Dynamic Representations of Sparse Graphs*

Gerth Stglting Brodal and Rolf Fagerberg

BRICS**, Department of Computer Science, University of Aarhus,
DK-8000 Arhus C, Denmark
{gerth,rolf}@brics.dk

Abstract. We present a linear space data structure for maintaining
graphs with bounded arboricity—a large class of sparse graphs contain-
ing e.g. planar graphs and graphs of bounded treewidth—under edge
insertions, edge deletions, and adjacency queries.

The data structure supports adjacency queries in worst case O(c) time,
and edge insertions and edge deletions in amortized O(1) and O(c+log n)
time, respectively, where n is the number of nodes in the graph, and c is
the bound on the arboricity.

1 Introduction

A fundamental operation on graphs is, given two nodes u and v, to tell whether
or not the edge (u,v) is present in the graph. We denote such queries adjacency
queries.

For a graph G = (V, E), let n = |V| and m = |E|. Two standard ways to
represent graphs are adjacency matrices and adjacency lists [4, 16]. In the former
case, adjacency queries can be answered in O(1) time, but the space required is
©(n?) bits, which is super-linear for sparse graphs. In the latter case, the space
is reduced to O(m) words, but now adjacency queries involve searching neighbor
lists, and these may be of length @(n). Using sorted adjacency lists, this gives
O(logn) worst case time for adjacency queries.

A third approach is to use perfect hashing, which gives O(1) query time
and O(m) space, but has the drawback that the fastest known methods for con-
structing linear space hash tables either use randomization [5] or spend ©(m!*¢)
time [9].

There have been a number of papers on representing a sparse graph suc-
cinctly while allowing adjacency queries in O(1) time, among these [1, 3,8, 10,
14,15]. Various authors emphasize different aspects, including minimizing the
exact number of bits used, construction in linear time and versions for parallel
and distributed environments. However, all data structures proposed have been
for static graphs only.

* Partially supported by the ESPRIT Long Term Research Program of the EU under
contract 20244 (project ALCOM-IT).

** BRICS (Basic Research in Computer Science), a Centre of the Danish National
Research Foundation.

II

In this paper, we study the dynamic version of the problem, where edges can
be inserted and deleted in the graph. This case is stated as an open problem
in [8].

Like [1], we consider the class of graphs having bounded arboricity. The ar-
boricity c of a graph G = (V| E) is defined by

_ [E(T)]
-1

where J is any subgraph of G with |V (J)| > 2 nodes and |E(J)| edges. This
class contains graphs with bounded genus g (since m < 6(g — 1) 4+ 3n by Euler’s
formula), in particular planar graphs (where ¢ < 3, since ¢ = 0), as well as
graphs of bounded degree d (¢ < |d/2]| 4+ 1), and graphs of bounded treewidth ¢
(¢ < t). Intuitively, the graphs of bounded arboricity is the class of uniformly
sparse graphs.

More precisely, we consider the problem of maintaining an undirected graph
G = (V, E) of arboricity at most ¢ under the operations

— Adjacent(u, v), return true if and only if (u,v) € E,
— Insert(u,v), E := EU{(u,v)},
— Delete(u,v), E := E\ {(u,v)}
Build(V, E), G := (V, E).

Y

In this paper, we present an O(m+n) space data structure for storing graphs
of arboricity bounded by c. The data structure supports Adjacent(u,v) in worst
case O(c) time, Insert(u,v) in amortized O(1) time, Delete(u,v) in amortized
O(c + logn) time, and Build(V, E) in amortized O(m + n) time.

The data structure is a slight variation of the adjacency list representation
of graphs, with a simple—almost canonical—maintenance algorithm. Our proof
of complexity is by a reduction, which shows that the analysis of any algorithm
for the problem of maintaining such adjacency lists carries over to the presented
algorithm, with the right choice of parameters (see Lemma 1 for details).

It is assumed that ¢ is known by the algorithm. It is also assumed that
at no point is an edge inserted, which already is present or which violates the
arboricity constraint—i.e. it is the responsibility of the application using the
data structure to guarantee that the bounded arboricity constraint is satisfied.
For a given graph, a 2-approximation of the arboricity can easily be computed
in O(m + n) time [1]. More complicated algorithms calculating the exact value
are presented in [6]. The extension of the algorithm presented to the case of
unknown c¢ is discussed in Sect. 4.

