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II In this paper, we study the dynami version of the problem, where edges anbe inserted and deleted in the graph. This ase is stated as an open problemin [8℄.Like [1℄, we onsider the lass of graphs having bounded arboriity. The ar-boriity  of a graph G = (V;E) is de�ned by = maxJ jE(J)jjV (J)j � 1 ;where J is any subgraph of G with jV (J)j � 2 nodes and jE(J)j edges. Thislass ontains graphs with bounded genus g (sine m � 6(g� 1)+ 3n by Euler'sformula), in partiular planar graphs (where  � 3, sine g = 0), as well asgraphs of bounded degree d ( � bd=2+1), and graphs of bounded treewidth t( � t). Intuitively, the graphs of bounded arboriity is the lass of uniformlysparse graphs.More preisely, we onsider the problem of maintaining an undireted graphG = (V;E) of arboriity at most  under the operations{ Adjaent(u; v), return true if and only if (u; v) 2 E,{ Insert(u; v), E := E [ f(u; v)g,{ Delete(u; v), E := E n f(u; v)g,{ Build(V;E), G := (V;E).In this paper, we present an O(m+n) spae data struture for storing graphsof arboriity bounded by . The data struture supports Adjaent(u; v) in worstase O() time, Insert(u; v) in amortized O(1) time, Delete(u; v) in amortizedO(+ logn) time, and Build(V;E) in amortized O(m+ n) time.The data struture is a slight variation of the adjaeny list representationof graphs, with a simple|almost anonial|maintenane algorithm. Our proofof omplexity is by a redution, whih shows that the analysis of any algorithmfor the problem of maintaining suh adjaeny lists arries over to the presentedalgorithm, with the right hoie of parameters (see Lemma 1 for details).It is assumed that  is known by the algorithm. It is also assumed thatat no point is an edge inserted, whih already is present or whih violates thearboriity onstraint|i.e. it is the responsibility of the appliation using thedata struture to guarantee that the bounded arboriity onstraint is satis�ed.For a given graph, a 2-approximation of the arboriity an easily be omputedin O(m + n) time [1℄. More ompliated algorithms alulating the exat valueare presented in [6℄. The extension of the algorithm presented to the ase ofunknown  is disussed in Set. 4.The graphs onsidered are simple, undireted graphs. However, the datastruture an easily be extended to allow the annotation of edges and nodes withauxiliary information, allowing graphs with self-loops, multiple edges, or diretededges to be represented. For simpliity, we assume all nodes to be present fromthe beginning. It is straightforward to extend the struture to allow insertionsof new nodes.When undireted graphs are represented by adjaeny lists, an edge normallyappears in the list of both of its endpoints. A basi observation, used in [1, 8℄,



IIIis that if eah edge is stored in the list of only one of its two endpoints, thenadjaeny queries Adjaent(u; v) an still be answered by searhing the adjaenylist of both u and v. The advantage gained is the possibility of nodes having shortadjaeny lists, even if they have high degree.Storing eah edge at only one of its endpoints is equivalent to assigning anorientation to all edges of the graph|view an edge (u; v) as going from u to v if vis stored in the adjaeny list of u. We will therefore refer to suh a distribution ofedges into adjaeny lists as an orientation of the graph. Formally, an orientationof an undireted graph G = (V;E), is a direted graph �G = (V; �E) on the sameset of nodes, where �E is equal to E when the