
Comparator Networks for Binary HeapConstrution ?Gerth St�lting Brodal 1BRICS, Department of Computer Siene, University of Aarhus, 8000 �Arhus C,Denmark 2M. Cristina Pinotti 3Istituto di Elaborazione della Informazione, CNR, 56126 Pisa, ItalyAbstratComparator networks for onstruting binary heaps of size n are presented whihhave size O(n log logn) and depth O(log n). A lower bound of n log logn � O(n)for the size of any heap onstrution network is also proven, implying that thenetworks presented are within a onstant fator of optimal. We give a tight relationbetween the leading onstants in the size of seletion networks and in the size ofheap onstrution networks.Key words: Binary heaps, omparator networks, seletion networks, lower bounds.
1 IntrodutionThe heap data struture, introdued in 1964 by Williams [17℄, has been exten-sively investigated in the literature due to its many appliations and intrigu-ing partial order. Algorithms for heap management | insertion, minimum? This researh was done while the �rst author was visiting the Istituto di Elabo-razione della Informazione, CNR, Pisa.1 Supported by the Carlsberg foundation (Grant No. 96-0302/20). Partially sup-ported by the ESPRIT Long Term Researh Program of the EU under ontrat No.20244 (ALCOM-IT). Work done while with the Max-Plank-Institut f�ur Informatik,Saarbr�uken, Germany. Email: gerth�bris.dk.2 BRICS (Basi Researh in Computer Siene), a Centre of the Danish NationalResearh Foundation.3 Email: pinotti�iei.pi.nr.it.Preprint submitted to Elsevier Preprint February 3, 1999

deletion, and onstrution | have been disussed in several models of om-putation. For the heap onstrution algorithm, Floyd has given a sequentialalgorithm building the tree in a bottom-up fashion in linear time, whih islearly optimal. On the weak shared memory mahine model, EREW-PRAM,Olariu and Wen an build a heap of size n in time O(logn) and optimalwork [14℄. On the powerful CREW-PRAM model, the best-known heap on-strution algorithm was given by Raman and Dietz and takes O(log logn)time [6℄. The same time performane holds for the parallel omparison treemodel [5℄. Finally Dietz showed that O(�(n)), where �(n) is the inverse ofAkerman's funtion, is the expeted time required to build a heap in the ran-domized parallel omparison tree model [5℄. All the above parallel algorithmsahieve optimal work O(n), and the time optimality of the deterministi algo-rithms an be argued by redution from the seletion of the minimum elementin a set.In this paper we address the heap onstrution problem for the simplest paral-lel model of omputation, namely omparator networks. Comparator networksperform only omparison operations, whih may our simultaneously. Themost studied omparator networks are sorting and merging networks. In theearly 1960's, Bather proposed the odd-even merge algorithm to merge twosequenes of n and m elements, n � m, whih an be implemented by amerging network of size O((m + n) logm). In the early 1970's Floyd [12℄ andYao [18℄ proved the asymptoti optimality of Bather's networks. The lowerbound has reently been improved by Miltersen, Paterson and Tarui [13℄, los-ing the long-standing fator-of-two gap between upper and lower bounds. It isnoteworthy to reall, that merge an be solved in the omparison tree modelwith a tree of depth m + n� 1.Bather also showed how his merge algorithm ould be used to implement sort-ing networks with size O(n log2 n) and depth O(log2 n) to sort n inputs [12℄.For a long time, the question remained open as to whether sorting network-s with size O(n logn) and depth O(logn) existed. In 1983, Ajtai, Koml�osand Szemer�edi [1℄ presented sorting networks with size O(n logn) and depthO(logn) to sort n items. This result, although partially unsatisfying due to bigonstants hidden by the O-notation, reveals that the sorting problem requiresthe same amount of work in both omparison tree and omparator networkmodels.Seletion, sorting and merging are stritly related problems. Several sequentialalgorithms with linear work have been disussed for seletion. The �rst isdue to Blum et al. [4℄ and requires 5:43n omparisons. This result was laterimproved by Sh�onhage et al. to 3n [16℄ and by Dor and Zwik to 2:95n [7,8℄.Bent and John proved a lower bound of 2n for this problem [3℄. Dor andZwik [9℄ improved it to (2 + �)n [9℄. For a survey of previous work on lowerbounds in the omparison tree model, see the paper by Dor and Zwik [9℄.2

