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deletion, and 
onstru
tion | have been dis
ussed in several models of 
om-putation. For the heap 
onstru
tion algorithm, Floyd has given a sequentialalgorithm building the tree in a bottom-up fashion in linear time, whi
h is
learly optimal. On the weak shared memory ma
hine model, EREW-PRAM,Olariu and Wen 
an build a heap of size n in time O(logn) and optimalwork [14℄. On the powerful CREW-PRAM model, the best-known heap 
on-stru
tion algorithm was given by Raman and Dietz and takes O(log logn)time [6℄. The same time performan
e holds for the parallel 
omparison treemodel [5℄. Finally Dietz showed that O(�(n)), where �(n) is the inverse ofA
kerman's fun
tion, is the expe
ted time required to build a heap in the ran-domized parallel 
omparison tree model [5℄. All the above parallel algorithmsa
hieve optimal work O(n), and the time optimality of the deterministi
 algo-rithms 
an be argued by redu
tion from the sele
tion of the minimum elementin a set.In this paper we address the heap 
onstru
tion problem for the simplest paral-lel model of 
omputation, namely 
omparator networks. Comparator networksperform only 
omparison operations, whi
h may o

ur simultaneously. Themost studied 
omparator networks are sorting and merging networks. In theearly 1960's, Bat
her proposed the odd-even merge algorithm to merge twosequen
es of n and m elements, n � m, whi
h 
an be implemented by amerging network of size O((m + n) logm). In the early 1970's Floyd [12℄ andYao [18℄ proved the asymptoti
 optimality of Bat
her's networks. The lowerbound has re
ently been improved by Miltersen, Paterson and Tarui [13℄, 
los-ing the long-standing fa
tor-of-two gap between upper and lower bounds. It isnoteworthy to re
all, that merge 
an be solved in the 
omparison tree modelwith a tree of depth m + n� 1.Bat
her also showed how his merge algorithm 
ould be used to implement sort-ing networks with size O(n log2 n) and depth O(log2 n) to sort n inputs [12℄.For a long time, the question remained open as to whether sorting network-s with size O(n logn) and depth O(logn) existed. In 1983, Ajtai, Koml�osand Szemer�edi [1℄ presented sorting networks with size O(n logn) and depthO(logn) to sort n items. This result, although partially unsatisfying due to big
onstants hidden by the O-notation, reveals that the sorting problem requiresthe same amount of work in both 
omparison tree and 
omparator networkmodels.Sele
tion, sorting and merging are stri
tly related problems. Several sequentialalgorithms with linear work have been dis
ussed for sele
tion. The �rst isdue to Blum et al. [4℄ and requires 5:43n 
omparisons. This result was laterimproved by S
h�onhage et al. to 3n [16℄ and by Dor and Zwi
k to 2:95n [7,8℄.Bent and John proved a lower bound of 2n for this problem [3℄. Dor andZwi
k [9℄ improved it to (2 + �)n [9℄. For a survey of previous work on lowerbounds in the 
omparison tree model, see the paper by Dor and Zwi
k [9℄.2



For 
omparator networks Alekseyev [2℄ proved that an (n; t)-sele
tion network,whi
h sele
ts the t smallest item in a set of n elements, has at least size(n � t)dlog(t + 1)e. 4 For t = 
(n�) and 0 < � � 1, the existen
e of a workoptimal sele
tion network immediately follows by the sorting networks of Ajtaiet al. However, sin
e sele
tion networks do not need to do as mu
h as sortingnetworks, and due to the big 
onstant hidden by the sorting networks in [1℄,sele
tion networks with improved 
onstant fa
tors in both depth and sizehave been developed. In parti
ular, Pippenger proposes a (n; bn=2
)-sele
tionnetwork with size 2n logn and depth O(log2 n) [15℄. More re
ently, Jimbo andMarouka have 