The graphs considered are simple, undirected graphs. However, the data
structure can easily be extended to allow the annotation of edges and nodes with
auxiliary information, allowing graphs with self-loops, multiple edges, or directed
edges to be represented. For simplicity, we assume all nodes to be present from
the beginning. It is straightforward to extend the structure to allow insertions
of new nodes.

When undirected graphs are represented by adjacency lists, an edge normally
appears in the list of both of its endpoints. A basic observation, used in [1, 8],

111

is that if each edge is stored in the list of only one of its two endpoints, then
adjacency queries Adjacent(u, v) can still be answered by searching the adjacency
list of both u and v. The advantage gained is the possibility of nodes having short
adjacency lists, even if they have high degree.

Storing each edge at only one of its endpoints is equivalent to assigning an
orientation to all edges of the graph—view an edge (u,v) as going from v to v if v
is stored in the adjacency list of u. We will therefore refer to such a distribution of
edges into adjacency lists as an orientation of the graph. Formally, an orientation
of an undirected graph G = (V, E), is a directed graph G = (V, E) on the same
set of nodes, where E is equal to E when the elements of E are seen as unordered
pairs.

If adjacency queries are to take constant time, the adjacency lists should be
of bounded length. In other words, we are interested in orientations where the
outdegree of each node is bounded by some constant A. We call such orientations
for A-orientations.

For graphs of arboricity ¢, a c-orientation always exists. This follows from
the classical characterization of such graphs (which also gives rise to their name)
by Nash-Williams:

Theorem 1 (Nash-Williams [2,11,12]). A graph G = (V, E) has arboric-
ity ¢ if and only if c is the smallest number of sets Ey,...,E. that E can be
partitioned into, such that each subgraph (V, E;) is a forest.

If we arbitrarily choose a root in each tree in each of the ¢ forests, and orient
all edges in the trees towards the roots, then each node has outdegree at most
one in each forest and hence outdegree at most ¢ in the entire graph.

Finding such a decomposition into exactly ¢ forests is non-trivial. An algo-
rithm was given in [13] which takes O(n?mlog® n) time for graphs of arboricity c.
This was later improved to O(eny/m + enlogn) in [6]. For planar graphs, where
¢ =3, an O(nlogn) algorithm appears in [7]. However, for adjacency queries to
take O(c) time, it is sufficient to find an O(c)-orientation. A simple O(m + n)
time algorithm computing a (2¢ — 1)-orientation was described in [1].

In this paper, we address the question of how to maintain O(c¢)-orientations
during insertions and deletions of edges on graphs whose arboricity stays
bounded by some constant c.

Note that, in a sense, the class of graphs of bounded arboricity is the maximal
class of graphs for which A-orientations exist, as any graph for which a A-
orientation exists has arboricity at most 24, as |[E(J)| < AV (J)| < 2A(|V(J)|—
1) for all subgraphs J with |V (J)| > 2.

The rest of this paper is organized as follows: In Sect. 2, we present our algo-
rithm for maintaining A-orderings. In Sect. 3, we first prove that the algorithm
inherits the amortized analysis of any algorithm for maintaining d-orderings, pro-
vided A > 246. We then give a non-constructive proof of existence of an algorithm
with the desired amortized complexity. Section 4 contains further comments on
the problem of maintaining A-orderings, as well as on the presented algorithm.
Finally, Sect. 5 lists some open problems.

v

2 The algorithm

As described in the introduction, we reduce the problem of achieving constant
time adjacency queries for graphs with arboricity at most ¢ to the problem of
assigning orientations to the edges such that all nodes have outdegree O(c). Our
data structure is simply an adjacency list representation of the directed graph.

Our maintenance algorithm guarantees that all nodes have outdegree at
most A, where A is a parameter depending on the arboricity ¢. In Sect. 3 we
show that A = 4c¢ results in the time bounds stated in the introduction.

