, comparison with Matlab

 Jupyter notebooks

Course book

 Course book followed a little bit in
random order – and only covered
partially – but gives a good introduction
to most important Python concept in a
few pages and with many (perhaps too)
mathematically oriented examples

 Primary course material are lecture slides
(made available last minute...)

 A central competence for the students to
acquire is to be able to Google relevant
information (e.g. Python libraries)

