
Comparator Networks for Binary HeapConstru
tion ?Gerth St�lting Brodal 1BRICS, Department of Computer S
ien
e, University of Aarhus, 8000 �Arhus C,Denmark 2M. Cristina Pinotti 3Istituto di Elaborazione della Informazione, CNR, 56126 Pisa, ItalyAbstra
tComparator networks for
onstru
ting binary heaps of size n are presented whi
hhave size O(n log logn) and depth O(log n). A lower bound of n log logn � O(n)for the size of any heap
onstru
tion network is also proven, implying that thenetworks presented are within a
onstant fa
tor of optimal. We give a tight relationbetween the leading
onstants in the size of sele
tion networks and in the size ofheap
onstru
tion networks.Key words: Binary heaps,
omparator networks, sele
tion networks, lower bounds.
1 Introdu
tionThe heap data stru
ture, introdu
ed in 1964 by Williams [17℄, has been exten-sively investigated in the literature due to its many appli
ations and intrigu-ing partial order. Algorithms for heap management | insertion, minimum? This resear
h was done while the �rst author was visiting the Istituto di Elabo-razione della Informazione, CNR, Pisa.1 Supported by the Carlsberg foundation (Grant No. 96-0302/20). Partially sup-ported by the ESPRIT Long Term Resear
h Program of the EU under
ontra
t No.20244 (ALCOM-IT). Work done while with the Max-Plan
k-Institut f�ur Informatik,Saarbr�u
ken, Germany. Email: gerth�bri
s.dk.2 BRICS (Basi
 Resear
h in Computer S
ien
e), a Centre of the Danish NationalResear
h Foundation.3 Email: pinotti�iei.pi.
nr.it.Preprint submitted to Elsevier Preprint February 3, 1999

deletion, and
onstru
tion | have been dis
ussed in several models of
om-putation. For the heap
onstru
tion algorithm, Floyd has given a sequentialalgorithm building the tree in a bottom-up fashion in linear time, whi
h is
learly optimal. On the weak shared memory ma
hine model, EREW-PRAM,Olariu and Wen
an build a heap of size n in time O(logn) and optimalwork [14℄. On the powerful CREW-PRAM model, the best-known heap
on-stru
tion algorithm was given by Raman and Dietz and takes O(log logn)time [6℄. The same time performan
e holds for the parallel
omparison treemodel [5℄. Finally Dietz showed that O(�(n)), where �(n) is the inverse ofA
kerman's fun
tion, is the expe
ted time required to build a heap in the ran-domized parallel
omparison tree model [5℄. All the above parallel algorithmsa
hieve optimal work O(n), and the time optimality of the deterministi
 algo-rithms
an be argued by redu
tion from the sele
tion of the minimum elementin a set.In this paper we address the heap
onstru
tion problem for the simplest paral-lel model of
omputation, namely
omparator networks. Comparator networksperform only
omparison operations, whi
h may o

ur simultaneously. Themost studied
omparator networks are sorting and merging networks. In theearly 1960's, Bat
her proposed the odd-even merge algorithm to merge twosequen
es of n and m elements, n � m, whi
h
an be implemented by amerging network of size O((m + n) logm). In the early 1970's Floyd [12℄ andYao [18℄ proved the asymptoti
 optimality of Bat
her's networks. The lowerbound has re
ently been improved by Miltersen, Paterson and Tarui [13℄,
los-ing the long-standing fa
tor-of-two gap between upper and lower bounds. It isnoteworthy to re
all, that merge
an be solved in the
omparison tree modelwith a tree of depth m + n� 1.Bat
her also showed how his merge algorithm
ould be used to implement sort-ing networks with size O(n log2 n) and depth O(log2 n) to sort n inputs [12℄.For a long time, the question remained open as to whether sorting network-s with size O(n logn) and depth O(logn) existed. In 1983, Ajtai, Koml�osand Szemer�edi [1℄ presented sorting networks with size O(n logn) and depthO(logn) to sort n items. This result, although partially unsatisfying due to big
onstants hidden by the O-notation, reveals that the sorting problem requiresthe same amount of work in both
omparison tree and
omparator networkmodels.Sele
tion, sorting and merging are stri
tly related problems. Several sequentialalgorithms with linear work have been dis
ussed for sele
tion. The �rst isdue to Blum et al. [4℄ and requires 5:43n
omparisons. This result was laterimproved by S
h�onhage et al. to 3n [16℄ and by Dor and Zwi
k to 2:95n [7,8℄.Bent and John proved a lower bound of 2n for this problem [3℄. Dor andZwi
k [9℄ improved it to (2 + �)n [9℄. For a survey of previous work on lowerbounds in the
omparison tree model, see the paper by Dor and Zwi
k [9℄.2