For omparator networks Alekseyev [2℄ proved that an (n; t)-seletion network,whih selets the t smallest item in a set of n elements, has at least size(n � t)dlog(t + 1)e. 4 For t =
(n�) and 0 < � � 1, the existene of a workoptimal seletion network immediately follows by the sorting networks of Ajtaiet al. However, sine seletion networks do not need to do as muh as sortingnetworks, and due to the big onstant hidden by the sorting networks in [1℄,seletion networks with improved onstant fators in both depth and sizehave been developed. In partiular, Pippenger proposes a (n; bn=2)-seletionnetwork with size 2n logn and depth O(log2 n) [15℄. More reently, Jimbo andMarouka have onstruted a (n; bn=2)-seletion network of depth O(logn)and of size at most Cn logn + O(n), for any arbitrary C > 3= log 3 � 1:89,whih improves Pippenger's onstrution by a onstant fator in size and atthe same time by an order in depth [11℄.The preeding summary shows that work optimal omparator networks havebeen studied for merging, sorting, and seletion. Although the heap data stru-ture has historially been stritly related to these problems, we are not awareof any omparator network for the heap onstrution problem. In this senari-o, we show that heap onstrution an be done by omparator networks ofsize O(n log logn) and depth O(logn), and that our networks reah optimalsize by reduing the problem of seleting the smallest logn elements to heaponstrution. Finally, sine �nding the minimum requires at least a network ofsize n�1 and depth dlogne, our heap onstrution networks also have optimaldepth.2 PreliminariesLet us review some de�nitions, and agree on some notations used throughoutthe paper.A binary tree of size n is a tree with n nodes, eah of degree at most two. Anode x of a binary tree belongs to level k if the longest simple path from theroot to x has k edges. The height of the tree is the number of edges in thelongest simple path starting at the root of the tree. The subtree Tx rooted atnode x at level k is the tree indued by the desendants of x.A omplete binary tree is a binary tree in whih all the leaves are at the samelevel and all the internal nodes have degree two. Clearly, it has height blogn.A heap shaped binary tree of height h is a binary tree whose h� 1 uppermostlevels are ompleted �lled and the h-th level is �lled from the left to the right.4 All logarithms throughout this paper have basis 23

In a heap ordered binary tree, eah node ontains one element whih is greateror equal to the element at its parent.Finally, a binary heap is de�ned as a heap-shaped and heap-ordered binarytree [17℄, whih an be stored in an array H as an impliit tree of size n, asdepited in Figure 1. The element of the root of the tree is at index 1 of thearray, (i.e., the root is stored in H[1℄), and given an index i of a node x, theindies of its left and right hildren are 2i and 2i+ 1, respetively.A omparator network with n inputs and size s is a olletion of n horizontallines, one for eah input, and s omparators. A omparator between line iand j, briey i : j, ompares the urrent values on lines i and j and is drawnas a vertial line onneting lines i and j. After the omparison i : j, theminimum value is put on line i, while the maximum ends up on line j. Finally,a omparator network has depth d, if d is the largest number of omparatorsthat any input element an pass through. Assuming that eah omparatorprodues its output in onstant time, the depth of a omparator network isthe running time of suh a network. From now on, let us refer to omparatornetworks simply as networks. For a omprehensive aount of omparatornetworks, see [12, pp. 220-246℄.3 Sequential heap onstrutionIt is well known that an impliit representation of a binary heap H of sizen an be built in linear sequential time by the heap onstrution algorithmof Floyd [10℄. Beause we base our heap onstrution networks on Floyd'salgorithm, we rephrase it as follows:Assuming that the two binary trees rooted at the hildren of a node i areheaps, the heap-order property in the subheap rooted at i an be reestab-lished simply by bubbling down the element H[i℄. We let the bubbling downproedure be denoted Siftdown. At eah step, Siftdown determines the small-est of the elements H[i℄; H[2i℄, and H[2i+ 1℄. If H[i℄ is the smallest, then thesubtree rooted at node i is a heap and the Siftdown proedure terminates.Otherwise, the hild with the smallest element and H[i℄ are exhanged. Thenode exhanged with H[i℄, however, may violate the heap order at this point.Therefore, the Siftdown proedure is reursively invoked on that subtree.We an now apply Siftdown in a bottom-up manner to onvert an arrayH stor-ing n elements into a heap. Sine the elements in the subarrayH[(bn=2+ 1) ::n℄are all leaves, eah is a 1-element heap to begin with. Then, the remainingnodes of the tree are visited to run the Siftdown proedure on eah one. Sinethe nodes are proessed level by level in a bottom up fashion, it is guaran-4