elements of �E are seen as unorderedpairs.If adjaeny queries are to take onstant time, the adjaeny lists should beof bounded length. In other words, we are interested in orientations where theoutdegree of eah node is bounded by some onstant�. We all suh orientationsfor �-orientations.For graphs of arboriity , a -orientation always exists. This follows fromthe lassial haraterization of suh graphs (whih also gives rise to their name)by Nash-Williams:Theorem 1 (Nash-Williams [2, 11, 12℄). A graph G = (V;E) has arbori-ity  if and only if  is the smallest number of sets E1; : : : ; E that E an bepartitioned into, suh that eah subgraph (V;Ei) is a forest.If we arbitrarily hoose a root in eah tree in eah of the  forests, and orientall edges in the trees towards the roots, then eah node has outdegree at mostone in eah forest and hene outdegree at most  in the entire graph.Finding suh a deomposition into exatly  forests is non-trivial. An algo-rithm was given in [13℄ whih takesO(n2m log2 n) time for graphs of arboriity .This was later improved to O(npm+ n logn) in [6℄. For planar graphs, where = 3, an O(n logn) algorithm appears in [7℄. However, for adjaeny queries totake O() time, it is suÆient to �nd an O()-orientation. A simple O(m + n)time algorithm omputing a (2� 1)-orientation was desribed in [1℄.In this paper, we address the question of how to maintain O()-orientationsduring insertions and deletions of edges on graphs whose arboriity staysbounded by some onstant .Note that, in a sense, the lass of graphs of bounded arboriity is the maximallass of graphs for whih �-orientations exist, as any graph for whih a �-orientation exists has arboriity at most 2�, as jE(J)j � �jV (J)j � 2�(jV (J)j�1) for all subgraphs J with jV (J)j � 2.The rest of this paper is organized as follows: In Set. 2, we present our algo-rithm for maintaining �-orderings. In Set. 3, we �rst prove that the algorithminherits the amortized analysis of any algorithm for maintaining Æ-orderings, pro-vided � � 2Æ. We then give a non-onstrutive proof of existene of an algorithmwith the desired amortized omplexity. Setion 4 ontains further omments onthe problem of maintaining �-orderings, as well as on the presented algorithm.Finally, Set. 5 lists some open problems.



IV2 The algorithmAs desribed in the introdution, we redue the problem of ahieving onstanttime adjaeny queries for graphs with arboriity at most  to the problem ofassigning orientations to the edges suh that all nodes have outdegree O(). Ourdata struture is simply an adjaeny list representation of the direted graph.Our maintenane algorithm guarantees that all nodes have outdegree atmost �, where � is a parameter depending on the arboriity . In Set. 3 weshow that � = 4 results in the time bounds stated in the introdution.Pseudo ode for our maintenane algorithm is given in Fig. 1. The list ofnodes reahable by a direted edge from u is denoted adj[u℄. Nodes with degreelarger than � are stored on a stak S, and a node v is pushed onto S when itsoutdegree inreases from � to �+ 1.A query Adjaent(u; v) is answered by searhing the adjaeny lists of uand v. In Insert(u; v), v is �rst inserted into the adjaeny list of u. If u gets out-degree�+1, repeatedly a node w with outdegree larger than� is piked, and theorientation of all outgoing edges from w is hanged, suh that w gets outdegreezero. This ontinues until all nodes have outdegree at most �. The operationDelete(u; v) simply removes the orresponding direted edge, and Build(V;E)inrementally inserts the edges (u; v) 2 E in any order, using Insert(u; v).pro Adjaent(u; v)return (v 2 adj[u℄ or u 2 adj[v℄)pro Delete(u; v)adj[u℄ := adj[u℄ n fvgadj[v℄ := adj[v℄ n fugpro Build(V;E)forall v 2 Vadj[v℄ := ;forall (u; v) 2 EInsert(u; v)