onstru
ted a (n; bn=2
)-sele
tion network of depth O(logn)and of size at most Cn logn + O(n), for any arbitrary C > 3= log 3 � 1:89,whi
h improves Pippenger's 
onstru
tion by a 
onstant fa
tor in size and atthe same time by an order in depth [11℄.The pre
eding summary shows that work optimal 
omparator networks havebeen studied for merging, sorting, and sele
tion. Although the heap data stru
-ture has histori
ally been stri
tly related to these problems, we are not awareof any 
omparator network for the heap 
onstru
tion problem. In this s
enari-o, we show that heap 
onstru
tion 
an be done by 
omparator networks ofsize O(n log logn) and depth O(logn), and that our networks rea
h optimalsize by redu
ing the problem of sele
ting the smallest logn elements to heap
onstru
tion. Finally, sin
e �nding the minimum requires at least a network ofsize n�1 and depth dlogne, our heap 
onstru
tion networks also have optimaldepth.2 PreliminariesLet us review some de�nitions, and agree on some notations used throughoutthe paper.A binary tree of size n is a tree with n nodes, ea
h of degree at most two. Anode x of a binary tree belongs to level k if the longest simple path from theroot to x has k edges. The height of the tree is the number of edges in thelongest simple path starting at the root of the tree. The subtree Tx rooted atnode x at level k is the tree indu
ed by the des
endants of x.A 
omplete binary tree is a binary tree in whi
h all the leaves are at the samelevel and all the internal nodes have degree two. Clearly, it has height blogn
.A heap shaped binary tree of height h is a binary tree whose h� 1 uppermostlevels are 
ompleted �lled and the h-th level is �lled from the left to the right.4 All logarithms throughout this paper have basis 23



In a heap ordered binary tree, ea
h node 
ontains one element whi
h is greateror equal to the element at its parent.Finally, a binary heap is de�ned as a heap-shaped and heap-ordered binarytree [17℄, whi
h 
an be stored in an array H as an impli
it tree of size n, asdepi
ted in Figure 1. The element of the root of the tree is at index 1 of thearray, (i.e., the root is stored in H[1℄), and given an index i of a node x, theindi
es of its left and right 
hildren are 2i and 2i+ 1, respe
tively.A 
omparator network with n inputs and size s is a 
olle
tion of n horizontallines, one for ea
h input, and s 
omparators. A 
omparator between line iand j, brie
y i : j, 
ompares the 
urrent values on lines i and j and is drawnas a verti
al line 
onne
ting lines i and j. After the 
omparison i : j, theminimum value is put on line i, while the maximum ends up on line j. Finally,a 
omparator network has depth d, if d is the largest number of 
omparatorsthat any input element 
an pass through. Assuming that ea
h 
omparatorprodu
es its output in 
onstant time, the depth of a 
omparator network isthe running time of su
h a network. From now on, let us refer to 
omparatornetworks simply as networks. For a 
omprehensive a

ount of 
omparatornetworks, see [12, pp. 220-246℄.3 Sequential heap 
onstru
tionIt is well known that an impli
it representation of a binary heap H of sizen 
an be built in linear sequential time by the heap 
onstru
tion algorithmof Floyd [10℄. Be
ause we base our heap 
onstru
tion networks on Floyd'salgorithm, we rephrase it as follows:Assuming that the two binary trees rooted at the 
hildren of a node i areheaps, the heap-order property in the subheap rooted at i 
an be reestab-lished simply by bubbling down the element H[i℄. We let the bubbling downpro
edure be denoted Siftdown. At ea