Pseudo code for our maintenance algorithm is given in Fig. 1. The list of
nodes reachable by a directed edge from u is denoted adj[u]. Nodes with degree
larger than A are stored on a stack S, and a node v is pushed onto S when its
outdegree increases from A to A + 1.

A query Adjacent(u,v) is answered by searching the adjacency lists of u
and v. In Insert(u,v), v is first inserted into the adjacency list of u. If u gets out-
degree A+1, repeatedly a node w with outdegree larger than A is picked, and the
orientation of all outgoing edges from w is changed, such that w gets outdegree
zero. This continues until all nodes have outdegree at most A. The operation
Delete(u, v) simply removes the corresponding directed edge, and Build(V, E)
incrementally inserts the edges (u,v) € E in any order, using Insert(u, v).

proc Adjacent(u, v) proc Insert(u, v)
return (v € adj[u] or u € adj[v]) adjlu] := adju] U {v}
if |adj[u]] = A+1
proc Delete(u,v) S = {u}
adjlu] := adjfu] \ {v} while S # ()
adj[v] := adj[v] \ {u} w := Pop(S)
foreach z € adj[w]
proc Build(V, E) adj[z] := adj[z] U {w}
forall v € V if Jadj[z]] =A+1
adj[v] :==0 Push(S,)
forall (u,v) € F adjjw] =0
Insert(u, v)

Fig. 1. Pseudo code for the procedures.

3 Analysis

We first give some definitions. An arboricity ¢ preserving sequence of edge in-
sertions and edge deletions on a graph G, initially of arboricity at most ¢, is a
sequence of operations where the arboricity stays bounded by ¢ during the en-
tire sequence. Given two orientations (V, E;) and (V, E;;1), the number of edge
reorientations between (V, E;) and (V, E;;1) is the number of edges which are

v

present in both graphs but with different orientations, i.e. edges (u,v) where
(u,v) € E; and (v,u) € E;4; or vice versa.

The following lemma allows us to compare the presented algorithm with any
algorithm based on assigning orientations to the edges.

Lemma 1 (Main reduction). Given an arboricity ¢ preserving sequence o of
edge insertions and deletions on an initially empty graph, let G; be the graph
after the i’th operation, and let k be the number of edge insertions.

If there exists a sequence Gy, G, .. .,GM of d-orientations with at most r
edge reorientations in total, then the algorithm performs at most

A+1

(k4377

edge reorientations in total on the sequence o, provided A > 20.

Proof. We analyze the algorithm by comparing the edge orientations assigned
by it to the d-orientations G; = (V, E;). An edge (u,v) € E; is denoted good
if (u,v) by the algorithm has been assigned the same orientation as in Ej, i.e.
v € adj[u] and (u,v) € E; or u € adj[v] and (v,u) € E;. Otherwise (u,v) € E; is
bad. To analyze the number of reorientations done by the algorithm, we consider
the following non-negative potential:

¥ = the number of bad edges in the current E; .

Initially, ¥ = 0. Each of the k edges inserted and r edge reorientations in the
d-orientations G increases ¥ by at most one. Deleting edges cannot increase ¥.
Consider an iteration of the while loop where the orientation is changed of the
outgoing edges of a node w with outdegree at least A + 1. At most § outgoing
edges of w can be good (since the orientations G; are §-orientations). By changing
the orientation of the outgoing edges of w, at most § good edges become bad,
and the remaining at least A + 1 — § bad edges become good. It follows that ¥
decreases by at least A+ 1 — 26 in each iteration of the while loop. The number
of iterations of the while loop is therefore at most (k + r)/(A + 1 — 2§). The
total number of times a good edge is made bad in the while loop is at most
§(k+r)/(A+1—26), implying that at most k+r+§(k+7r)/(A+1— 26) times
a bad edge is made good in the while loop. In total, the algorithm does at most
(k+7r)(1+26/(A+1-25)) edge reorientations. Rearranging gives the result. O

Lemma 2. Let G = (V, E) be a graph with arboricity at most c, let G = (V, E)
an orientation of G, and let 6 > c. In G, if u € V has outdegree at least § then
there exists a node v with outdegree less than § and a directed path from u to v
containing at most [logs,.|V|] edges.

