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Abstract. Algorithms dealing with massive data sets are usually de-
signed for I/O-efficiency, often captured by the I/O model by Aggar-
wal and Vitter. Another aspect of dealing with massive data is how to
deal with memory faults, e.g. captured by the adversary based faulty
memory RAM by Finocchi and Italiano. However, current fault toler-
ant algorithms do not scale beyond the internal memory. In this paper
we investigate for the first time the connection between I/O-efficiency
in the I/O model and fault tolerance in the faulty memory RAM, and
we assume that both memory and disk are unreliable. We show a lower
bound on the number of I/Os required for any deterministic dictionary
that is resilient to memory faults. We design a static and a dynamic
deterministic dictionary with optimal query performance as well as an
optimal sorting algorithm and an optimal priority queue. Finally, we
consider scenarios where only cells in memory or only cells on disk are
corruptible and separate randomized and deterministic dictionaries in
the latter.

1 Introduction

In this paper we conduct the first study of algorithms and data structures for
external memory in the presence of an unreliable internal and external memory.

Contemporary memory devices such as SRAM and DRAM [1, 2] can be un-
reliable due to a number of factors, such as power failures, radiation, and cosmic
rays. The content of a cell in unreliable memory can be silently altered and
in standard memory circuits there is no direct way of detecting these types of
corruptions.

Corrupted content in memory cells can greatly affect many standard algo-
rithms. For instance, in a typical binary search in a sorted array, a single corrup-
tion encountered in the early stages of the search can cause the search path to
end Ω(N) locations away from its correct position. Replication of data can help
in dealing with corruptions, but is not always feasible, since the time and space
overheads of storing and fetching replicated values can be significant. Memory
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corruptions have been addressed in various ways, both at the hardware and soft-
ware level. At the software level, soft memory errors are dealt with using several
different low-level techniques [3–6]. However, most of these handle instruction
corruptions rather than data corruptions. Corruptions can also often be discov-
ered by existing hardware techniques, but even these techniques can fail and let
some corrupted data take part of computations.

Finocchi and Italiano [7] introduced the faulty-memory random access ma-
chine, based on the traditional RAM model. In this model, memory corruptions
can occur at any time and at any place in memory during the execution of an al-
gorithm, and corrupted memory cells cannot be distinguished from uncorrupted
cells. In the faulty-memory RAM, it is assumed that there is an adaptive ad-
versary, that chooses how, where, and when corruptions occur. The model is
parametrized by an upper bound, δ, on the number of corruptions the adver-
sary can perform during the lifetime of an algorithm, and α ≤ δ denotes the
actual number of corruptions that takes place. Motivated by the fact that reg-
isters in the processor are considered incorruptible, O(1) safe memory locations
are provided. Moreover, it is assumed that reading a word from memory is an
atomic operation. In randomized computation, as defined in [7], the adversary
does not see the random bits used by an algorithm. An algorithm is resilient if
it works correctly on the set of uncorrupted cells in the input. For instance, a
resilient sorting algorithm outputs all uncorrupted elements in sorted order while
corrupted elements can appear at arbitrary positions in the output. A resilient
searching algorithm must return yes if there is an uncorrupted element matching
the search key.

Memory corruptions are of particular concern for applications dealing with
massive amounts of data since such applications typically run for a very long
time, and are thus more likely to encounter memory cells containing corrupted
data. However, algorithms designed in the RAM model assume that an infi-
nite amount of memory cells are available. This is not true for typical computers
where internal memory is limited and elements are transferred between the mem-
ory and a much larger, but dramatically slower, hard drive in large consecutive
blocks. This means that it is important to design algorithms with a high degree of
locality in their memory access pattern, that is, algorithms where data accessed
close in time is also stored close in memory. This situation is modeled in the I/O
model of computation [8]. In this model a disk of unlimited size and a memory
of size M are available. Elements are transferred between disk and memory in
blocks of size B and computation is performed on elements in memory only. The
complexity measure is the number of block transfers (I/Os) performed.