h step, Siftdown determines the small-est of the elements H[i℄; H[2i℄, and H[2i+ 1℄. If H[i℄ is the smallest, then thesubtree rooted at node i is a heap and the Siftdown pro
edure terminates.Otherwise, the 
hild with the smallest element and H[i℄ are ex
hanged. Thenode ex
hanged with H[i℄, however, may violate the heap order at this point.Therefore, the Siftdown pro
edure is re
ursively invoked on that subtree.We 
an now apply Siftdown in a bottom-up manner to 
onvert an arrayH stor-ing n elements into a heap. Sin
e the elements in the subarrayH[(bn=2
+ 1) ::n℄are all leaves, ea
h is a 1-element heap to begin with. Then, the remainingnodes of the tree are visited to run the Siftdown pro
edure on ea
h one. Sin
ethe nodes are pro
essed level by level in a bottom up fashion, it is guaran-4
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Fig. 1. A binary heap of size 15 and its impli
it representation.teed that the subtrees rooted at the 
hildren of the node i are heaps beforeSiftdown runs at that node.In 
on
lusion, observe that the Siftdown routine invoked on a subheap ofheight i performs 2i 
omparisons in the worst 
ase, and that the worst 
aserunning time of the heap 
onstru
tion algorithm of Floyd des
ribed above isPblog n
i=0 n2i � 2i = O(n), whi
h is optimal.4 Heap 
onstru
tion networks of size n lognIn this se
tion we present heap 
onstru
tion networks whi
h have size at mostnblogn
 and depth 4blogn
�2. Noti
e that any sorting network 
ould also beused as a heap 
onstru
tion network. The networks presented in this se
tionare used in Se
tion 5 to 
onstru
t improved heap 
onstru
tion networks ofsize O(n log logn), and in Se
tion 6 to give a redu
tion from sele
tion to heap
onstru
tion.Lemma 1 gives a network implementation of the sifting down algorithm usedin the heap 
onstru
tion algorithm by Floyd [10℄.Lemma 1 Let T be a binary tree of size n and height h. If the subtrees rootedat the 
hildren of the root satisfy heap order, then the elements of T 
an berearranged to satisfy heap order with a network of size n� 1 and depth 2h. Atdepth 2i+1 and 2i+2 of the network the 
omparators are only between nodesat level i and i + 1 in T . All 
omparators 
orrespond to edges of T , and forea
h edge there is exa
tly one 
omparator.PROOF. If the tree has height zero, no 
omparator is required. Otherwiselet r be the root and u and v the 
hildren of r. If u or v is not present, the5



steps below whi
h would involve v or u are skipped.First we apply the 
omparators r : u and r : v. Be
ause Tu and Tv were as-sumed to be heap ordered subtrees, r now has the minimum. After the two
omparators the heap order 
an be violated at the roots of both Tu and Tv. Wetherefore re
ursively apply the above to the subtrees Tu and Tv. Noti
e thatthe two re
ursively 
onstru
ted networks involve disjoint nodes and therefore
an be performed in parallel. If r only has one 
hild we still 
harge the networkdepth two to 
ompare r with its 
hildren to guarantee that all 
omparisonsdone in parallel by the network 
orrespond to edges between nodes at thesame levels in T .The depth of the network is two plus the depth of the deepest re
ursively
onstru
ted network. By indu
tion it follows that the depth of the network is2h, and that the network at depth 2i+1 and 2i+2 only performs 
omparisonsbetween nodes at level i and i + 1 in T . Furthermore, the network 
ontainsexa
tly one 
omparator for ea
h edge of T . 2Noti
e that the network has n� 1 
omparators while the 
orresponding algo-rithm of Floyd only needs h 
omparisons. By repla
ing the sifting down algo-rithm in Floyd's heap 
onstru
tion algorithm by the sifting down networks ofLemma 1, we get the following lemma.Lemma 2 Let T be a binary tree of size n and height h whi
