
Dynami
 Representations of Sparse Graphs?Gerth St�lting Brodal and Rolf FagerbergBRICS??, Department of Computer S
ien
e, University of Aarhus,DK-8000 �Arhus C, Denmarkfgerth,rolfg�bri
s.dkAbstra
t. We present a linear spa
e data stru
ture for maintaininggraphs with bounded arbori
ity|a large
lass of sparse graphs
ontain-ing e.g. planar graphs and graphs of bounded treewidth|under edgeinsertions, edge deletions, and adja
en
y queries.The data stru
ture supports adja
en
y queries in worst
ase O(
) time,and edge insertions and edge deletions in amortized O(1) and O(
+log n)time, respe
tively, where n is the number of nodes in the graph, and
 isthe bound on the arbori
ity.1 Introdu
tionA fundamental operation on graphs is, given two nodes u and v, to tell whetheror not the edge (u; v) is present in the graph. We denote su
h queries adja
en
yqueries.For a graph G = (V;E), let n = jV j and m = jEj. Two standard ways torepresent graphs are adja
en
y matri
es and adja
en
y lists [4, 16℄. In the former
ase, adja
en
y queries
an be answered in O(1) time, but the spa
e required is�(n2) bits, whi
h is super-linear for sparse graphs. In the latter
ase, the spa
eis redu
ed to O(m) words, but now adja
en
y queries involve sear
hing neighborlists, and these may be of length �(n). Using sorted adja
en
y lists, this givesO(logn) worst
ase time for adja
en
y queries.A third approa
h is to use perfe
t hashing, whi
h gives O(1) query timeand O(m) spa
e, but has the drawba
k that the fastest known methods for
on-stru
ting linear spa
e hash tables either use randomization [5℄ or spend �(m1+�)time [9℄.There have been a number of papers on representing a sparse graph su
-
in
tly while allowing adja
en
y queries in O(1) time, among these [1, 3, 8, 10,14, 15℄. Various authors emphasize di�erent aspe
ts, in
luding minimizing theexa
t number of bits used,
onstru
tion in linear time and versions for paralleland distributed environments. However, all data stru
tures proposed have beenfor stati
 graphs only.? Partially supported by the ESPRIT Long Term Resear
h Program of the EU under
ontra
t 20244 (proje
t ALCOM-IT).?? BRICS (Basi
 Resear
h in Computer S
ien
e), a Centre of the Danish NationalResear
h Foundation.

II In this paper, we study the dynami
 version of the problem, where edges
anbe inserted and deleted in the graph. This
ase is stated as an open problemin [8℄.Like [1℄, we
onsider the
lass of graphs having bounded arbori
ity. The ar-bori
ity
 of a graph G = (V;E) is de�ned by
 = maxJ jE(J)jjV (J)j � 1 ;where J is any subgraph of G with jV (J)j � 2 nodes and jE(J)j edges. This
lass
ontains graphs with bounded genus g (sin
e m � 6(g� 1)+ 3n by Euler'sformula), in parti
ular planar graphs (where
 � 3, sin
e g = 0), as well asgraphs of bounded degree d (
 � bd=2
+1), and graphs of bounded treewidth t(
 � t). Intuitively, the graphs of bounded arbori
ity is the
lass of uniformlysparse graphs.More pre
isely, we
onsider the problem of maintaining an undire
ted graphG = (V;E) of arbori
ity at most
 under the operations{ Adja
ent(u; v), return true if and only if (u; v) 2 E,{ Insert(u; v), E := E [f(u; v)g,{ Delete(u; v), E := E n f(u; v)g,{ Build(V;E), G := (V;E).In this paper, we present an O(m+n) spa
e data stru
ture for storing graphsof arbori
ity bounded by
. The data stru
ture supports Adja
ent(u; v) in worst
ase O(
) time, Insert(u; v) in amortized O(1) time, Delete(u; v) in amortizedO(
+ logn) time, and Build(V;E) in amortized O(m+ n) time.The data stru
ture is a slight variation of the adja
en
y list representationof graphs, with a simple|almost
anoni
al|maintenan
e algorithm. Our proofof
omplexity is by a redu
tion, whi
h shows that the analysis of any algorithmfor the problem of maintaining su
h adja
en
y lists
arries over to the presentedalgorithm, with the right
hoi
e of parameters (see Lemma 1 for details).It is assumed that
 is known by the algorithm. It is also assumed thatat no point is an edge inserted, whi
h already is present or whi
h violates thearbori
ity
onstraint|i.e. it is the responsibility of the appli
ation using thedata stru
ture to guarantee that the bounded arbori
ity
onstraint is satis�ed.For a given graph, a 2-approximation of the arbori
ity
an easily be
omputedin O(m + n) time [1℄. More
ompli
ated algorithms
al
ulating the exa
t valueare presented in [6℄. The extension of the algorithm presented to the
ase ofunknown
 is dis
ussed in Se
t. 4.The graphs
onsidered are simple, undire
ted graphs. However, the datastru
ture
an easily be extended to allow the annotation of edges and nodes withauxiliary information, allowing graphs with self-loops, multiple edges, or dire
tededges to be represented. For simpli
ity, we assume all nodes to be present fromthe beginning. It is straightforward to extend the stru
ture to allow insertionsof new nodes.When undire
ted graphs are represented by adja
en
y lists, an edge normallyappears in the list of both of its endpoints. A basi
 observation, used in [1, 8℄,