Previous Work: Several problems have been addressed in the faulty-memory
RAM, see a very recent survey [9] for more information. In [10, 7], matching upper
and lower bounds for resilient sorting and randomized searching were given.
Sorting N elements requires Θ(N log N+αδ) time [7]. Searching in a sorted array
requires Ω(log N+δ) time, and an optimal deterministic algorithm matching that
bound is described in [11]. It has been empirically shown that resilient algorithms
are of practical interest [12]. Recently, in [11, 13, 14] resilient data structures
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Table 1. The first column shows the I/O upper bounds presented in our paper with
the assumptions shown in the second column. The third and fourth column shows
how many corruptions the algorithms can tolerate while still matching the optimal
algorithms in the I/O and comparison model respectively. Note that the restriction
imposed by the time bounds are orders of magnitude stronger than the ones imposed
by the I/O bounds for realistic values of M , B and N .

were proposed, in particular a resilient dynamic dictionary supporting searches
in optimal Θ(log N + δ) time with an amortized update cost of O(log N + δ) was
presented in [11], and a priority queue supporting operations in O(log N + δ)
time was presented in [14]

For the I/O model, a comprehensive list of results have been achieved. It is
shown in [8] that sorting N elements requires Sort(N) = Θ(N/B logM/B(N/B))
I/Os. See recent surveys [15, 16] for an overview of other results. In the I/O
model, a comparison based dictionary with optimal queries can be achieved
with a B-tree [17], which supports queries and updates in O(logB N) I/Os.

Current resilient algorithms do not scale past the internal memory of a com-
puter and thus, it is currently not possible to work with large sets of data I/O-
efficiently while maintaining resiliency to memory corruptions. Since both models
become increasingly interesting as the amount of data increases, it is natural to
consider whether it is possible to achieve resilient algorithms that use the disk
optimally. Very recently, this was also proposed as an interesting direction of
research by Finocchi et al. [9, 10].

Our Contribution: The work in this paper combines the faulty memory RAM
and the external memory model in the natural way. The model has three levels
of memory: a disk, an internal memory of size M , and O(1) CPU registers. All
computation takes place on elements placed in the registers. The content of any
cell on disk or in internal memory can be corrupted at any time, but at most
δ corruptions can occur. Moving elements between memory and registers takes
constant time and transferring a chunk of B consecutive elements between disk
and memory costs one I/O. Transfers between the different levels are atomic, no
data can be corrupted while it is being copied. Correctness of an algorithm is
proved with the assumption that an adaptive adversary may perform corruptions
during execution. For randomized algorithms we assume that the random bits
are hidden from the adversary. In two natural variants of our model it is assumed
that corruptions take place only on disk, or only in memory.

In this paper, we present I/O-efficient solutions to all problems that, to the
best of our knowledge, have previously been considered in the faulty memory



RAM. It is not clear that resilient algorithms can be optimal both in time and in
I/O-complexity. Most techniques for designing I/O-efficient algorithms naturally
try to arrange data on disk such that few blocks need to be read in order to
extract the information needed, whereas resilient algorithms try to put little
emphasis on individual, potentially corrupted, memory cells.

It is known that any resilient comparison based search algorithm must ex-
amine Ω(log N + δ) memory cells [10]. Combining this with the well-known
Ω(logB N) I/O lower bound on external memory comparison based searching, we
get a simple lower bound of Ω

(

logB N + δ
B

)

I/Os, and Ω(log N +δ) time. In Sec-

tion 2 we prove a stronger lower bound of Ω
(

1
ε logB N + δ

B1−ε

)

I/Os for a search,

for all logB N ≤ δ ≤ B log N and ε given by the equation δ = B1−ε

ε logB N . In

the case where δ = Θ( B
log B loglog B N), setting ε = log log B

log B gives a lower bound

of Ω(loglog B N + δ
B log B) which is ω(logB N + δ

B ). We come to the interesting
conclusion that no deterministic resilient dictionary can obtain an I/O bound
of O(logB N + δ

B ) without some assumptions on δ. The lower bound is valid for
randomized algorithms as long as the internal memory is unreliable. For deter-
ministic algorithms, the lower bound also holds if the internal memory is reliable
and corruptions only occur on disk.

In Section 3 we construct a resilient dictionary supporting searches using
expected O

(

logB N + δ
B

)

I/Os and O(log N + δ) time for any δ if corruptions
occur exclusively on disk. Thus, we have an interesting separation between the
I/O complexity of resilient randomized and resilient deterministic searching al-
gorithms. This also proves that it is important whether it is the disk or the
internal memory that is unreliable.