For
omparator networks Alekseyev [2℄ proved that an (n; t)-sele
tion network,whi
h sele
ts the t smallest item in a set of n elements, has at least size(n � t)dlog(t + 1)e. 4 For t =
(n�) and 0 < � � 1, the existen
e of a workoptimal sele
tion network immediately follows by the sorting networks of Ajtaiet al. However, sin
e sele
tion networks do not need to do as mu
h as sortingnetworks, and due to the big
onstant hidden by the sorting networks in [1℄,sele
tion networks with improved
onstant fa
tors in both depth and sizehave been developed. In parti
ular, Pippenger proposes a (n; bn=2
)-sele
tionnetwork with size 2n logn and depth O(log2 n) [15℄. More re
ently, Jimbo andMarouka have
onstru
ted a (n; bn=2
)-sele
tion network of depth O(logn)and of size at most Cn logn + O(n), for any arbitrary C > 3= log 3 � 1:89,whi
h improves Pippenger's
onstru
tion by a
onstant fa
tor in size and atthe same time by an order in depth [11℄.The pre
eding summary shows that work optimal
omparator networks havebeen studied for merging, sorting, and sele
tion. Although the heap data stru
-ture has histori
ally been stri
tly related to these problems, we are not awareof any
omparator network for the heap
onstru
tion problem. In this s
enari-o, we show that heap
onstru
tion
an be done by
omparator networks ofsize O(n log logn) and depth O(logn), and that our networks rea
h optimalsize by redu
ing the problem of sele
ting the smallest logn elements to heap
onstru
tion. Finally, sin
e �nding the minimum requires at least a network ofsize n�1 and depth dlogne, our heap
onstru
tion networks also have optimaldepth.2 PreliminariesLet us review some de�nitions, and agree on some notations used throughoutthe paper.A binary tree of size n is a tree with n nodes, ea
h of degree at most two. Anode x of a binary tree belongs to level k if the longest simple path from theroot to x has k edges. The height of the tree is the number of edges in thelongest simple path starting at the root of the tree. The subtree Tx rooted atnode x at level k is the tree indu
ed by the des
endants of x.A
omplete binary tree is a binary tree in whi
h all the leaves are at the samelevel and all the internal nodes have degree two. Clearly, it has height blogn
.A heap shaped binary tree of height h is a binary tree whose h� 1 uppermostlevels are
ompleted �lled and the h-th level is �lled from the left to the right.4 All logarithms throughout this paper have basis 23

In a heap ordered binary tree, ea
h node
ontains one element whi
h is greateror equal to the element at its parent.Finally, a binary heap is de�ned as a heap-shaped and heap-ordered binarytree [17℄, whi
h
an be stored in an array H as an impli
it tree of size n, asdepi
ted in Figure 1. The element of the root of the tree is at index 1 of thearray, (i.e., the root is stored in H[1℄), and given an index i of a node x, theindi
es of its left and right
hildren are 2i and 2i+ 1, respe
tively.A
omparator network with n inputs and size s is a
olle
tion of n horizontallines, one for ea
h input, and s
omparators. A
omparator between line iand j, brie
y i : j,
ompares the
urrent values on lines i and j and is drawnas a verti
al line
onne
ting lines i and j. After the
omparison i : j, theminimum value is put on line i, while the maximum ends up on line j. Finally,a
omparator network has depth d, if d is the largest number of
omparatorsthat any input element
an pass through. Assuming that ea
h
omparatorprodu
es its output in
onstant time, the depth of a
omparator network isthe running time of su
h a network. From now on, let us refer to
omparatornetworks simply as networks. For a
omprehensive a