Proof. In the following, we consider the graph G, and let V; C V be the set
of nodes reachable from u by directed paths containing at most 7 edges, i.e.
Vw={u}and Vi1 =V;U{w eV |Tw' € V;: (v, w) € E}.

VI

For ¢ > 1, we prove by induction that if all nodes in V; have outdegree at
least &, then |V;| > (§/c)’. Since V; contains u and at least § nodes adjacent to
u, we have |Vi| > 1+ 6 > 6/c. For i > 1, assume |V;| > (6/c)® and all nodes
in V; have outdegree at least d, i.e. the total number of outgoing edges from
nodes in V; is at least §|V;|, and by definition of V;; these edges connect nodes
in V;11. Because any subgraph (V' E') of G also has arboricity at most ¢, i.e.
[V'| > 1+ |E'|/c, we have |Vig1| > 14 (6|Vi])/c > (6/c)iTt.

If all nodes in V; have outdegree at least § then [V| > |V;| > (6/c)?, from
which we have i <log;,. [V and the lemma follows. O

Lemma 3. Given an arboricity ¢ preserving sequence of edge insertions and
deletions on an initially empty graph, there for any § > c exists a sequence of
d-orientations, such that

1. for each edge insertion there are no edge reorientations,
2. for each edge deletion there are at most [logs,.|V'|| edge reorientations.

Proof. Let k denote the number of edge insertions and deletions, and let G; =
(V, E;) denote the graph after the i'th operation, for i = 0, ..., k, with Eq = 0.
Since G, has arboricity at most ¢, we by Theorem 1 have a c-orientation G}, of
G, which is a d-orientation since § > c.

We now construct é-orientations G; = (V, E;) inductively in decreasing order
on i. If G;4; follows from G; by inserting edge (u,v), i.e. G; follows by deleting
edge (u,v) from Gi11, welet E; = E; 1\ {(u,v), (v,u)}. If Giy is a d-orientation,
then G| is also a d-orientation. If G, 1 follows from G; by deleting edge (u,v), i.e.
G, follows from G,y by inserting edge (u,v), there are two cases to consider. If
u in G411 has outdegree less than d, then we set E; = E; 1 U{(u,v)}. Otherwise
u has outdegree § in G 1, and by Lemma 2 there exists a node v’ with outdegree
less than § in Gi+1; and a directed path in Gi+1 from u to v’ containing at most
[logs,. |V[] edges. By letting E; be E;;, with the orientation of the edges in p
reversed, plus the edge (u,v), only the outdegree of v’ increases by one. In both
cases (G; is a d-orientation if G4 is a d-orientation. O

Theorem 2. In an arboricity ¢ preserving sequence of operations starting with
an empty graph, the algorithm for A/2 > & > ¢ supports Insert(u,v) in
amortized O(ﬁ) time, Build(V, E) in amortized O(|V| + \E|ﬁ) time,
Delete(u, v) in amortized O(A + ﬁ logs,. |V']) time, and Adjacent(u,v) in
worst case O(A) time.

Proof. The worst-case time for Delete(u,v) and Adjacent(u,v) are clearly O(A),
and the worst case time for Insert(u,v) is O(1) plus the time spent in the
while loop for reorientating edges, and since Build(V, E) is implemented us-
ing Insert(u, v), this takes O(|V| + |E|) time plus the time spent in the while
loop for reorientating edges.

Combining Lemmas 1 and 3 gives that for any ¢ satisfying A/2 > § >
¢, a sequence of a edge insertions and b edge deletions requires at most

(a + b[logs). \VH)% edge reorientations. This implies that the amortized

VII

number of edge reorientations for an edge insertion is at most %, and that
the amortized number of edge reorientations for an edge deletion is at most

a5 [logs,. [V[1. o

One possible choice of parameters in Theorem 2 is A = 4c and § = %c, which
gives:

Theorem 3. In an arboricity ¢ preserving sequence of operations starting with
an empty graph, the algorithm with A = 4c supports Insert(u,v) in amortized
O(1) time, Build(V, E) in amortized O(|V |+ |E|) time, Delete(u,v) in amortized
O(c+ log|V]) time, and Adjacent(u,v) in worst case O(c) time.