2 5 13 6 7 25 14 12 8 9 10 26 32 15 421 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Æ��21Æ��52 Æ��133Æ��64 Æ��75 Æ��256 Æ��147Æ��128 Æ��89 Æ��910 Æ��1011 Æ��2612 Æ��3213 Æ��1514 Æ��4215�� �� �� ��AA AA AA AA�� ���� ������� HHHHH

Fig. 1. A binary heap of size 15 and its impliit representation.teed that the subtrees rooted at the hildren of the node i are heaps beforeSiftdown runs at that node.In onlusion, observe that the Siftdown routine invoked on a subheap ofheight i performs 2i omparisons in the worst ase, and that the worst aserunning time of the heap onstrution algorithm of Floyd desribed above isPblog ni=0 n2i � 2i = O(n), whih is optimal.4 Heap onstrution networks of size n lognIn this setion we present heap onstrution networks whih have size at mostnblogn and depth 4blogn�2. Notie that any sorting network ould also beused as a heap onstrution network. The networks presented in this setionare used in Setion 5 to onstrut improved heap onstrution networks ofsize O(n log logn), and in Setion 6 to give a redution from seletion to heaponstrution.Lemma 1 gives a network implementation of the sifting down algorithm usedin the heap onstrution algorithm by Floyd [10℄.Lemma 1 Let T be a binary tree of size n and height h. If the subtrees rootedat the hildren of the root satisfy heap order, then the elements of T an berearranged to satisfy heap order with a network of size n� 1 and depth 2h. Atdepth 2i+1 and 2i+2 of the network the omparators are only between nodesat level i and i + 1 in T . All omparators orrespond to edges of T , and foreah edge there is exatly one omparator.PROOF. If the tree has height zero, no omparator is required. Otherwiselet r be the root and u and v the hildren of r. If u or v is not present, the5

steps below whih would involve v or u are skipped.First we apply the omparators r : u and r : v. Beause Tu and Tv were as-sumed to be heap ordered subtrees, r now has the minimum. After the twoomparators the heap order an be violated at the roots of both Tu and Tv. Wetherefore reursively apply the above to the subtrees Tu and Tv. Notie thatthe two reursively onstruted networks involve disjoint nodes and thereforean be performed in parallel. If r only has one hild we still harge the networkdepth two to ompare r with its hildren to guarantee that all omparisonsdone in parallel by the network orrespond to edges between nodes at thesame levels in T .The depth of the network is two plus the depth of the deepest reursivelyonstruted network. By indution it follows that the depth of the network is2h, and that the network at depth 2i+1 and 2i+2 only performs omparisonsbetween nodes at level i and i + 1 in T . Furthermore, the network ontainsexatly one omparator for eah edge of T . 2Notie that the network has n� 1 omparators while the orresponding algo-rithm of Floyd only needs h omparisons. By replaing the sifting down algo-rithm in Floyd's heap onstrution algorithm by the sifting down networks ofLemma 1, we get the following lemma.Lemma 2 Let T be a binary tree of size n and height h whih does not satisfyheap order, and let ni be the number of nodes at level i in T . Then a networkexists of size Phi=0 i � ni and depth 4h� 2 whih rearranges the elements of Tto satisfy heap order. All omparators orrespond to edges of T .PROOF. Initially all nodes at level h of T by de�nition are heap orderedbinary trees of height zero. Iteratively for eah level i = h� 1; : : : ; 0 we applythe sifting down networks of Lemma 1 in parallel to the 2i subtrees rooted atlevel i of T , to make these subtrees satisfy heap order. The resulting tree thensatis�es heap order. By Lemma 1 all omparators orrespond to edges of T .The edge between a node v at level i and its parent orresponds to a setof omparators in the resulting network. These omparators are performedexatly when we apply the sifting down networks of Lemma 1 to an anestorof v, i.e., there are exatly i omparators orresponding to this edge. The totalnumber of omparators is Phi=0 i � ni.By Lemma 1 the depth of the network is Phi=0 2i = h2 + h. But beause thenetworks onstruted by Lemma 1 proeeds top-down on T , having exatlydepth two for eah level of T , the appliations of Lemma 1 an be pipelined.After the �rst two omparators of the appliations of Lemma 1 to subtrees6

x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15 1 2 3 4 5 6 7 8 9 10
sssssss