pro Insert(u; v)adj[u℄ := adj[u℄ [ fvgif jadj[u℄j = �+ 1S := fugwhile S 6= ;w := Pop(S)foreah x 2 adj[w℄adj[x℄ := adj[x℄ [ fwgif jadj[x℄j = �+ 1Push(S; x)adj[w℄ := ;Fig. 1. Pseudo ode for the proedures.3 AnalysisWe �rst give some de�nitions. An arboriity  preserving sequene of edge in-sertions and edge deletions on a graph G, initially of arboriity at most , is asequene of operations where the arboriity stays bounded by  during the en-tire sequene. Given two orientations (V; �Ei) and (V; �Ei+1), the number of edgereorientations between (V; �Ei) and (V; �Ei+1) is the number of edges whih are



Vpresent in both graphs but with di�erent orientations, i.e. edges (u; v) where(u; v) 2 �Ei and (v; u) 2 �Ei+1 or vie versa.The following lemma allows us to ompare the presented algorithm with anyalgorithm based on assigning orientations to the edges.Lemma 1 (Main redution). Given an arboriity  preserving sequene � ofedge insertions and deletions on an initially empty graph, let Gi be the graphafter the i'th operation, and let k be the number of edge insertions.If there exists a sequene �G0; �G1; : : : ; �Gj�j of Æ-orientations with at most redge reorientations in total, then the algorithm performs at most(k + r) �+ 1� + 1� 2Æedge reorientations in total on the sequene �, provided � � 2Æ.Proof. We analyze the algorithm by omparing the edge orientations assignedby it to the Æ-orientations �Gi = (V; �Ei). An edge (u; v) 2 Ei is denoted goodif (u; v) by the algorithm has been assigned the same orientation as in �Ei, i.e.v 2 adj[u℄ and (u; v) 2 �Ei or u 2 adj[v℄ and (v; u) 2 �Ei. Otherwise (u; v) 2 Ei isbad. To analyze the number of reorientations done by the algorithm, we onsiderthe following non-negative potential:	 = the number of bad edges in the urrent Ei :Initially, 	 = 0. Eah of the k edges inserted and r edge reorientations in theÆ-orientations �Gi inreases 	 by at most one. Deleting edges annot inrease 	 .Consider an iteration of the while loop where the orientation is hanged of theoutgoing edges of a node w with outdegree at least � + 1. At most Æ outgoingedges of w an be good (sine the orientations �Gi are Æ-orientations). By hangingthe orientation of the outgoing edges of w, at most Æ good edges beome bad,and the remaining at least �+ 1� Æ bad edges beome good. It follows that 	dereases by at least �+1�2Æ in eah iteration of the while loop. The numberof iterations of the while loop is therefore at most (k + r)=(� + 1 � 2Æ). Thetotal number of times a good edge is made bad in the while loop is at mostÆ(k+ r)=(�+1� 2Æ), implying that at most k+ r+ Æ(k+ r)=(�+1� 2Æ) timesa bad edge is made good in the while loop. In total, the algorithm does at most(k+r)(1+2Æ=(�+1�2Æ)) edge reorientations. Rearranging gives the result. utLemma 2. Let G = (V;E) be a graph with arboriity at most , let �G = (V; �E)an orientation of G, and let Æ > . In �G, if u 2 V has outdegree at least Æ thenthere exists a node v with outdegree less than Æ and a direted path from u to vontaining at most dlogÆ= jV je edges.Proof. In the following, we onsider the graph �G, and let Vi � V be the setof nodes reahable from u by direted paths ontaining at most i edges, i.e.V0 = fug and Vi+1 = Vi [ fw 2 V j 9w0 2 Vi : (w0; w) 2 �Eg.