ount of
omparatornetworks, see [12, pp. 220-246℄.3 Sequential heap
onstru
tionIt is well known that an impli
it representation of a binary heap H of sizen
an be built in linear sequential time by the heap
onstru
tion algorithmof Floyd [10℄. Be
ause we base our heap
onstru
tion networks on Floyd'salgorithm, we rephrase it as follows:Assuming that the two binary trees rooted at the
hildren of a node i areheaps, the heap-order property in the subheap rooted at i
an be reestab-lished simply by bubbling down the element H[i℄. We let the bubbling downpro
edure be denoted Siftdown. At ea
h step, Siftdown determines the small-est of the elements H[i℄; H[2i℄, and H[2i+ 1℄. If H[i℄ is the smallest, then thesubtree rooted at node i is a heap and the Siftdown pro
edure terminates.Otherwise, the
hild with the smallest element and H[i℄ are ex
hanged. Thenode ex
hanged with H[i℄, however, may violate the heap order at this point.Therefore, the Siftdown pro
edure is re
ursively invoked on that subtree.We
an now apply Siftdown in a bottom-up manner to
onvert an arrayH stor-ing n elements into a heap. Sin
e the elements in the subarrayH[(bn=2
+ 1) ::n℄are all leaves, ea
h is a 1-element heap to begin with. Then, the remainingnodes of the tree are visited to run the Siftdown pro
edure on ea
h one. Sin
ethe nodes are pro
essed level by level in a bottom up fashion, it is guaran-4

2 5 13 6 7 25 14 12 8 9 10 26 32 15 421 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Æ
��21Æ
��52 Æ
��133Æ
��64 Æ
��75 Æ
��256 Æ
��147Æ
��128 Æ
��89 Æ
��910 Æ
��1011 Æ
��2612 Æ
��3213 Æ
��1514 Æ
��4215�� �� �� ��AA AA AA AA�� ���� ������� HHHHH

Fig. 1. A binary heap of size 15 and its impli
it representation.teed that the subtrees rooted at the
hildren of the node i are heaps beforeSiftdown runs at that node.In
on
lusion, observe that the Siftdown routine invoked on a subheap ofheight i performs 2i
omparisons in the worst
ase, and that the worst
aserunning time of the heap
onstru
tion algorithm of Floyd des
ribed above isPblog n
i=0 n2i � 2i = O(n), whi
h is optimal.4 Heap
onstru
tion networks of size n lognIn this se
tion we present heap
onstru
tion networks whi
h have size at mostnblogn
 and depth 4blogn
�2. Noti
e that any sorting network
ould also beused as a heap
onstru
tion network. The networks presented in this se
tionare used in Se
tion 5 to
onstru
t improved heap
onstru
tion networks ofsize O(n log logn), and in Se
tion 6 to give a redu
tion from sele
tion to heap
onstru
tion.Lemma 1 gives a network implementation of the sifting down algorithm usedin the heap
onstru
tion algorithm by Floyd [10℄.Lemma 1 Let T be a binary tree of size n and height h. If the subtrees rootedat the
hildren of the root satisfy heap order, then the elements of T
an berearranged to satisfy heap order with a network of size n� 1 and depth 2h. Atdepth 2i+1 and 2i+2 of the network the
omparators are only between nodesat level i and i + 1 in T . All
omparators
orrespond to edges of T , and forea
h edge there is exa
tly one
omparator.PROOF. If the tree has height zero, no
omparator is required. Otherwiselet r be the root and u and v the
hildren of r. If u or v is not present, the5