s sssss
s
s
s sssssss

s sssss
s
s
sssss ssss ss ss sssssss

s sssss
s
s
sssss ssss

Fig. 2. A heap onstrution network for n = 15. All omparators are of the formi : j, where i < j.rooted at level i, the appliations of Lemma 1 to subtrees rooted at leveli� 1 an be initiated. The appliation of Lemma 1 to the root of the tree antherefore be initiated at depth 2(h � 1) + 1 of the network, i.e., the networkhas depth 2(h� 1) + 2h = 4h� 2. 2Theorem 3 There exists a heap onstrution network of size at most nblognand depth 4blogn � 2. All omparators orrespond to edges of T .PROOF. Let the n input lines represent a heap shaped binary tree of heightblogn. The theorem then follows from Lemma 2. 2In Figure 2 we show the network of Theorem 3 for n = 15. The network hassize 34 and depth 10. Notie that the �rst two omparators of the appliationof Lemma 1 to the root of the tree (1 : 2 and 1 : 3) are done in parallel with thethird and fourth omparator of the appliations of Lemma 1 to the subtreesrooted at nodes 2 and 3.5 Heap onstrution networks of size O(n log logn)In the following we give improved heap onstrution networks of sizeO(n log logn)and depth O(logn). The improved networks are obtained by ombining thenetworks of Theorem 3 with eÆient seletion networks. The following lemmawas developed by Jimbo and Maruoka [11℄.Lemma 4 (Jimbo and Maruoka) For an arbitrary onstant C > 3= log 3 �1:89, there exist (n; bn=2)-seletion networks of size at most Cn logn+O(n)and depth O(logn). 7

Unfortunately, neither Pippenger [15℄ or Jimbo and Maruoka [11℄ state boundsfor general (n; t)-seletion networks. The following lemma is a onsequene ofLemma 4, and is suÆient for our purposes.Lemma 5 For an arbitrary onstant C > 6= log 3 � 3:79, there for all t exist(n; t)-seletion networks of size Cn log t +O(n) and depth O(logn � log t).PROOF. The n input lines are partitioned into dn=te bloks B1; : : : ; Bdn=teof size t eah. By applying the seletion networks of Lemma 4 to B1 [B2we �nd the t least elements of B1 [B2. By ombining the dn=te bloks ina treewise fashion with dn=te � 1 appliations of Lemma 4 to 2t elements,we �nd the t least elements of the n inputs. The resulting network has size(dn=te� 1)(C � 2t log 2t+O(2t)) = 2Cn log t+O(n) and depth O(logn � log t),for C > 3= log 3. 2We need the following de�nition. Let P be an arbitrary onneted subset ofnodes of a binary tree T whih ontains the root of T . Let x1 � x2 � � � � � xjPjbe the set of elements in P, and let x01 � x02 � � � � � x0jPj be the set of elementsin P after applying a network N to T . We de�ne a network N to be heap-onvergent, if N for all possible inputs, all onneted subsets P of nodes ofT ontaining the root of T , and i = 1; : : : ; jPj satis�es x0i � xi. Notie thatsorting networks are not heap-onvergent. If P is the path to the rightmostnode in the lowest level of a tree, then P always ontains the maximum elementafter applying a sorting network, but the maximum element ould initially beanywhere in the tree.Lemma 6 A omparator orresponding to an edge in a binary tree T is aheap-onvergent network.PROOF. Let the omparator be u : v, where v is a hild of u in T . If Pdoes not ontain u it does not ontain v either, implying that the elementsin P are unhanged. If P ontains both u and v, the set of elements is alsounhanged. If P ontains u but not v, the omparator u : v an only replaethe element at u with a smaller element from v in whih ase x0i � xi for alli = 1; : : : ; jPj. 2Beause the networks onstruted by Theorem 3 only ontain omparatorsorresponding to tree edges and heap onvergene is a transitive property weimmediately have the following orollary:Corollary 7 The networks onstruted by Theorem 3 are heap-onvergent.8