h does not satisfyheap order, and let ni be the number of nodes at level i in T . Then a networkexists of size Phi=0 i � ni and depth 4h� 2 whi
h rearranges the elements of Tto satisfy heap order. All 
omparators 
orrespond to edges of T .PROOF. Initially all nodes at level h of T by de�nition are heap orderedbinary trees of height zero. Iteratively for ea
h level i = h� 1; : : : ; 0 we applythe sifting down networks of Lemma 1 in parallel to the 2i subtrees rooted atlevel i of T , to make these subtrees satisfy heap order. The resulting tree thensatis�es heap order. By Lemma 1 all 
omparators 
orrespond to edges of T .The edge between a node v at level i and its parent 
orresponds to a setof 
omparators in the resulting network. These 
omparators are performedexa
tly when we apply the sifting down networks of Lemma 1 to an an
estorof v, i.e., there are exa
tly i 
omparators 
orresponding to this edge. The totalnumber of 
omparators is Phi=0 i � ni.By Lemma 1 the depth of the network is Phi=0 2i = h2 + h. But be
ause thenetworks 
onstru
ted by Lemma 1 pro
eeds top-down on T , having exa
tlydepth two for ea
h level of T , the appli
ations of Lemma 1 
an be pipelined.After the �rst two 
omparators of the appli
ations of Lemma 1 to subtrees6
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Fig. 2. A heap 
onstru
tion network for n = 15. All 
omparators are of the formi : j, where i < j.rooted at level i, the appli
ations of Lemma 1 to subtrees rooted at leveli� 1 
an be initiated. The appli
ation of Lemma 1 to the root of the tree 
antherefore be initiated at depth 2(h � 1) + 1 of the network, i.e., the networkhas depth 2(h� 1) + 2h = 4h� 2. 2Theorem 3 There exists a heap 
onstru
tion network of size at most nblogn
and depth 4blogn
 � 2. All 
omparators 
orrespond to edges of T .PROOF. Let the n input lines represent a heap shaped binary tree of heightblogn
. The theorem then follows from Lemma 2. 2In Figure 2 we show the network of Theorem 3 for n = 15. The network hassize 34 and depth 10. Noti
e that the �rst two 
omparators of the appli
ationof Lemma 1 to the root of the tree (1 : 2 and 1 : 3) are done in parallel with thethird and fourth 
omparator of the appli
ations of Lemma 1 to the subtreesrooted at nodes 2 and 3.5 Heap 
onstru
tion networks of size O(n log logn)In the following we give improved heap 
onstru
tion networks of sizeO(n log logn)and depth O(logn). The improved networks are obtained by 
ombining thenetworks of Theorem 3 with eÆ
ient sele
tion networks. The following lemmawas developed by Jimbo and Maruoka [11℄.Lemma 4 (Jimbo and Maruoka) For an arbitrary 
onstant C > 3= log 3 �1:89, there exist (n; bn=2
)-sele
tion networks of size at most Cn logn+O(n)and depth O(logn). 7



Unfortunately, neither Pippenger [15℄ or Jimbo and Maruoka [11℄ state boundsfor general (n; t)-sele
tion networks. The following lemma is a 
onsequen
e ofLemma 4, and is suÆ
ient for our purposes.Lemma 5 For an arbitrary 
onstant C > 6= log 3 � 3:79, there for all t exist(n; t)-sele
tion networks of size Cn log t +O(n) and depth O(logn � log t).PROOF. The n input lines are partitioned into dn=te blo
ks B1; : : : ; Bdn=teof size t ea
h. By applying the sele
tion networks of Lemma 4 to B1 [ B2we �nd the t least elements of B1 [ B2. By 
ombining the dn=te blo
ks ina treewise fashion with dn=te � 1 appli
ations of Lemma 4 to 2t elements,we �nd the t least elements of the n inputs. The resulting network has size(dn=te� 1)(C � 2t log 2t+O(2t)) = 2Cn log t+O(n) and depth O(logn � log t),for C > 3= log 3. 2We need the following de�nition. Let P be an arbitrary 
onne
ted subset ofnodes of a binary tree T whi
h 