IIIis that if ea
h edge is stored in the list of only one of its two endpoints, thenadja
en
y queries Adja
ent(u; v)
an still be answered by sear
hing the adja
en
ylist of both u and v. The advantage gained is the possibility of nodes having shortadja
en
y lists, even if they have high degree.Storing ea
h edge at only one of its endpoints is equivalent to assigning anorientation to all edges of the graph|view an edge (u; v) as going from u to v if vis stored in the adja
en
y list of u. We will therefore refer to su
h a distribution ofedges into adja
en
y lists as an orientation of the graph. Formally, an orientationof an undire
ted graph G = (V;E), is a dire
ted graph �G = (V; �E) on the sameset of nodes, where �E is equal to E when the elements of �E are seen as unorderedpairs.If adja
en
y queries are to take
onstant time, the adja
en
y lists should beof bounded length. In other words, we are interested in orientations where theoutdegree of ea
h node is bounded by some
onstant�. We
all su
h orientationsfor �-orientations.For graphs of arbori
ity
, a
-orientation always exists. This follows fromthe
lassi
al
hara
terization of su
h graphs (whi
h also gives rise to their name)by Nash-Williams:Theorem 1 (Nash-Williams [2, 11, 12℄). A graph G = (V;E) has arbori
-ity
 if and only if
 is the smallest number of sets E1; : : : ; E
 that E
an bepartitioned into, su
h that ea
h subgraph (V;Ei) is a forest.If we arbitrarily
hoose a root in ea
h tree in ea
h of the
 forests, and orientall edges in the trees towards the roots, then ea
h node has outdegree at mostone in ea
h forest and hen
e outdegree at most
 in the entire graph.Finding su
h a de
omposition into exa
tly
 forests is non-trivial. An algo-rithm was given in [13℄ whi
h takesO(n2m log2 n) time for graphs of arbori
ity
.This was later improved to O(
npm+
n logn) in [6℄. For planar graphs, where
 = 3, an O(n logn) algorithm appears in [7℄. However, for adja
en
y queries totake O(
) time, it is suÆ
ient to �nd an O(
)-orientation. A simple O(m + n)time algorithm
omputing a (2
� 1)-orientation was des
ribed in [1℄.In this paper, we address the question of how to maintain O(
)-orientationsduring insertions and deletions of edges on graphs whose arbori
ity staysbounded by some
onstant
.Note that, in a sense, the
lass of graphs of bounded arbori
ity is the maximal
lass of graphs for whi
h �-orientations exist, as any graph for whi
h a �-orientation exists has arbori
ity at most 2�, as jE(J)j � �jV (J)j � 2�(jV (J)j�1) for all subgraphs J with jV (J)j � 2.The rest of this paper is organized as follows: In Se
t. 2, we present our algo-rithm for maintaining �-orderings. In Se
t. 3, we �rst prove that the algorithminherits the amortized analysis of any algorithm for maintaining Æ-orderings, pro-vided � � 2Æ. We then give a non-
onstru
tive proof of existen
e of an algorithmwith the desired amortized
omplexity. Se
tion 4
ontains further
omments onthe problem of maintaining �-orderings, as well as on the presented algorithm.Finally, Se
t. 5 lists some open problems.