In Section 4 we present an optimal resilient static dictionary supporting
queries in O

(

1
c logB N + α

B1−c + δ
B

)

I/Os and O(log N + δ) time when log N ≤

δ ≤ B log N and 1
log B ≤ c ≤ 1. Queries use O(logB N + δ

B ) I/Os and O(log n+δ)
time for δ ≤ log N and δ > B log N . Additionally, we construct randomized and
deterministic dynamic dictionaries with optimal query bounds using our static
dictionaries.

Finally, in Section 5 we describe a resilient multi-way merging algorithm.
We use this algorithm to design an optimal resilient sorting algorithm using
O( 1

1−εSort(N)) I/Os and O(N log N + αδ) time under the assumption that δ ≤
M ε, for 0 ≤ ε < 1. The multi-way merging algorithm is also used to design a
resilient priority queue for the case δ ≤ M ε, where 0 ≤ ε < 1. Our priority
queue supports insert and delete-min in optimal O( 1

1−ε (1/B) logM/B(N/M))
I/Os amortized, matching the bounds for non-resilient external memory priority
queues. The amortized time bound for both operations is O(log N +δ) matching
the time bounds of the optimal resilient priority queue of [14].

Table 1 shows an overview of the upper bounds in this paper. The two last
columns in the table shows how many corruptions our algorithms can tolerate
while still achieving optimal bounds in the I/O model and comparison model
respectively. Note that the bounds on δ required to get optimal time are orders
of magnitude smaller than the bounds required to get optimal I/O performance
for realistic values of N , M and B. We conclude that it is possible, under realistic



assumptions, to get resilient algorithms that are optimal in both the I/O-model
and the comparison model without restricting δ more than what was required
to obtain optimal time bounds in the faulty memory RAM.
Preliminaries: Throughout the paper we use the notion of a reliable value,
which is a value stored in unreliable memory that can be retrieved reliably in
spite of possible corruptions. This is achieved by replicating the given value in
2δ + 1 consecutive cells. Since at most δ of the copies can be corrupted, the
majority of the 2δ + 1 elements are uncorrupted. The value can be retrieved
using O( δ

B ) I/Os and O(δ) time with the majority algorithm in [18], which scans
the 2+. 1 values keeping a single majority candidate and a counter in reliable
memory. A sequence is faithfully ordered if the uncorrupted elements form a
sorted subsequence.

2 Lower Bound for Dictionaries

Any resilient searching algorithm must examine Ω(log N +). memory cells in the

comparison model [10]. The Ω(log N) term follows from the comparison model
lower bound for searching. It is well-known that comparison based searching in
the I/O model requires expected Ω(logB N) I/Os. Since any resilient searching
algorithm must read at least Ω(δ) elements to ensure at least some non-corrupted
information is the basis for the output, we get the following trivial lower bound.

Lemma 1. For any comparison based randomized resilient dictionary the
average-case expected search cost is Ω

(

logB N + δ
B

)

I/Os.

In this section we prove a stronger lower bound on the worst-case number of
I/Os required for any deterministic resilient static dictionary in the comparison
model. We do not make any assumptions on the data structure used by the
dictionary, nor on the space it uses. Additionally, we do not bound the amount
of computation time used in a query and we assume that the total order of all
elements stored in the dictionary are known by the algorithm initially. During
the search for an element e, an algorithm gains information by performing block
I/Os, each I/O reading B elements from disk. Before a block of B elements is read
into memory the adversary can corrupt the elements in the block. The adversary
is allowed to corrupt up to δ elements during the query operation, but does not
have to reveal when it chooses to do so. Also, the adversary adaptively decides
what the rank of the search element has among the N dictionary elements. Of
course, the rank must be consistent with the previous uncorrupted elements read
by the algorithm.

Theorem 1. Given N and δ, any deterministic resilient static dictionary re-
quires worst-case Ω

(

1
ε logB N

)

I/Os for a search, for all ε where 1
log B ≤ ε ≤ 1

and δ ≥ 1
εB1−ε logB N .

Proof. We design an adversary that uses corruptions to control how much infor-
mation any correct query algorithm gains from each block transfer.



Let ε be a constant such that 1
log B ≤ ε ≤ 1. The strategy of the adversary

is as follows. For each I/O, the adversary narrows the candidate interval where
e can be contained in by a factor Bε. Initially, the candidate interval consists
of all N elements. For each I/O, the adversary implicitly divides the sorted
set of elements in the candidate interval into Bε slabs of equal size. Since the
search algorithm only reads B elements in an I/O, there must be at least one
slab containing at most B1−ε of these elements. The adversary corrupts these
elements, such that they do not reveal any information, and decides that the
search element resides in this slab. The remaining elements transferred are not
corrupted and are automatically consistent with the interval chosen for e. The
game is then played recursively on the elements of the selected slab, until all
elements in the final candidate interval have been examined.