VI For i � 1, we prove by indution that if all nodes in Vi have outdegree atleast Æ, then jVij > (Æ=)i. Sine V1 ontains u and at least Æ nodes adjaent tou, we have jV1j � 1 + Æ > Æ=. For i � 1, assume jVij > (Æ=)i and all nodesin Vi have outdegree at least Æ, i.e. the total number of outgoing edges fromnodes in Vi is at least ÆjVij, and by de�nition of Vi+1 these edges onnet nodesin Vi+1. Beause any subgraph (V 0; E0) of G also has arboriity at most , i.e.jV 0j � 1 + jE0j=, we have jVi+1j � 1 + (ÆjVij)= > (Æ=)i+1.If all nodes in Vi have outdegree at least Æ then jV j � jVij > (Æ=)i, fromwhih we have i < logÆ= jV j and the lemma follows. utLemma 3. Given an arboriity  preserving sequene of edge insertions anddeletions on an initially empty graph, there for any Æ >  exists a sequene ofÆ-orientations, suh that1. for eah edge insertion there are no edge reorientations,2. for eah edge deletion there are at most dlogÆ= jV je edge reorientations.Proof. Let k denote the number of edge insertions and deletions, and let Gi =(V;Ei) denote the graph after the i'th operation, for i = 0; : : : ; k, with E0 = ;.Sine Gk has arboriity at most , we by Theorem 1 have a -orientation �Gk ofGk, whih is a Æ-orientation sine Æ � .We now onstrut Æ-orientations �Gi = (V; �Ei) indutively in dereasing orderon i. If Gi+1 follows from Gi by inserting edge (u; v), i.e. Gi follows by deletingedge (u; v) fromGi+1, we let �Ei = �Ei+1nf(u; v); (v; u)g. If �Gi+1 is a Æ-orientation,then �Gi is also a Æ-orientation. If Gi+1 follows from Gi by deleting edge (u; v), i.e.Gi follows from Gi+1 by inserting edge (u; v), there are two ases to onsider. Ifu in �Gi+1 has outdegree less than Æ, then we set �Ei = �Ei+1 [f(u; v)g. Otherwiseu has outdegree Æ in �Gi+1, and by Lemma 2 there exists a node v0 with outdegreeless than Æ in �Gi+1, and a direted path in �Gi+1 from u to v0 ontaining at mostdlogÆ= jV je edges. By letting �Ei be �Ei+1 with the orientation of the edges in preversed, plus the edge (u; v), only the outdegree of v0 inreases by one. In bothases �Gi is a Æ-orientation if �Gi+1 is a Æ-orientation. utTheorem 2. In an arboriity  preserving sequene of operations starting withan empty graph, the algorithm for �=2 � Æ >  supports Insert(u; v) inamortized O( �+1�+1�2Æ ) time, Build(V;E) in amortized O(jV j+ jEj �+1�+1�2Æ ) time,Delete(u; v) in amortized O(�+ �+1�+1�2Æ logÆ= jV j) time, and Adjaent(u; v) inworst ase O(�) time.Proof. The worst-ase time for Delete(u; v) and Adjaent(u; v) are learly O(�),and the worst ase time for Insert(u; v) is O(1) plus the time spent in thewhile loop for reorientating edges, and sine Build(V;E) is implemented us-ing Insert(u; v), this takes O(jV j + jEj) time plus the time spent in the whileloop for reorientating edges.Combining Lemmas 1 and 3 gives that for any Æ satisfying �=2 � Æ >, a sequene of a edge insertions and b edge deletions requires at most(a+ bdlogÆ= jV je) �+1�+1�2Æ edge reorientations. This implies that the amortized



VIInumber of edge reorientations for an edge insertion is at most �+1�+1�2Æ , and thatthe amortized number of edge reorientations for an edge deletion is at most�+1�+1�2Æ dlogÆ= jV je. utOne possible hoie of parameters in Theorem 2 is � = 4 and Æ = 32, whihgives:Theorem 3. In an arboriity  preserving sequene of operations starting withan empty graph, the algorithm with � = 4 supports Insert(u; v) in amortizedO(1) time, Build(V;E) in amortized O(jV j+ jEj) time, Delete(u; v) in amortizedO(+ log jV j) time, and Adjaent(u; v) in worst ase O() time.4 DisussionBy Theorem 1 there exists a -orientation of any graph of arboriity boundedby a onstant . Interestingly, by Theorem 4 below suh an orientation annotbe maintained in less than linear time per operation in the dynami ase.Theorem 4. Let A be an algorithm maintaining orientations on edges duringinsertion and deletion of edges in a graph with n nodes. If A guarantees that nonode ever has outdegree larger than , provided that the arboriity of the graphstays bounded by , then for at least one of the operations insert and delete, Aan be fored to hange the orientation of 
(n=2) edges, even when onsideringamortized omplexity.Proof. For any even integer k > 2, onsider the graph on  � k nodes shownbelow (with  = 4). Let the j'th node in the i'th row be labeled vi;j , wherei = 0; 1; : : : ;  � 1 and j = 0; 1; : : : ; k � 1. The graph an be deomposed into2 edge-disjoint paths Ta;b, for a; b = 0; 1; : : : ;  � 1, where Ta;b is the paththrough the points va;0 ; vb;1; va;2 ; vb;3 ; : : : ; vb;k�1. In Figure 2, the path T0;2 ishighlighted.