ontains the root of T . Let x1 � x2 � � � � � xjPjbe the set of elements in P, and let x01 � x02 � � � � � x0jPj be the set of elementsin P after applying a network N to T . We de�ne a network N to be heap-
onvergent, if N for all possible inputs, all 
onne
ted subsets P of nodes ofT 
ontaining the root of T , and i = 1; : : : ; jPj satis�es x0i � xi. Noti
e thatsorting networks are not heap-
onvergent. If P is the path to the rightmostnode in the lowest level of a tree, then P always 
ontains the maximum elementafter applying a sorting network, but the maximum element 
ould initially beanywhere in the tree.Lemma 6 A 
omparator 
orresponding to an edge in a binary tree T is aheap-
onvergent network.PROOF. Let the 
omparator be u : v, where v is a 
hild of u in T . If Pdoes not 
ontain u it does not 
ontain v either, implying that the elementsin P are un
hanged. If P 
ontains both u and v, the set of elements is alsoun
hanged. If P 
ontains u but not v, the 
omparator u : v 
an only repla
ethe element at u with a smaller element from v in whi
h 
ase x0i � xi for alli = 1; : : : ; jPj. 2Be
ause the networks 
onstru
ted by Theorem 3 only 
ontain 
omparators
orresponding to tree edges and heap 
onvergen
e is a transitive property weimmediately have the following 
orollary:Corollary 7 The networks 
onstru
ted by Theorem 3 are heap-
onvergent.8



Theorem 8 If for some 
onstants C and d, there for all t exist (n; t)-sele
tionnetworks of size Cn log t+O(n) and depth O(logd n), then there exist heap 
on-stru
tion networks of size Cn log logn+O(n log log logn) and depth 4 logn+O(logd logn).PROOF. Assume without loss of generality that n � 4. Let the n inputlines represent a heap shaped binary tree T of height h = blogn
, and letk = dlog he � 1. The heap 
onstru
tion network pro
eeds in three phases.(1) To ea
h subtree Tv rooted at level h�2k+1, apply in parallel (jTvj; 2k�1)-sele
tion networks, su
h that all elements at the upper k levels of Tvbe
ome less than or equal to all elements at the remaining levels of Tv.(2) Apply the heap 
onstru
tion networks of Theorem 3 to the uppermosth� k + 1 levels of T , i.e., levels 0; : : : ; h� k.(3) In parallel apply Theorem 3 to ea
h subtree Tv rooted at level h�2k+1.It follows immediately from Step 2 that the uppermost h�2k+1 levels (levels0; : : : ; h� 2k) of the tree satisfy heap order and from Step 3 that ea
h subtreerooted at level h� 2k+1 satis�es heap order. What remains to be proven forthe 
orre
tness of the algorithm is that for all nodes v at level h� 2k+ 1, thesubtree Tv only 
ontains elements whi
h are greater or equal to the elementson the path from the root to v.After Step 1, the 2k � 1 least elements e0 � � � � � e2k�2 of Tv are at theuppermost k levels of Tv, whi
h are exa
tly the levels of Tv whi
h overlapwith Step 2. Let p0 � � � � � ph�2k denote the elements on the path from theroot to v (ex
luding v) after Step 2. Be
ause the network applied in Step 2 isheap-
onvergent and 2k � 2 � h � 2k, we have pi � ei for i = 0; : : : ; h � 2kby letting P 
onsist of the path from the root to v together with the upperk levels of Tv. Be
ause ph�2k � eh�2k � e2k�2, we 
on
lude that after Step 2all elements in Tv are larger than or equal to ph�2k, and that after Step 3, Tsatis�es heap order.From Theorem 3 we get the following upper bound on the size and depth ofthe resulting network. The size is bounded by�Cn log 2k +O(n)�+O � n2k log n2k�+ �n log 22k� ;whi
h is (C + 2)n log logn+O(n), and the depth is bounded byO �logd 22k�+ (4(h� k)� 2) + (4(2k � 1)� 2) ;whi
h is 4 logn +O(logd logn). 9



The \+2" in the size bound 
omes from the appli
ation of the heap 
onstru
-tion networks of Theorem 3 in Step 3. If we instead apply the above 