For each I/O, the candidate interval decreases by a factor Bε. The algorithm
has no information regarding elements in the slab except for the corrupted ele-
ments from the I/Os performed so far. After k I/Os the candidate interval has
size N

(Bε)k and the adversary has introduced at most kB1−ε corruptions. The

game continues as long as there is at least one uncorrupted element among the
elements remaining in the candidate interval, which the adversary can choose
as the search element. All corrupted elements may reside in the current candi-
date interval, and the game ends when the size of the candidate interval, N

(Bε)k ,

becomes smaller than or equal to the total number of introduced corruptions,
kB1−ε. It follows that at least Ω

(

logBε
N

B1−ε

)

= Ω
(

1
ε logB N

)

I/Os are required.
The adversary introduces at most B1−ε corruptions in each step. If ε satisfies
1
εB1−ε logB N ≤ δ, then the adversary can play the game for at least 1

ε logB N
rounds and the theorem follows. ⊓⊔

For deterministic algorithms it does not matter whether elements can be cor-
rupted on disk or in internal memory. Since the adversary is adaptive it knows
which block of elements an algorithm will read into internal memory next, and
may choose to corrupt the elements on disk just before they are loaded into
memory, or corrupt the elements in internal memory just after they have been
written there. In randomized algorithms where the adversary does not know the
algorithm’s random choices it cannot determine which block of elements will be
fetched from disk before the transfer has started. Therefore, the adversary can
follow the strategy above only if it can corrupt elements in internal memory.

By setting δ = 1
εB1−ε logB N in Theorem 1, we get the following corollary.

Corollary 1. Any deterministic resilient static dictionary requires worst-case
Ω(1

ε logB N) = Ω( δ
B1−ε ) I/Os for a search, where δ ∈ [logB N, B log N ], and ε

given by δ = 1
εB1−ε logB N .

The trivial I/O lower bound for a resilient searching algorithm is Ω
(

logB N + δ
B

)

.
Setting ε = log log B

log B in Theorem 1 shows that this is not optimal.

Corollary 2. For δ = B
log B loglog B N any deterministic resilient static dictio-

nary requires worst-case Ω( log B
log log B (logB N + δ

B )) I/Os for a search.



3 Randomized Static Dictionary

In this section we describe a simple I/O-efficient randomized static dictionary,
that is resilient to corruptions on the disk. Corruptions in memory are not al-
lowed, thus the adversarial lower bound in Theorem 1 does not apply. The dic-
tionary supports queries using expected O

(

logB N + δ
B

)

I/Os and O(log N + δ)
time. The algorithm is similar to the randomized binary search algorithm in [10].
Remember that, if only elements on disk can be corrupted, the lower bound from
Theorem 1 also holds for deterministic algorithms. This means that deterministic
and randomized algorithms are separated by the result in this section.

The idea is to store the N elements in the dictionary in sorted order in an
array S and to build 2δ B-trees [17], denoted T1, . . . , T2δ, of size ⌊N

2δ ⌋. The i’th

B-tree Ti stores the 2δj + i’th element in S for j = 0, . . . , ⌊N
2δ ⌋− 1. Each node in

each tree is represented by a faithfully ordered array of Θ(B) search keys. The
nodes of the B-tree are laid out in left to right breadth first order, to avoid storing
pointers, i.e. the c’th child of the node at index k has index Bk + c − (B − 1).

The search for an element e proceeds as follows. A random number r1 ∈
{1, . . . , 2δ} is generated, and the root block of Tr1

is fetched into the internal
memory. In this block, a binary search is performed among the search keys
resulting in an index, i, of the child where the search should continue. A new
random number r2 ∈ {1, . . . , 2δ} is generated, and the i’th child of the root in
tree Tr2