Theorem 8 If for some onstants C and d, there for all t exist (n; t)-seletionnetworks of size Cn log t+O(n) and depth O(logd n), then there exist heap on-strution networks of size Cn log logn+O(n log log logn) and depth 4 logn+O(logd logn).PROOF. Assume without loss of generality that n � 4. Let the n inputlines represent a heap shaped binary tree T of height h = blogn, and letk = dlog he � 1. The heap onstrution network proeeds in three phases.(1) To eah subtree Tv rooted at level h�2k+1, apply in parallel (jTvj; 2k�1)-seletion networks, suh that all elements at the upper k levels of Tvbeome less than or equal to all elements at the remaining levels of Tv.(2) Apply the heap onstrution networks of Theorem 3 to the uppermosth� k + 1 levels of T , i.e., levels 0; : : : ; h� k.(3) In parallel apply Theorem 3 to eah subtree Tv rooted at level h�2k+1.It follows immediately from Step 2 that the uppermost h�2k+1 levels (levels0; : : : ; h� 2k) of the tree satisfy heap order and from Step 3 that eah subtreerooted at level h� 2k+1 satis�es heap order. What remains to be proven forthe orretness of the algorithm is that for all nodes v at level h� 2k+ 1, thesubtree Tv only ontains elements whih are greater or equal to the elementson the path from the root to v.After Step 1, the 2k � 1 least elements e0 � � � � � e2k�2 of Tv are at theuppermost k levels of Tv, whih are exatly the levels of Tv whih overlapwith Step 2. Let p0 � � � � � ph�2k denote the elements on the path from theroot to v (exluding v) after Step 2. Beause the network applied in Step 2 isheap-onvergent and 2k � 2 � h � 2k, we have pi � ei for i = 0; : : : ; h � 2kby letting P onsist of the path from the root to v together with the upperk levels of Tv. Beause ph�2k � eh�2k � e2k�2, we onlude that after Step 2all elements in Tv are larger than or equal to ph�2k, and that after Step 3, Tsatis�es heap order.From Theorem 3 we get the following upper bound on the size and depth ofthe resulting network. The size is bounded by�Cn log 2k +O(n)�+O � n2k log n2k�+ �n log 22k� ;whih is (C + 2)n log logn+O(n), and the depth is bounded byO �logd 22k�+ (4(h� k)� 2) + (4(2k � 1)� 2) ;whih is 4 logn +O(logd logn). 9

The \+2" in the size bound omes from the appliation of the heap onstru-tion networks of Theorem 3 in Step 3. If we instead apply the above onstru-tion in Step 3, we get heap onstrution networks of size Cn log logn + (C +2)n log log logn +O(n) and depth 4 logn+O(logd logn). 2Notie that in Steps 1 and 3 we ould have used arbitrary sorting network-s, but in Step 2 it is essential that the heap onstrution network used isheap-onvergent. By applying the onstrution reursively O(log� n) timesthe asymptoti size ould be slightly improved, but the onstant in front ofn log logn would still be C. From Lemma 5 we get the following orollary:Corollary 9 For an arbitrary onstant C > 6= log 3 � 3:79, there existheap onstrution networks of size Cn log logn +O(n log log logn) and depth4 logn+O(log2 logn).6 A lower bound for the size of heap onstrution networksWe now prove that the onstrution of the previous setion is optimal. LetS(n; t) denote the minimal size of (n; t)-seletion networks, and let H(n) de-note the minimal size of heap onstrution networks on n inputs. The followinglower bound on S(n; t) is due to Alekseyev [2℄.Lemma 10 (Alekseyev) S(n; t) � (n� t)dlog(t + 1)e.Theorem 11 H(n) � S(n; blogn)�O(n).PROOF. The theorem is proven by giving a redution from (n; t)-seletionto heap onstrution. We prove that (n; t)-seletion an be done by networkswith size H(n) + 2t+1 � 2t� 2.First we onstrut a heap over the n inputs with a network of size H(n), andmake the observation that the t least elements an only be at levels 0; : : : ; t�1of the heap.The minimum is at the root, i.e., at output line one. To �nd the seond leastelement we onsider the impliit heap given by the lines n; 2; 3; : : : ; 2t � 1.Notie that the root is now line n. By applying the sifting down network ofLemma 1 to the levels 0; : : : ; t� 1 of this tree the remaining t� 1 least inputsare at levels 0; : : : ; t�2 of this tree. The seond least element is now at outputline n. By iteratively letting the root be lines n� 1; n� 2; : : : ; n� t� 2, andby applying Lemma 1 to trees of dereasing height, the t least elements willappear in sorted order at output lines 1; n; n� 1; n� 2; : : : ; n� t+ 2. If the t10