IV2 The algorithmAs des
ribed in the introdu
tion, we redu
e the problem of a
hieving
onstanttime adja
en
y queries for graphs with arbori
ity at most
 to the problem ofassigning orientations to the edges su
h that all nodes have outdegree O(
). Ourdata stru
ture is simply an adja
en
y list representation of the dire
ted graph.Our maintenan
e algorithm guarantees that all nodes have outdegree atmost �, where � is a parameter depending on the arbori
ity
. In Se
t. 3 weshow that � = 4
 results in the time bounds stated in the introdu
tion.Pseudo
ode for our maintenan
e algorithm is given in Fig. 1. The list ofnodes rea
hable by a dire
ted edge from u is denoted adj[u℄. Nodes with degreelarger than � are stored on a sta
k S, and a node v is pushed onto S when itsoutdegree in
reases from � to �+ 1.A query Adja
ent(u; v) is answered by sear
hing the adja
en
y lists of uand v. In Insert(u; v), v is �rst inserted into the adja
en
y list of u. If u gets out-degree�+1, repeatedly a node w with outdegree larger than� is pi
ked, and theorientation of all outgoing edges from w is
hanged, su
h that w gets outdegreezero. This
ontinues until all nodes have outdegree at most �. The operationDelete(u; v) simply removes the
orresponding dire
ted edge, and Build(V;E)in
rementally inserts the edges (u; v) 2 E in any order, using Insert(u; v).pro
 Adja
ent(u; v)return (v 2 adj[u℄ or u 2 adj[v℄)pro
 Delete(u; v)adj[u℄ := adj[u℄ n fvgadj[v℄ := adj[v℄ n fugpro
 Build(V;E)forall v 2 Vadj[v℄ := ;forall (u; v) 2 EInsert(u; v)
pro
 Insert(u; v)adj[u℄ := adj[u℄ [fvgif jadj[u℄j = �+ 1S := fugwhile S 6= ;w := Pop(S)forea
h x 2 adj[w℄adj[x℄ := adj[x℄ [fwgif jadj[x℄j = �+ 1Push(S; x)adj[w℄ := ;Fig. 1. Pseudo
ode for the pro
edures.3 AnalysisWe �rst give some de�nitions. An arbori
ity
 preserving sequen
e of edge in-sertions and edge deletions on a graph G, initially of arbori
ity at most
, is asequen
e of operations where the arbori
ity stays bounded by
 during the en-tire sequen
e. Given two orientations (V; �Ei) and (V; �Ei+1), the number of edgereorientations between (V; �Ei) and (V; �Ei+1) is the number of edges whi
h are