is fetched and the algorithm proceeds iteratively as above. The search
terminates when a leaf is reached and two keys S[2δj + i] and S[2δ(j + 1) + i]
have been identified such that S[2δj + i] ≤ e < S[2δ(j + 1) + i]. If the binary
search was not mislead by corruptions of elements, then e is located in the
subarray S[2δj+i, . . . , 2δ(j+1)+i]. To check whether the search was mislead, the
following verification procedure is performed. Consider the neighborhoods L =
S[2δ(j−1)+i−1, . . . , 2δj+i−1] and R = S[2δ(j+1)+i+1, . . . , 2δ(j+2)+i+1],
containing the 2δ+1 elements in S situated to the left of S[2δj+i] and to the right
of S[2δ(j +1)+ i] respectively. The number sL = |{z ∈ L | z ≤ e}| of elements in
L that are smaller than e is computed by scanning L. Similarly, the number sR

of elements in R that are larger than e is computed. If sL ≥ δ+1 and sR ≥ δ+1,
and the search key is not encountered in L or R, we decide whether it is contained
in the dictionary or not by scanning the subarray S[2δj, . . . , 2δ(j + 1)]. If sL or
sR is smaller than δ + 1, at least one corruption has misguided the search. In
this case, the search algorithm is restarted.

Theorem 2. The data structure described is a linear space randomized dictio-
nary supporting searches in expected O

(

logB N + δ
B

)

I/Os and O(log N+δ) time
assuming that memory cells are incorruptible and block transfers are atomic.

Details will appear in the full paper. If memory cells were corruptible the atomic
transfer assumption would be of little use. The adversary could simply corrupt
the elements in the internal memory after the block transfer completes, decreas-
ing the benefit of the randomization.



4 Optimal Deterministic Static Dictionary

In this section we present a linear space deterministic resilient static dictionary.
Let c be a constant such that 1

log B ≤ c ≤ 1. The dictionary supports queries in

O
(

1
c logB N + α

B1−c + δ
B

)

I/Os and O(log N + δ) time. In Section 2 we proved
a lower bound on the I/O complexity of resilient dictionaries, and by choosing
c in the above bound to minimize the expression for α = δ, this bound matches
the lower bound. Thus, this dictionary is optimal.

Our data structure is based on the B-tree and the resilient binary search algo-
rithm from [11]. In a standard B-tree search one corrupted element can misguide
the algorithm, forcing at least one I/O in the wrong part of the tree. To circum-
vent this problem, each guiding element in each internal node is determined by
taking majority of B1−c copies. This gives a trade-off between the number of
corruptions required to misguide a search, and the fan-out of the tree, which
becomes Bc. Additionally, each node stores 2δ + 1 copies of the minimum and
maximum element contained in the subtree, such that the search algorithm can
reliably check whether it is on the correct path in each step. We ensure that the
query algorithm avoids reading the same corrupted element twice by ensuring
that any element is read at most once. The exact layout of the tree and the
details of the search operation are as follows.

Structure: Let S be the set of elements contained in the dictionary and let N
denote the size of S. The dictionary is a Bc-ary search tree T built on N

δ leaves.
The elements of S are distributed to the leaves in faithful order such that each
leaf contains δ elements. Each leaf is represented by a guiding element which is
smaller than the smallest uncorrupted element in the leaf and larger than the
largest uncorrupted element in the preceding leaf. The top tree is built using
these guiding elements. The tree is stored in a breadth-first left-to-right layout
on disk, such that no pointers are required.

Each internal node u in T stores three types of elements; guiding elements,
minimum elements, and maximum elements, stored consecutively on disk. The
guiding elements are stored in ⌈(2δ + 1)/B1−c⌉ identical blocks. Each block
contains B1−c copies of each of the Bc guiding elements in sorted order such
that the first B1−c elements are copies of the smallest guiding element. This
means that each guiding element is stored 2δ + 1 times and can be retrieved
reliably. The minimum elements are 2δ + 1 copies of the guiding element for the
leftmost leaf in the subtree defined by u, stored consecutively in ⌈ 2δ+1

B ⌉ blocks.
Similarly the maximum elements are 2δ +1 copies of the guiding element for the
leaf following the rightmost leaf in the subtree defined by u, stored consecutively
in ⌈ 2δ+1

B ⌉ blocks. Additionally, minimum and maximum elements are stored with
each leaf. The minimum are 4δ copies of the guiding element representing the
leaf, stored consecutively in 4δ

B blocks, and the maximum elements are 4δ copies
of the guiding element representing the subsequent leaf, stored consecutively in
4δ
B blocks. These are used to verify that the algorithm found the only leaf that
may store an uncorrupted element matching the search element.