k 

Fig. 2.To this graph, we  times add  � 1 edges between nodes at the rightmostand leftmost ends of the graph in suh a way that  of the paths Ta;b are on-atenated into one path. More preisely, for eah r = 0; 1; : : : ; � 1, the  paths



VIIITi;i+rmod , i = 0; 1; : : : ; � 1, are onatenated into one path Ur by adding theedges (vi+rmod ;k�1 ; vi+1;0), i = 0; 1; : : : ; � 2. To exemplify, U0 onsists of the horizontal paths Ti;i, i = 0; 1; : : : ; � 1, onatenated by the  � 1 new edges(v0;k�1 ; v1;0); (v1;k�1 ; v2;0); : : : ; (v�2;k�1 ; v�1;0).As the resulting graph G is omposed of the  edge-disjoint paths Ur, r =0; 1; : : : ; � 1, it has arboriity at most . Its number of nodes n is  � k and itsnumber of edges m is 2(k � 1) + (� 1) = 2k � . Counting edges gives thatfor any orientation on the edges of this graph with an outdegree of  or less forall nodes, at most  of the nodes an have outdegree stritly less than . Henethere is a ontiguous setion of 
(k=) olumns of the graph where all nodeshave outdegree equal to .Let t be the index of a olumn in the middle of this setion. Now remove theedge (v0;k�1 ; v1;0) and add the edge (v0;t ; v1;t). The resulting graph still hasarboriity at most , as it an be deomposed into the paths U1; U2; : : : ; U�1and a tree ~U0 (derived from U0 by the desribed hange of one edge), all of whihare edge-disjoint.One of the nodes v0;t and v1;t now has outdegree +1, and the algorithm musthange the orientation of some edges. Note that the hange of orientation of oneedge e�etively moves a ount of one between the outdegrees of two neighboringnodes. As all paths in the graph between the overowing node and a node withoutdegree stritly less than  have length 
(k=) = 
(n=2), at least this numberof edges must have their orientation hanged. As we an return to the graph Gby deleting (v0;t ; v1;t) and inserting (v0;k�1 ; v1;0) again, the entire proess anbe repeated, and hene the lower bound also holds when onsidering amortizedomplexity. utIn our algorithm, � � 2 + 2 is neessary for the analysis of Lemma 2. Atheoretially interesting diretion for further researh is to determine exatlyhow the omplexity of maintaining a �-orientation hanges when � ranges from to 2. Note that Lemma 2 in a non-onstrutive way shows that ( + 1)-orientations an be maintained in a logarithmi number of edge reorientationsper operation.The dependeny on  in the time bounds of Theorems 2 and 3 an be variedsomewhat by hanging the implementation of the adjaeny lists. The boundsstated hold for unordered lists. If balaned searh trees are used, the ourrenesof  in the time bounds in Theorem 3 for Adjaent(u; v) and Delete(u; v) beomelog , at the expense of the amortized omplexity of Insert(u; v) inreasing fromO(1) to O(log ). If we assume that we have a pointer to the edge in questionwhen performing Delete(u; v) (i.e. a pointer to the ourrene of v in u's adja-eny list, if the edge has been direted from u to v), then the dependeny on an be removed from the time bound for this operation.In the algorithm, we have so far assumed that the bound  on the arboriityis known. If this is not the ase, an adaptive version an be ahieved by lettingthe algorithm ontinually ount the number of edge reorientations that it makes.If the ount at some point exeeds the bound in Theorem 2 for the urrent valueof �, the algorithm doubles �, resets the ounter and performs a Build(V;E)
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