steps below whi
h would involve v or u are skipped.First we apply the
omparators r : u and r : v. Be
ause Tu and Tv were as-sumed to be heap ordered subtrees, r now has the minimum. After the two
omparators the heap order
an be violated at the roots of both Tu and Tv. Wetherefore re
ursively apply the above to the subtrees Tu and Tv. Noti
e thatthe two re
ursively
onstru
ted networks involve disjoint nodes and therefore
an be performed in parallel. If r only has one
hild we still
harge the networkdepth two to
ompare r with its
hildren to guarantee that all
omparisonsdone in parallel by the network
orrespond to edges between nodes at thesame levels in T .The depth of the network is two plus the depth of the deepest re
ursively
onstru
ted network. By indu
tion it follows that the depth of the network is2h, and that the network at depth 2i+1 and 2i+2 only performs
omparisonsbetween nodes at level i and i + 1 in T . Furthermore, the network
ontainsexa
tly one
omparator for ea
h edge of T . 2Noti
e that the network has n� 1
omparators while the
orresponding algo-rithm of Floyd only needs h
omparisons. By repla
ing the sifting down algo-rithm in Floyd's heap
onstru
tion algorithm by the sifting down networks ofLemma 1, we get the following lemma.Lemma 2 Let T be a binary tree of size n and height h whi
h does not satisfyheap order, and let ni be the number of nodes at level i in T . Then a networkexists of size Phi=0 i � ni and depth 4h� 2 whi
h rearranges the elements of Tto satisfy heap order. All
omparators
orrespond to edges of T .PROOF. Initially all nodes at level h of T by de�nition are heap orderedbinary trees of height zero. Iteratively for ea
h level i = h� 1; : : : ; 0 we applythe sifting down networks of Lemma 1 in parallel to the 2i subtrees rooted atlevel i of T , to make these subtrees satisfy heap order. The resulting tree thensatis�es heap order. By Lemma 1 all
omparators
orrespond to edges of T .The edge between a node v at level i and its parent
orresponds to a setof
omparators in the resulting network. These
omparators are performedexa
tly when we apply the sifting down networks of Lemma 1 to an an
estorof v, i.e., there are exa
tly i
omparators
orresponding to this edge. The totalnumber of
omparators is Phi=0 i � ni.By Lemma 1 the depth of the network is Phi=0 2i = h2 + h. But be
ause thenetworks
onstru
ted by Lemma 1 pro
eeds top-down on T , having exa
tlydepth two for ea
h level of T , the appli
ations of Lemma 1
an be pipelined.After the �rst two
omparators of the appli
ations of Lemma 1 to subtrees6

x1x2x3x4x5x6x7x8x9x10x11x12x13x14x15 1 2 3 4 5 6 7 8 9 10
sssssss

s sssss
s
s
s sssssss

s sssss
s
s
sssss ssss ss ss sssssss

s sssss
s
s
sssss ssss

Fig. 2. A heap
onstru
tion network for n = 15. All
omparators are of the formi : j, where i < j.rooted at level i, the appli
ations of Lemma 1 to subtrees rooted at leveli� 1
an be initiated. The appli
ation of Lemma 1 to the root of the tree
antherefore be initiated at depth 2(h � 1) + 1 of the network, i.e., the networkhas depth 2(h� 1) + 2h = 4h� 2. 2Theorem 3 There exists a heap
onstru
tion network of size at most nblogn
and depth 4blogn
 � 2. All
omparators
orrespond to edges of T .PROOF. Let the n input lines represent a heap shaped binary tree of heightblogn
. The theorem then follows from Lemma 2. 2In Figure 2 we show the network of Theorem 3 for n = 15. The network hassize 34 and depth 10. Noti
e that the �rst two
omparators of the appli
ationof Lemma 1 to the root of the tree (1 : 2 and 1 : 3) are done in parallel with thethird and fourth
omparator of the appli
ations of Lemma 1 to the subtreesrooted at nodes 2 and 3.5 Heap
onstru
tion networks of size O(n log logn)In the following we give improved heap
onstru
tion networks of sizeO(n log logn)and depth O(logn). The improved networks are obtained by
ombining thenetworks of Theorem 3 with eÆ
ient sele
tion networks. The following lemmawas developed by Jimbo and Maruoka [11℄.Lemma 4 (Jimbo and Maruoka) For an arbitrary
onstant C > 3= log 3 �1:89, there exist (n; bn=2
)-sele
tion networks of size at most Cn logn+O(n)and depth O(logn). 7