onstru
-tion in Step 3, we get heap 
onstru
tion networks of size Cn log logn + (C +2)n log log logn +O(n) and depth 4 logn+O(logd logn). 2Noti
e that in Steps 1 and 3 we 
ould have used arbitrary sorting network-s, but in Step 2 it is essential that the heap 
onstru
tion network used isheap-
onvergent. By applying the 
onstru
tion re
ursively O(log� n) timesthe asymptoti
 size 
ould be slightly improved, but the 
onstant in front ofn log logn would still be C. From Lemma 5 we get the following 
orollary:Corollary 9 For an arbitrary 
onstant C > 6= log 3 � 3:79, there existheap 
onstru
tion networks of size Cn log logn +O(n log log logn) and depth4 logn+O(log2 logn).6 A lower bound for the size of heap 
onstru
tion networksWe now prove that the 
onstru
tion of the previous se
tion is optimal. LetS(n; t) denote the minimal size of (n; t)-sele
tion networks, and let H(n) de-note the minimal size of heap 
onstru
tion networks on n inputs. The followinglower bound on S(n; t) is due to Alekseyev [2℄.Lemma 10 (Alekseyev) S(n; t) � (n� t)dlog(t + 1)e.Theorem 11 H(n) � S(n; blogn
)�O(n).PROOF. The theorem is proven by giving a redu
tion from (n; t)-sele
tionto heap 
onstru
tion. We prove that (n; t)-sele
tion 
an be done by networkswith size H(n) + 2t+1 � 2t� 2.First we 
onstru
t a heap over the n inputs with a network of size H(n), andmake the observation that the t least elements 
an only be at levels 0; : : : ; t�1of the heap.The minimum is at the root, i.e., at output line one. To �nd the se
ond leastelement we 
onsider the impli
it heap given by the lines n; 2; 3; : : : ; 2t � 1.Noti
e that the root is now line n. By applying the sifting down network ofLemma 1 to the levels 0; : : : ; t� 1 of this tree the remaining t� 1 least inputsare at levels 0; : : : ; t�2 of this tree. The se
ond least element is now at outputline n. By iteratively letting the root be lines n� 1; n� 2; : : : ; n� t� 2, andby applying Lemma 1 to trees of de
reasing height, the t least elements willappear in sorted order at output lines 1; n; n� 1; n� 2; : : : ; n� t+ 2. If the t10



smallest inputs are required to appear at the �rst t output lines, the networklines are permuted a

ordingly.The total number of 
omparators for the t� 1 appli
ations of Lemma 1 ist�1Xi=0(2i+1 � 2) = 2t+1 � 2t� 2 :We 
on
lude that the resulting (n; t)-sele
tion network has size H(n)+ 2t+1�2t � 2, implying H(n) � S(n; t) � 2t+1 + 2t + 2. By letting t = blogn
 thetheorem follows. 2By 
ombining Lemma 10 and Theorem 11, we get the following 
orollary.Corollary 12 H(n) � n log logn�O(n).7 Con
lusionThe parallel 
onstru
tion of heaps has been addressed for several parallel mod-els of 
omputation: EREW-PRAM [14℄, CRCW-PRAM [6℄, the parallel 
om-parison tree model and the randomized parallel 
omparison tree model [5℄.These algorithms all a
hieve optimal O(n) work. In this paper we have ad-dressed the problem for the most simple parallel model of 
omputation, namely
omparator networks.As opposed to merging and sele
tion, whi
h both 
an be solved in sequen-tial linear time but require networks of size �(n logn), we have shown thatheap 
onstru
tion 
an be done by networks of size O(n log logn) and depthO(logn), and that this is optimal. By 
ombining the results of Theorem 8 andTheorem 11, we get the following 
hara
terization of the leading 
onstant inthe size of heap 
onstru
tion networks 
ompared to the leading 
onstant inthe size of (n; t)-sele
tion networks.Theorem 13 If for 
onstants C1 and C2,C1n log t�O(n) � S(n; t) � C2n log t+O(n) ;then C1n log logn�O(n) � H(n) � C2n log logn+O(n log log logn) :11
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