smallest inputs are required to appear at the �rst t output lines, the networklines are permuted aordingly.The total number of omparators for the t� 1 appliations of Lemma 1 ist�1Xi=0(2i+1 � 2) = 2t+1 � 2t� 2 :We onlude that the resulting (n; t)-seletion network has size H(n)+ 2t+1�2t � 2, implying H(n) � S(n; t) � 2t+1 + 2t + 2. By letting t = blogn thetheorem follows. 2By ombining Lemma 10 and Theorem 11, we get the following orollary.Corollary 12 H(n) � n log logn�O(n).7 ConlusionThe parallel onstrution of heaps has been addressed for several parallel mod-els of omputation: EREW-PRAM [14℄, CRCW-PRAM [6℄, the parallel om-parison tree model and the randomized parallel omparison tree model [5℄.These algorithms all ahieve optimal O(n) work. In this paper we have ad-dressed the problem for the most simple parallel model of omputation, namelyomparator networks.As opposed to merging and seletion, whih both an be solved in sequen-tial linear time but require networks of size �(n logn), we have shown thatheap onstrution an be done by networks of size O(n log logn) and depthO(logn), and that this is optimal. By ombining the results of Theorem 8 andTheorem 11, we get the following haraterization of the leading onstant inthe size of heap onstrution networks ompared to the leading onstant inthe size of (n; t)-seletion networks.Theorem 13 If for onstants C1 and C2,C1n log t�O(n) � S(n; t) � C2n log t+O(n) ;then C1n log logn�O(n) � H(n) � C2n log logn+O(n log log logn) :11

AknowledgementsThanks to Peter Sanders for his omments on an earlier draft of this paper.Referenes[1℄ Mikl�os Ajtai, J�anos Koml�os, and Endre Szemer�edi. Sorting in log n parallelsteps. Combinatoria, 3:1{19, 1983.[2℄ Vladimir Evgen'evih Alekseyev. Sorting algorithms with minimum memory.Kibernetika, 5(5):99{103, 1969.[3℄ Samuel W. Bent and John W. John. Finding the median requires 2nomparisons. In Pro. 17th Ann. ACM Symp. on Theory of Computing (STOC),pages 213{216, 1985.[4℄ Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, andRobert Endre Tarjan. Time bounds for seletion. Journal of Computer andSystem Sienes, 7:448{461, 1973.[5℄ Paul F. Dietz. Heap onstrution in the parallel omparison tree model. InPro. 3rd Sandinavian Workshop on Algorithm Theory (SWAT), volume 621of Leture Notes in Computer Siene, pages 140{150. Springer Verlag, Berlin,1992.[6℄ Paul F. Dietz and Rajeev Raman. Very fast optimal parallel algorithms for heaponstrution. In Pro. 6th Symposium on Parallel and Distributed Proessing,pages 514{521, 1994.[7℄ Dorit Dor and Uri Zwik. Seleting the median. In Pro. 6th ACM-SIAMSymposium on Disrete Algorithms (SODA), pages 28{37, 1995.[8℄ Dorit Dor and Uri Zwik. Finding the alpha n-th largest element.Combinatoria, 16:41{58, 1996.[9℄ Dorit Dor and Uri Zwik. Median seletion requires (2 + �)n omparisons. InPro. 37th Ann. Symp. on Foundations of Computer Siene (FOCS), pages125{134, 1996.[10℄ Robert W. Floyd. Algorithm 245: Treesort3. Communiations of the ACM,7(12):701, 1964.[11℄ Shuji Jimbo and Akira Maruoka. A method of onstruting seletion networkswith O(log n) depth. SIAM Journal of Computing, 25(4):709{739, 1996.[12℄ Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting andSearhing. Addison-Wesley, Reading, MA, 1973.12

[13℄ Peter Bro Miltersen, Mike Paterson, and Jun Tarui. The asymptoti omplexityof merging networks. Journal of the ACM, 43(1):147{165, 1996.[14℄ Stephan Olariu and Zhaofang Wen. Optimal parallel initialization algorithmsfor a lass of priority queues. IEEE Transations on Parallel and DistributedSystems, 2:423{429, 1991.[15℄ Niholas Pippenger. Seletion networks. SIAM Journal of Computing,20(5):878{887, 1991.[16℄ Arnold Sh�onhage, Mihael S. Paterson, and Niholas Pippenger. Finding themedian. Journal of Computer and System Sienes, 13:184{199, 1976.[17℄ John William Joseph Williams. Algorithm 232: Heapsort. Communiations ofthe ACM, 7(6):347{348, 1964.[18℄ Andrew C. Yao and Franes F. Yao. Lower bounds on merging networks.Journal of the ACM, 23:566{571, 1976.

13