4 Discussion

By Theorem 1 there exists a c-orientation of any graph of arboricity bounded
by a constant c. Interestingly, by Theorem 4 below such an orientation cannot
be maintained in less than linear time per operation in the dynamic case.

Theorem 4. Let A be an algorithm maintaining orientations on edges during
insertion and deletion of edges in a graph with n nodes. If A guarantees that no
node ever has outdegree larger than c, provided that the arboricity of the graph
stays bounded by c, then for at least one of the operations insert and delete, A
can be forced to change the orientation of 2(n/c?) edges, even when considering
amortized complexity.

Proof. For any even integer k > 2, consider the graph on ¢ - k nodes shown
below (with ¢ = 4). Let the j’th node in the i’th row be labeled v; ;, where
1 =0,1,...,c—1and 5 =0,1,...,k — 1. The graph can be decomposed into
c? edge-disjoint paths Ty, for a,b = 0,1,...,¢ — 1, where T, is the path
through the points v4,0, vs,1,%a,2, ¥8,3,.-., Up,k—1. In Figure 2, the path Ty » is
highlighted.

Fig. 2.

To this graph, we ¢ times add ¢ — 1 edges between nodes at the rightmost
and leftmost ends of the graph in such a way that ¢ of the paths T, ; are con-
catenated into one path. More precisely, for each r = 0,1,...,¢c— 1, the ¢ paths

VIII

Tiitrmod c; t =0,1,...,c—1, are concatenated into one path U, by adding the
edges (Vitrmod c,k—1, Vit1,0), 1 = 0,1,...,¢—2. To exemplify, Uy consists of the
¢ horizontal paths T; ;, ¢ = 0,1,...,¢c — 1, concatenated by the ¢ — 1 new edges

As the resulting graph G is composed of the ¢ edge-disjoint paths U,, r =
0,1,...,¢c—1, it has arboricity at most ¢. Its number of nodes n is ¢ - k and its
number of edges m is c2(k — 1) + c¢(c — 1) = c®k — ¢. Counting edges gives that
for any orientation on the edges of this graph with an outdegree of ¢ or less for
all nodes, at most ¢ of the nodes can have outdegree strictly less than ¢. Hence
there is a contiguous section of 2(k/c) columns of the graph where all nodes
have outdegree equal to c.

Let ¢ be the index of a column in the middle of this section. Now remove the
edge (vo,k—1, v1,0) and add the edge (vo, , v1,t). The resulting graph still has
arboricity at most ¢, as it can be decomposed into the paths Uy, Us,...,U._1
and a tree Uy (derived from Uy by the described change of one edge), all of which
are edge-disjoint.

One of the nodes vy ; and v1 ; now has outdegree c+1, and the algorithm must
change the orientation of some edges. Note that the change of orientation of one
edge effectively moves a count of one between the outdegrees of two neighboring
nodes. As all paths in the graph between the overflowing node and a node with
outdegree strictly less than ¢ have length 2(k/c) = £2(n/c?), at least this number
of edges must have their orientation changed. As we can return to the graph G
by deleting (vo, v1,) and inserting (vo x—1 , v1,0) again, the entire process can
be repeated, and hence the lower bound also holds when considering amortized
complexity. O

In our algorithm, A > 2¢ + 2 is necessary for the analysis of Lemma 2. A
theoretically interesting direction for further research is to determine exactly
how the complexity of maintaining a A-orientation changes when A ranges from
¢ to 2c. Note that Lemma 2 in a non-constructive way shows that (¢ + 1)-
orientations can be maintained in a logarithmic number of edge reorientations
per operation.

The dependency on ¢ in the time bounds of Theorems 2 and 3 can be varied
somewhat by changing the implementation of the adjacency lists. The bounds
stated hold for unordered lists. If balanced search trees are used, the occurrences
of ¢ in the time bounds in Theorem 3 for Adjacent(u,v) and Delete(u, v) become
log e, at the expense of the amortized complexity of Insert(u,v) increasing from
O(1) to O(loge). If we assume that we have a pointer to the edge in question
when performing Delete(u,v) (i.e. a pointer to the occurrence of v in u’s adja-
cency list, if the edge has been directed from u to v), then the dependency on ¢
can be removed from the time bound for this operation.