Unfortunately, neither Pippenger [15℄ or Jimbo and Maruoka [11℄ state boundsfor general (n; t)-sele
tion networks. The following lemma is a
onsequen
e ofLemma 4, and is suÆ
ient for our purposes.Lemma 5 For an arbitrary
onstant C > 6= log 3 � 3:79, there for all t exist(n; t)-sele
tion networks of size Cn log t +O(n) and depth O(logn � log t).PROOF. The n input lines are partitioned into dn=te blo
ks B1; : : : ; Bdn=teof size t ea
h. By applying the sele
tion networks of Lemma 4 to B1 [B2we �nd the t least elements of B1 [B2. By
ombining the dn=te blo
ks ina treewise fashion with dn=te � 1 appli
ations of Lemma 4 to 2t elements,we �nd the t least elements of the n inputs. The resulting network has size(dn=te� 1)(C � 2t log 2t+O(2t)) = 2Cn log t+O(n) and depth O(logn � log t),for C > 3= log 3. 2We need the following de�nition. Let P be an arbitrary
onne
ted subset ofnodes of a binary tree T whi
h
ontains the root of T . Let x1 � x2 � � � � � xjPjbe the set of elements in P, and let x01 � x02 � � � � � x0jPj be the set of elementsin P after applying a network N to T . We de�ne a network N to be heap-
onvergent, if N for all possible inputs, all
onne
ted subsets P of nodes ofT
ontaining the root of T , and i = 1; : : : ; jPj satis�es x0i � xi. Noti
e thatsorting networks are not heap-
onvergent. If P is the path to the rightmostnode in the lowest level of a tree, then P always
ontains the maximum elementafter applying a sorting network, but the maximum element
ould initially beanywhere in the tree.Lemma 6 A
omparator
orresponding to an edge in a binary tree T is aheap-
onvergent network.PROOF. Let the
omparator be u : v, where v is a
hild of u in T . If Pdoes not
ontain u it does not
ontain v either, implying that the elementsin P are un
hanged. If P
ontains both u and v, the set of elements is alsoun
hanged. If P
ontains u but not v, the
omparator u : v
an only repla
ethe element at u with a smaller element from v in whi
h
ase x0i � xi for alli = 1; : : : ; jPj. 2Be
ause the networks
onstru
ted by Theorem 3 only
ontain
omparators
orresponding to tree edges and heap
onvergen
e is a transitive property weimmediately have the following
orollary:Corollary 7 The networks
onstru
ted by Theorem 3 are heap-
onvergent.8

Theorem 8 If for some
onstants C and d, there for all t exist (n; t)-sele
tionnetworks of size Cn log t+O(n) and depth O(logd n), then there exist heap
on-stru
tion networks of size Cn log logn+O(n log log logn) and depth 4 logn+O(logd logn).PROOF. Assume without loss of generality that n � 4. Let the n inputlines represent a heap shaped binary tree T of height h = blogn
, and letk = dlog he � 1. The heap
onstru
tion network pro
eeds in three phases.(1) To ea
h subtree Tv rooted at level h�2k+1, apply in parallel (jTvj; 2k�1)-sele
tion networks, su
h that all elements at the upper k levels of Tvbe
ome less than or equal to all elements at the remaining levels of Tv.(2) Apply the heap
onstru
tion networks of Theorem 3 to the uppermosth� k + 1 levels of T , i.e., levels 0; : : : ; h� k.(3) In parallel apply Theorem 3 to ea
h subtree Tv rooted at level h�2k+1.It follows immediately from Step 2 that the uppermost h�2k+1 levels (levels0; : : : ; h� 2k) of the tree satisfy heap order and from Step 3 that ea
h subtreerooted at level h� 2k+1 satis�es heap order. What remains to be proven forthe
orre
tness of the algorithm is that for all nodes v at level h� 2k+ 1, thesubtree Tv only
ontains elements whi
h are greater or equal to the elementson the path from the root to v.After Step 1, the 2k � 1 least elements e0 � � � � � e2k�2 of Tv are at theuppermost k levels of Tv, whi
h are exa
tly the levels of Tv whi
h overlapwith Step 2. Let p0 � � � � � ph�2k denote the elements on the path from theroot to v (ex
luding v) after Step 2. Be
ause the network applied in Step 2 isheap-
onvergent and 2k � 2 � h � 2k, we have pi � ei for i = 0; : : : ; h � 2kby letting P
onsist of the path from the root to v together with the upperk levels of Tv. Be
ause ph�2k � eh�2k � e2k�2, we
on
lude that after Step 2all elements in Tv are larger than or equal to ph�2k, and that after Step 3, Tsatis�es heap order.From Theorem 3 we get the following upper bound on the size and depth ofthe resulting network. The size is bounded by�Cn log 2k +O(n)�+O � n2k log n2k�+ �n log 22k� ;whi
h is (C + 2)n log logn+O(n), and the depth is bounded byO �logd 22k�+ (4(h� k)� 2) + (4(2k � 1)� 2) ;whi
h is 4 logn +O(logd logn). 9