Vpresent in both graphs but with di�erent orientations, i.e. edges (u; v) where(u; v) 2 �Ei and (v; u) 2 �Ei+1 or vi
e versa.The following lemma allows us to
ompare the presented algorithm with anyalgorithm based on assigning orientations to the edges.Lemma 1 (Main redu
tion). Given an arbori
ity
 preserving sequen
e � ofedge insertions and deletions on an initially empty graph, let Gi be the graphafter the i'th operation, and let k be the number of edge insertions.If there exists a sequen
e �G0; �G1; : : : ; �Gj�j of Æ-orientations with at most redge reorientations in total, then the algorithm performs at most(k + r) �+ 1� + 1� 2Æedge reorientations in total on the sequen
e �, provided � � 2Æ.Proof. We analyze the algorithm by
omparing the edge orientations assignedby it to the Æ-orientations �Gi = (V; �Ei). An edge (u; v) 2 Ei is denoted goodif (u; v) by the algorithm has been assigned the same orientation as in �Ei, i.e.v 2 adj[u℄ and (u; v) 2 �Ei or u 2 adj[v℄ and (v; u) 2 �Ei. Otherwise (u; v) 2 Ei isbad. To analyze the number of reorientations done by the algorithm, we
onsiderthe following non-negative potential:	 = the number of bad edges in the
urrent Ei :Initially, 	 = 0. Ea
h of the k edges inserted and r edge reorientations in theÆ-orientations �Gi in
reases 	 by at most one. Deleting edges
annot in
rease 	 .Consider an iteration of the while loop where the orientation is
hanged of theoutgoing edges of a node w with outdegree at least � + 1. At most Æ outgoingedges of w
an be good (sin
e the orientations �Gi are Æ-orientations). By
hangingthe orientation of the outgoing edges of w, at most Æ good edges be
ome bad,and the remaining at least �+ 1� Æ bad edges be
ome good. It follows that 	de
reases by at least �+1�2Æ in ea
h iteration of the while loop. The numberof iterations of the while loop is therefore at most (k + r)=(� + 1 � 2Æ). Thetotal number of times a good edge is made bad in the while loop is at mostÆ(k+ r)=(�+1� 2Æ), implying that at most k+ r+ Æ(k+ r)=(�+1� 2Æ) timesa bad edge is made good in the while loop. In total, the algorithm does at most(k+r)(1+2Æ=(�+1�2Æ)) edge reorientations. Rearranging gives the result. utLemma 2. Let G = (V;E) be a graph with arbori
ity at most
, let �G = (V; �E)an orientation of G, and let Æ >
. In �G, if u 2 V has outdegree at least Æ thenthere exists a node v with outdegree less than Æ and a dire
ted path from u to v
ontaining at most dlogÆ=
 jV je edges.Proof. In the following, we
onsider the graph �G, and let Vi � V be the setof nodes rea
hable from u by dire
ted paths
ontaining at most i edges, i.e.V0 = fug and Vi+1 = Vi [fw 2 V j 9w0 2 Vi : (w0; w) 2 �Eg.