In the algorithm, we have so far assumed that the bound ¢ on the arboricity
is known. If this is not the case, an adaptive version can be achieved by letting
the algorithm continually count the number of edge reorientations that it makes.
If the count at some point exceeds the bound in Theorem 2 for the current value
of A, the algorithm doubles A, resets the counter and performs a Build(V, E)

IX

operation. As Build(V, E) takes linear time, this scheme only adds an additive
term of logc to the amortized complexity of Insert(u,v). If the algorithm must
adapt to decreasing as well as increasing arboricity, the sequence of operations
can be divided into phases of length @(|E|), after which the value of A is reset
to some small value, the counter is reset, and a Build(V, E) is done.

5 Open problems

An obvious open question is whether both Insert(u,v) and Delete(u,v) can be
supported in amortized O(1) time. Note that any improvement of Lemma 3, e.g.
by an algorithm maintaining edge orientations in an amortized sublogarithmic
number of edge reorientations per operation (even if it takes, say, exponen-
tial t#me), will imply a correspondingly improved analysis of our algorithm, by
Lemma 1. Conversely, by the negation of this statement, lower bounds proved
for our algorithm will imply lower bounds on all algorithms maintaining edge
orientations.

A succinct graph representation which supports Insert(u,v) and Delete(u, v)
efficiently in the worst case sense would also be interesting.

References

1. Srinivasa R. Arikati, Anil Maheshwari, and Christos D. Zaroliagis. Efficient compu-
tation of implicit representations of sparse graphs. Discrete Applied Mathematics,
78:1-16, 1997.

2. Boliong Chen, Makoto Matsumoto, Jian Fang Wang, Zhong Fu Zhang, and
Jian Xun Zhang. A short proof of Nash-Williams’ theorem for the arboricity
of a graph. Graphs Combin., 10(1):27-28, 1994.

3. Chuang, Garg, He, Kao, and Lu. Compact encodings of planar graphs via canonical
orderings and multiple parentheses. In ICALP: Annual International Colloguium
on Automata, Languages and Programming, 1998.

4. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms, chapter 23. MIT Press, Cambridge, Mass., 1990.

5. Michael L. Fredman, Jdnos Komlés, and Endre Szemerédi. Storing a sparse ta-
ble with O(1) worst case access time. Journal of the Association for Computing
Machinery, 31(3):538-544, 1984.

6. Harold N. Gabow and Herbert H. Westermann. Forests, frames, and games: Algo-
rithms for matroid sums and applications. Algorithmica, 7:465-497, 1992.

7. Grossi and Lodi. Simple planar graph partition into three forests. Discrete Applied
Mathematics, 84:121-132, 1998.

8. Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of
graphs. STAM Journal on Discrete Mathematics, 5(4):596-603, 1992.

9. Peter Bro Miltersen. Error correcting codes, perfect hashing circuits, and deter-
ministic dynamic dictionaries. In Proceedings of the Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 556-563, 1998.

10. J. Tan Munro and Venkatesh Raman. Succinct representation of balanced paren-
theses, static trees and planar graphs. In 38th Annual Symposium on Foundations
of Computer Science, pages 118-126, 20-22 October 1997.

11.

12.

13.

14.

15.

16.

C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of finite graphs. The
Journal of the London Mathematical Society, 36:445-450, 1961.

C. St. J. A. Nash-Williams. Decomposition of finite graphs into forests. The
Journal of the London Mathematical Society, 39:12, 1964.

J. C. Picard and M. Queyranne. A network flow soloution to some non-linear 0-1
programming problems, with applications to graph theory. Networks, 12:141-160,
1982.

M. Talamo and P. Vocca. Compact implicit representation of graphs. In Graph-
Theoretic Concepts in Computer Science, volume 1517 of Lecture Notes in Com-
puter Science, pages 164-176, 1998.

G. Turan. Succinct representations of graphs. Discrete Applied Math, 8:289-294,
1984.

Jan van Leeuwen. Graph algorithms. In Handbook of Theoretical Computer Sci-
ence, vol. A: Algorithms and Complexity, pages 525-631. North-Holland Publ.
Comp., Amsterdam, 1990.