The \+2" in the size bound
omes from the appli
ation of the heap
onstru
-tion networks of Theorem 3 in Step 3. If we instead apply the above
onstru
-tion in Step 3, we get heap
onstru
tion networks of size Cn log logn + (C +2)n log log logn +O(n) and depth 4 logn+O(logd logn). 2Noti
e that in Steps 1 and 3 we
ould have used arbitrary sorting network-s, but in Step 2 it is essential that the heap
onstru
tion network used isheap-
onvergent. By applying the
onstru
tion re
ursively O(log� n) timesthe asymptoti
 size
ould be slightly improved, but the
onstant in front ofn log logn would still be C. From Lemma 5 we get the following
orollary:Corollary 9 For an arbitrary
onstant C > 6= log 3 � 3:79, there existheap
onstru
tion networks of size Cn log logn +O(n log log logn) and depth4 logn+O(log2 logn).6 A lower bound for the size of heap
onstru
tion networksWe now prove that the
onstru
tion of the previous se
tion is optimal. LetS(n; t) denote the minimal size of (n; t)-sele
tion networks, and let H(n) de-note the minimal size of heap
onstru
tion networks on n inputs. The followinglower bound on S(n; t) is due to Alekseyev [2℄.Lemma 10 (Alekseyev) S(n; t) � (n� t)dlog(t + 1)e.Theorem 11 H(n) � S(n; blogn
)�O(n).PROOF. The theorem is proven by giving a redu
tion from (n; t)-sele
tionto heap
onstru
tion. We prove that (n; t)-sele
tion
an be done by networkswith size H(n) + 2t+1 � 2t� 2.First we
onstru
t a heap over the n inputs with a network of size H(n), andmake the observation that the t least elements
an only be at levels 0; : : : ; t�1of the heap.The minimum is at the root, i.e., at output line one. To �nd the se
ond leastelement we
onsider the impli
it heap given by the lines n; 2; 3; : : : ; 2t � 1.Noti
e that the root is now line n. By applying the sifting down network ofLemma 1 to the levels 0; : : : ; t� 1 of this tree the remaining t� 1 least inputsare at levels 0; : : : ; t�2 of this tree. The se
ond least element is now at outputline n. By iteratively letting the root be lines n� 1; n� 2; : : : ; n� t� 2, andby applying Lemma 1 to trees of de
reasing height, the t least elements willappear in sorted order at output lines 1; n; n� 1; n� 2; : : : ; n� t+ 2. If the t10

smallest inputs are required to appear at the �rst t output lines, the networklines are permuted a

ordingly.The total number of
omparators for the t� 1 appli
ations of Lemma 1 ist�1Xi=0(2i+1 � 2) = 2t+1 � 2t� 2 :We
on
lude that the resulting (n; t)-sele
tion network has size H(n)+ 2t+1�2t � 2, implying H(n) � S(n; t) � 2t+1 + 2t + 2. By letting t = blogn
 thetheorem follows. 2By
ombining Lemma 10 and Theorem 11, we get the following
orollary.Corollary 12 H(n) � n log logn�O(n).7 Con
lusionThe parallel
onstru
tion of heaps has been addressed for several parallel mod-els of
omputation: EREW-PRAM [14℄, CRCW-PRAM [6℄, the parallel
om-parison tree model and the randomized parallel
omparison tree model [5℄.These algorithms all a
hieve optimal O(n) work. In this paper we have ad-dressed the problem for the most simple parallel model of
omputation, namely
omparator networks.As opposed to merging and sele
tion, whi
h both
an be solved in sequen-tial linear time but require networks of size �(n logn), we have shown thatheap
onstru
tion
an be done by networks of size O(n log logn) and depthO(logn), and that this is optimal. By
ombining the results of Theorem 8 andTheorem 11, we get the following
hara
terization of the leading
onstant inthe size of heap
onstru
tion networks
ompared to the leading
onstant inthe size of (n; t)-sele
tion networks.Theorem 13 If for
onstants C1 and C2,C1n log t�O(n) � S(n; t) � C2n log t+O(n) ;then C1n log logn�O(n) � H(n) � C2n log logn+O(n log log logn) :11