VI For i � 1, we prove by indu
tion that if all nodes in Vi have outdegree atleast Æ, then jVij > (Æ=
)i. Sin
e V1
ontains u and at least Æ nodes adja
ent tou, we have jV1j � 1 + Æ > Æ=
. For i � 1, assume jVij > (Æ=
)i and all nodesin Vi have outdegree at least Æ, i.e. the total number of outgoing edges fromnodes in Vi is at least ÆjVij, and by de�nition of Vi+1 these edges
onne
t nodesin Vi+1. Be
ause any subgraph (V 0; E0) of G also has arbori
ity at most
, i.e.jV 0j � 1 + jE0j=
, we have jVi+1j � 1 + (ÆjVij)=
 > (Æ=
)i+1.If all nodes in Vi have outdegree at least Æ then jV j � jVij > (Æ=
)i, fromwhi
h we have i < logÆ=
 jV j and the lemma follows. utLemma 3. Given an arbori
ity
 preserving sequen
e of edge insertions anddeletions on an initially empty graph, there for any Æ >
 exists a sequen
e ofÆ-orientations, su
h that1. for ea
h edge insertion there are no edge reorientations,2. for ea
h edge deletion there are at most dlogÆ=
 jV je edge reorientations.Proof. Let k denote the number of edge insertions and deletions, and let Gi =(V;Ei) denote the graph after the i'th operation, for i = 0; : : : ; k, with E0 = ;.Sin
e Gk has arbori
ity at most
, we by Theorem 1 have a
-orientation �Gk ofGk, whi
h is a Æ-orientation sin
e Æ �
.We now
onstru
t Æ-orientations �Gi = (V; �Ei) indu
tively in de
reasing orderon i. If Gi+1 follows from Gi by inserting edge (u; v), i.e. Gi follows by deletingedge (u; v) fromGi+1, we let �Ei = �Ei+1nf(u; v); (v; u)g. If �Gi+1 is a Æ-orientation,then �Gi is also a Æ-orientation. If Gi+1 follows from Gi by deleting edge (u; v), i.e.Gi follows from Gi+1 by inserting edge (u; v), there are two
ases to
onsider. Ifu in �Gi+1 has outdegree less than Æ, then we set �Ei = �Ei+1 [f(u; v)g. Otherwiseu has outdegree Æ in �Gi+1, and by Lemma 2 there exists a node v0 with outdegreeless than Æ in �Gi+1, and a dire
ted path in �Gi+1 from u to v0
ontaining at mostdlogÆ=
 jV je edges. By letting �Ei be �Ei+1 with the orientation of the edges in preversed, plus the edge (u; v), only the outdegree of v0 in
reases by one. In both
ases �Gi is a Æ-orientation if �Gi+1 is a Æ-orientation. utTheorem 2. In an arbori
ity
 preserving sequen
e of operations starting withan empty graph, the algorithm for �=2 � Æ >
 supports Insert(u; v) inamortized O(�+1�+1�2Æ) time, Build(V;E) in amortized O(jV j+ jEj �+1�+1�2Æ) time,Delete(u; v) in amortized O(�+ �+1�+1�2Æ logÆ=
 jV j) time, and Adja
ent(u; v) inworst
ase O(�) time.Proof. The worst-
ase time for Delete(u; v) and Adja
ent(u; v) are
learly O(�),and the worst
ase time for Insert(u; v) is O(1) plus the time spent in thewhile loop for reorientating edges, and sin
e Build(V;E) is implemented us-ing Insert(u; v), this takes O(jV j + jEj) time plus the time spent in the whileloop for reorientating edges.Combining Lemmas 1 and 3 gives that for any Æ satisfying �=2 � Æ >
, a sequen
e of a edge insertions and b edge deletions requires at most(a+ bdlogÆ=
 jV je) �+1�+1�2Æ edge reorientations. This implies that the amortized

VIInumber of edge reorientations for an edge insertion is at most �+1�+1�2Æ , and thatthe amortized number of edge reorientations for an edge deletion is at most�+1�+1�2Æ dlogÆ=
 jV je. utOne possible
hoi
e of parameters in Theorem 2 is � = 4
 and Æ = 32
, whi
hgives:Theorem 3. In an arbori
ity
 preserving sequen
e of operations starting withan empty graph, the algorithm with � = 4
 supports Insert(u; v) in amortizedO(1) time, Build(V;E) in amortized O(jV j+ jEj) time, Delete(u; v) in amortizedO(
+ log jV j) time, and Adja
ent(u; v) in worst
ase O(
) time.4 Dis
ussionBy Theorem 1 there exists a
-orientation of any graph of arbori
ity boundedby a
onstant
. Interestingly, by Theorem 4 below su
h an orientation
annotbe maintained in less than linear time per operation in the dynami

ase.Theorem 4. Let A be an algorithm maintaining orientations on edges duringinsertion and deletion of edges in a graph with n nodes. If A guarantees that nonode ever has outdegree larger than
, provided that the arbori
ity of the graphstays bounded by
, then for at least one of the operations insert and delete, A
an be for
ed to
hange the orientation of
(n=
2) edges, even when
onsideringamortized
omplexity.Proof. For any even integer k > 2,
onsider the graph on
 � k nodes shownbelow (with
 = 4). Let the j'th node in the i'th row be labeled vi;j , wherei = 0; 1; : : : ;
 � 1 and j = 0; 1; : : : ; k � 1. The graph
an be de
omposed into
2 edge-disjoint paths Ta;b, for a; b = 0; 1; : : : ;
 � 1, where Ta;b is the paththrough the points va;0 ; vb;1; va;2 ; vb;3 ; : : : ; vb;k�1. In Figure 2, the path T0;2 ishighlighted.
k

Fig. 2.To this graph, we
 times add
 � 1 edges between nodes at the rightmostand leftmost ends of the graph in su
h a way that
 of the paths Ta;b are
on-
atenated into one path. More pre
isely, for ea
h r = 0; 1; : : : ;
� 1, the
 paths