Query: A query operation for an element q, uses an index k that indicates how
many chunks of B1−c elements the algorithm has discarded during the search,



initially k = 0. Intuitively, a chunk is discarded if the algorithm detects that
Ω(B1−c) of its elements are corrupted. The query operation traverses the tree
top-down, storing in safe memory the index k, and O(1) extra variables required
to traverse the tree using the knowledge of its layout on disk. In an internal
node u, the algorithm starts by checking whether u is on the correct path in
the tree using the copies of the minimum and maximum elements stored in u.
This is done by scanning B1−c of the 2δ + 1 copies of the minimum element
starting with the kB1−c’th copy, counting how many of these that are larger
than q. If B1−c/2 or more copies of the minimum element are larger than q the
block is discarded by incrementing k and the search is restarted (backtracked)
at node v, where v = u if u is root of the tree and the parent of u otherwise.
The maximum elements are checked similarly. If the algorithm backtracks, k is
increased ensuring that the same element is never read more than once.

If the checks succeed the k’th block storing copies of the Bc guiding elements
of u is scanned from left to right. The majority value of each of the B1−c copies
of each guiding element is extracted in sorted order using the majority algo-
rithm [18] and compared to q, until a retrieved guiding element larger than q is
found or the entire block is read. The traversal then continues to the correspond-
ing child. If any invocation of the majority algorithm fails to select a value, or
two fetched guiding elements are out of order, the block is discarded as above
by increasing k and backtracking the search to the parent node.

Upon reaching a leaf, the algorithm verifies whether the search found the
correct leaf. This is achieved by running a variant of the verification procedure
designed for the same purpose in [11]. Counters cl and cr, which are initially 1, are
stored in safe memory. Then the copies of the minimum and maximum element
are scanned in chunks of B1−c elements, starting from the 2kB1−c’th element. If
the majority of elements in a chunk of B1−c copies of the minimum element are
smaller than the search element, cl is increased by 1. Otherwise, cl is decreased
and k increased by one. The copies of maximum elements are treated similarly.

Note that every decrement of cl or cr signals that at least B1−c

2 corruptions have
been found. Thus, cl represents the number of chunks scanned that has not yet
been contradicted, where the majority of copies indicates that the search element
is in the current leaf or in leafs to the right. Similar for cr. If min{cl, cr} reaches

0, we backtrack to the parent of the leaf as above. If min{cl, cr}
B1−c

2 gets larger

than δ−k(B1−c

2 )+1 the verification succeeds. The algorithm finishes by scanning
the δ elements stored in the leaf, returning whether it finds q or not.

Lemma 2. The data structure is a linear space resilient dictionary supporting
queries in O

(

1
c logB N + α

B1−c + δ
B

)

I/Os, for any 1/ logB ≤ c ≤ 1.

The correctness portion of the proof is similar to the proof for the optimal
binary search algorithm in [11]. The complexity analysis uses the observation
that if a search is guided in the wrong direction, the majority of the B1−c copies
of a guiding element in the relevant block are corrupted and each additional

step requires B1−c

2 additional corruptions in order to pass the check against the
minimum and maximum elements. Details will appear in the full paper.



To obtain optimal time bounds for the dictionary, we use the resilient binary

search algorithm of [11] on each block, instead of scanning it. If more than B1−c

2
corruptions are discovered during the search of a block, it is discarded as above.

Otherwise, B1−c

2 supporting elements are found on both sides of an element, and
the algorithm continues to the corresponding child as before. This reduces the
time used per node to O(log B + B1−c). Verification takes O(δ) time in total.

Lemma 3. For any 1
log B ≤ c ≤ 1, queries use O((B1−c + log B)(1

c logB N +
α

B1−c ) + δ) time.

Corollary 3. If δ > B log N , queries use O( δ
B ) I/Os and O(δ) time.

Corollary 4. If δ < log N , queries use O(logB N) I/Os and O(log N) time.

Corollary 5. If log N ≤ δ ≤ B log N for any 1
log B ≤ c ≤ 1, queries use

O(1
c logB N + α

B1−c + δ
B ) I/Os and O(log n + δ) time.

The corollaries follow from Lemma 2 and 3 by setting c = 1
log B , c = 1− log log B

log B ,

and c ∈ [ 1
log B , 1 − log log B

log B ] such that 1
c logB N = δ

B1−c respectively.

By adapting the techniques of [11, 19] and the static dictionary presented
above we obtain a dynamic dictionary. Details will appear in the full paper.