A
knowledgementsThanks to Peter Sanders for his
omments on an earlier draft of this paper.Referen
es[1℄ Mikl�os Ajtai, J�anos Koml�os, and Endre Szemer�edi. Sorting in
 log n parallelsteps. Combinatori
a, 3:1{19, 1983.[2℄ Vladimir Evgen'evi
h Alekseyev. Sorting algorithms with minimum memory.Kibernetika, 5(5):99{103, 1969.[3℄ Samuel W. Bent and John W. John. Finding the median requires 2n
omparisons. In Pro
. 17th Ann. ACM Symp. on Theory of Computing (STOC),pages 213{216, 1985.[4℄ Manuel Blum, Robert W. Floyd, Vaughan Pratt, Ronald L. Rivest, andRobert Endre Tarjan. Time bounds for sele
tion. Journal of Computer andSystem S
ien
es, 7:448{461, 1973.[5℄ Paul F. Dietz. Heap
onstru
tion in the parallel
omparison tree model. InPro
. 3rd S
andinavian Workshop on Algorithm Theory (SWAT), volume 621of Le
ture Notes in Computer S
ien
e, pages 140{150. Springer Verlag, Berlin,1992.[6℄ Paul F. Dietz and Rajeev Raman. Very fast optimal parallel algorithms for heap
onstru
tion. In Pro
. 6th Symposium on Parallel and Distributed Pro
essing,pages 514{521, 1994.[7℄ Dorit Dor and Uri Zwi
k. Sele
ting the median. In Pro
. 6th ACM-SIAMSymposium on Dis
rete Algorithms (SODA), pages 28{37, 1995.[8℄ Dorit Dor and Uri Zwi
k. Finding the alpha n-th largest element.Combinatori
a, 16:41{58, 1996.[9℄ Dorit Dor and Uri Zwi
k. Median sele
tion requires (2 + �)n
omparisons. InPro
. 37th Ann. Symp. on Foundations of Computer S
ien
e (FOCS), pages125{134, 1996.[10℄ Robert W. Floyd. Algorithm 245: Treesort3. Communi
ations of the ACM,7(12):701, 1964.[11℄ Shuji Jimbo and Akira Maruoka. A method of
onstru
ting sele
tion networkswith O(log n) depth. SIAM Journal of Computing, 25(4):709{739, 1996.[12℄ Donald E. Knuth. The Art of Computer Programming, Volume III: Sorting andSear
hing. Addison-Wesley, Reading, MA, 1973.12

[13℄ Peter Bro Miltersen, Mike Paterson, and Jun Tarui. The asymptoti

omplexityof merging networks. Journal of the ACM, 43(1):147{165, 1996.[14℄ Stephan Olariu and Zhaofang Wen. Optimal parallel initialization algorithmsfor a
lass of priority queues. IEEE Transa
tions on Parallel and DistributedSystems, 2:423{429, 1991.[15℄ Ni
holas Pippenger. Sele
tion networks. SIAM Journal of Computing,20(5):878{887, 1991.[16℄ Arnold S
h�onhage, Mi
hael S. Paterson, and Ni
holas Pippenger. Finding themedian. Journal of Computer and System S
ien
es, 13:184{199, 1976.[17℄ John William Joseph Williams. Algorithm 232: Heapsort. Communi
ations ofthe ACM, 7(6):347{348, 1964.[18℄ Andrew C. Yao and Fran
es F. Yao. Lower bounds on merging networks.Journal of the ACM, 23:566{571, 1976.

13