VIIITi;i+rmod
, i = 0; 1; : : : ;
� 1, are
on
atenated into one path Ur by adding theedges (vi+rmod
;k�1 ; vi+1;0), i = 0; 1; : : : ;
� 2. To exemplify, U0
onsists of the
 horizontal paths Ti;i, i = 0; 1; : : : ;
� 1,
on
atenated by the
 � 1 new edges(v0;k�1 ; v1;0); (v1;k�1 ; v2;0); : : : ; (v
�2;k�1 ; v
�1;0).As the resulting graph G is
omposed of the
 edge-disjoint paths Ur, r =0; 1; : : : ;
� 1, it has arbori
ity at most
. Its number of nodes n is
 � k and itsnumber of edges m is
2(k � 1) +
(
� 1) =
2k �
. Counting edges gives thatfor any orientation on the edges of this graph with an outdegree of
 or less forall nodes, at most
 of the nodes
an have outdegree stri
tly less than
. Hen
ethere is a
ontiguous se
tion of
(k=
)
olumns of the graph where all nodeshave outdegree equal to
.Let t be the index of a
olumn in the middle of this se
tion. Now remove theedge (v0;k�1 ; v1;0) and add the edge (v0;t ; v1;t). The resulting graph still hasarbori
ity at most
, as it
an be de
omposed into the paths U1; U2; : : : ; U
�1and a tree ~U0 (derived from U0 by the des
ribed
hange of one edge), all of whi
hare edge-disjoint.One of the nodes v0;t and v1;t now has outdegree
+1, and the algorithm must
hange the orientation of some edges. Note that the
hange of orientation of oneedge e�e
tively moves a
ount of one between the outdegrees of two neighboringnodes. As all paths in the graph between the over
owing node and a node withoutdegree stri
tly less than
 have length
(k=
) =
(n=
2), at least this numberof edges must have their orientation
hanged. As we
an return to the graph Gby deleting (v0;t ; v1;t) and inserting (v0;k�1 ; v1;0) again, the entire pro
ess
anbe repeated, and hen
e the lower bound also holds when
onsidering amortized
omplexity. utIn our algorithm, � � 2
 + 2 is ne
essary for the analysis of Lemma 2. Atheoreti
ally interesting dire
tion for further resear
h is to determine exa
tlyhow the
omplexity of maintaining a �-orientation
hanges when � ranges from
 to 2
. Note that Lemma 2 in a non-
onstru
tive way shows that (
 + 1)-orientations
an be maintained in a logarithmi
 number of edge reorientationsper operation.The dependen
y on
 in the time bounds of Theorems 2 and 3
an be variedsomewhat by
hanging the implementation of the adja
en
y lists. The boundsstated hold for unordered lists. If balan
ed sear
h trees are used, the o

urren
esof
 in the time bounds in Theorem 3 for Adja
ent(u; v) and Delete(u; v) be
omelog
, at the expense of the amortized
omplexity of Insert(u; v) in
reasing fromO(1) to O(log
). If we assume that we have a pointer to the edge in questionwhen performing Delete(u; v) (i.e. a pointer to the o

urren
e of v in u's adja-
en
y list, if the edge has been dire
ted from u to v), then the dependen
y on

an be removed from the time bound for this operation.In the algorithm, we have so far assumed that the bound
 on the arbori
ityis known. If this is not the
ase, an adaptive version
an be a
hieved by lettingthe algorithm
ontinually
ount the number of edge reorientations that it makes.If the
ount at some point ex
eeds the bound in Theorem 2 for the
urrent valueof �, the algorithm doubles �, resets the
ounter and performs a Build(V;E)