Theorem 3. There is a deterministic dynamic resilient dictionary supporting
searches and updates in O(1

c logB N + α
B1−c + δ

B ) I/Os and O(log N + δ) time,
worst-case and amortized respectively with c in the range 1

log B ≤ c ≤ 1.

5 Priority Queue and Sorting

In this section we present a resilient multi-way merging algorithm and use it to
design a resilient sorting algorithm and priority queue. First we show how to
merge γ faithfully ordered lists of total size x when γ ≤ min{M

B , M
δ }.

Multi-way Merging: Initially, the algorithm constructs a perfectly balanced
binary tree, T , in memory on top of the γ buffers being merged. Each edge of
the binary tree is equipped with a buffer of size 5δ+1. Each internal node u ∈ T
stores the state of a running instance of the PurifyingMerge, a resilient binary
merging algorithm from [10] that works in rounds. In each round O(δ) elements
from both input buffers are read and the next δ elements in the faithful order are
output. If corrupted elements are found, these are moved to a fail buffer and the
round is restarted. The algorithm merges elements from the buffers on u’s left
child edge and right child edge into the buffer of u’s parent edge. The states and
sizes of all buffers are stored as reliable variables. The entire tree including all
buffers and state variables are stored in internal memory, along with one block
from each of the γ input streams and one block for the output stream of the
root. Instead of storing a fail buffer for each instance of PurifyingMerge, a global
shared fail buffer F is stored containing all detected corrupted elements.



Let bl and br be the buffers on the edges to the left and right child respectively
and let b denote the buffer on the edge from u to its parent. If u is the root,
b is the output buffer. The elements are merged using the fill operation, which
operates on u, as follows. First, it checks whether bl and br contain at least
4δ + 1 elements, and if not they are filled recursively. Then, the stored instance
of the PurifyingMerge algorithm is resumed by running a round of the algorithm
outputting the next δ elements to its output stream. The multi-way merging
algorithm is initiated by invoking fill on the root of T which runs until all
elements have been output. Then, the elements moved to F during the fill are
merged into the output using NaiveSort and UnbalancedMerge as in [10].

Lemma 4. Merging γ = min{M
B , M

δ } buffers of total size x ≥ M using O(x/B)
I/Os and O(x log γ + αδ) time.

Proof. The correctness follows from Lemma 1 in [10]. The size of T is O(γ(δ +
B)) = O(min{M

B , M
δ }(δ + B)) = O(M). We use γ I/Os to load the first block

in each leaf of T and O(x/B) I/Os for reading the entire input and writing the
output. The final merge with F takes O(x/B) I/Os. Since T fits completely in
memory we perform no other I/Os.

Merging two buffers of total size n using PurifyingMerge takes O(n + αδ)
time where α is the number of detected corruptions in the input buffers. Since
detected corruptions are moved to the global fail buffer each corruption is only
charged once. Each element passes through log γ nodes of T and the final merge
using NaiveSort and UnbalancedMerge takes O(x + αδ) time. ⊓⊔

Sorting: Assuming δ ≤ M ε for 0 ≤ ε < 1, we can use the multi-way merging
algorithm to implement the standard external memory M1−ε-way mergesort
from [8] matching the optimal external memory sorting bound for constant ε.

Theorem 4. Our resilient sorting algorithm uses O( 1
1−εSort(N)) I/Os and

O(N log N + αδ) time assuming δ ≤ M ε.

Priority Queue: Our comparison based resilient priority queue is optimal
with respect to both time and I/O performance assuming that δ ≤ M ε for 0 ≤
ε < 1. An optimal I/O-efficient priority queue uses Θ(1/B logM/B(N/M)) I/Os
amortized per operation [8]. An Ω(log N + δ) time lower bound for comparison
based resilient priority queues was proved in [14]. A resilient priority queue
as defined in [14] maintains a set of elements under the operations insert and
delete-min, where insert adds an element and a delete-min deletes and returns
the minimum uncorrupted element or a corrupted one.

Our priority queue is based on an amortized version of the worst-case op-
timal external memory priority queue of [20] using our new resilient multi-way
merging algorithm to move elements between disk and internal memory. Details
will appear in the full paper.

Theorem 5. There is a linear space resilient priority queue supporting insert
and delete-min in amortized O( 1

1−ε(1/B) logM/B(N/M)) I/Os and O(log N +δ)
time assuming δ ≤ M ε where 0 ≤ ε < 1.
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