IXoperation. As Build(V;E) takes linear time, this s
heme only adds an additiveterm of log
 to the amortized
omplexity of Insert(u; v). If the algorithm mustadapt to de
reasing as well as in
reasing arbori
ity, the sequen
e of operations
an be divided into phases of length �(jEj), after whi
h the value of � is resetto some small value, the
ounter is reset, and a Build(V;E) is done.5 Open problemsAn obvious open question is whether both Insert(u; v) and Delete(u; v)
an besupported in amortized O(1) time. Note that any improvement of Lemma 3, e.g.by an algorithm maintaining edge orientations in an amortized sublogarithmi
number of edge reorientations per operation (even if it takes, say, exponen-tial time), will imply a
orrespondingly improved analysis of our algorithm, byLemma 1. Conversely, by the negation of this statement, lower bounds provedfor our algorithm will imply lower bounds on all algorithms maintaining edgeorientations.A su

in
t graph representation whi
h supports Insert(u; v) and Delete(u; v)eÆ
iently in the worst
ase sense would also be interesting.Referen
es1. Srinivasa R. Arikati, Anil Maheshwari, and Christos D. Zaroliagis. EÆ
ient
ompu-tation of impli
it representations of sparse graphs. Dis
rete Applied Mathemati
s,78:1{16, 1997.2. Boliong Chen, Makoto Matsumoto, Jian Fang Wang, Zhong Fu Zhang, andJian Xun Zhang. A short proof of Nash-Williams' theorem for the arbori
ityof a graph. Graphs Combin., 10(1):27{28, 1994.3. Chuang, Garg, He, Kao, and Lu. Compa
t en
odings of planar graphs via
anoni
alorderings and multiple parentheses. In ICALP: Annual International Colloquiumon Automata, Languages and Programming, 1998.4. Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introdu
tion toAlgorithms,
hapter 23. MIT Press, Cambridge, Mass., 1990.5. Mi
hael L. Fredman, J�anos Koml�os, and Endre Szemer�edi. Storing a sparse ta-ble with O(1) worst
ase a

ess time. Journal of the Asso
iation for ComputingMa
hinery, 31(3):538{544, 1984.6. Harold N. Gabow and Herbert H. Westermann. Forests, frames, and games: Algo-rithms for matroid sums and appli
ations. Algorithmi
a, 7:465{497, 1992.7. Grossi and Lodi. Simple planar graph partition into three forests. Dis
rete AppliedMathemati
s, 84:121{132, 1998.8. Sampath Kannan, Moni Naor, and Steven Rudi
h. Impli
it representation ofgraphs. SIAM Journal on Dis
rete Mathemati
s, 5(4):596{603, 1992.9. Peter Bro Miltersen. Error
orre
ting
odes, perfe
t hashing
ir
uits, and deter-ministi
 dynami
 di
tionaries. In Pro
eedings of the Ninth Annual ACM-SIAMSymposium on Dis
rete Algorithms, pages 556{563, 1998.10. J. Ian Munro and Venkatesh Raman. Su

in
t representation of balan
ed paren-theses, stati
 trees and planar graphs. In 38th Annual Symposium on Foundationsof Computer S
ien
e, pages 118{126, 20{22 O
tober 1997.

X11. C. St. J. A. Nash-Williams. Edge-disjoint spanning trees of �nite graphs. TheJournal of the London Mathemati
al So
iety, 36:445{450, 1961.12. C. St. J. A. Nash-Williams. De
omposition of �nite graphs into forests. TheJournal of the London Mathemati
al So
iety, 39:12, 1964.13. J. C. Pi
ard and M. Queyranne. A network
ow soloution to some non-linear 0-1programming problems, with appli
ations to graph theory. Networks, 12:141{160,1982.14. M. Talamo and P. Vo

a. Compa
t impli
it representation of graphs. In Graph-Theoreti
 Con
epts in Computer S
ien
e, volume 1517 of Le
ture Notes in Com-puter S
ien
e, pages 164{176, 1998.15. G. Turan. Su

in
t representations of graphs. Dis
rete Applied Math, 8:289{294,1984.16. Jan van Leeuwen. Graph algorithms. In Handbook of Theoreti
al Computer S
i-en
e, vol. A: Algorithms and Complexity, pages 525{631. North-Holland Publ.Comp., Amsterdam, 1990.

