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ABSTRACT
We present the first pointer-based heap implementation with
time bounds matching those of Fibonacci heaps in the worst
case. We support make-heap, insert, find-min, meld and
decrease-key in worst-case O(1) time, and delete and delete-
min in worst-case O(lg n) time, where n is the size of the
heap. The data structure uses linear space.

A previous, very complicated, solution achieving the same
time bounds in the RAM model made essential use of arrays
and extensive use of redundant counter schemes to maintain
balance. Our solution uses neither. Our key simplification
is to discard the structure of the smaller heap when doing
a meld. We use the pigeonhole principle in place of the
redundant counter mechanism.

Categories and Subject Descriptors
E.1 [Data Structures]: Trees; F.2.2 [Theory of Compu-
tation]: Analysis of Algorithms and Problem Complexity—
Nonnumerical Algorithms and Problems

General Terms
Algorithms

Keywords
Data structures, heaps, meld, decrease-key, worst-case com-
plexity
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1. INTRODUCTION
Williams in 1964 introduced binary heaps [25]. Since then

the design and analysis of heaps has been thoroughly inves-
tigated. The most common operations supported by the
heaps in the literature are those listed below. We assume
that each item stored contains an associated key. No item
can be in more than one heap at a time.

makeheap() Create a new, empty heap and return a ref-
erence to it.

insert(H, i) Insert item i, not currently in a heap, into
heap H , and return a reference to where i is stored
in H .

meld(H1,H2) Return a reference to a new heap containing
all items in the two heaps H1 and H2 (H1 and H2

cannot be accessed after meld).

find-min(H) Return a reference to where the item with
minimum key is stored in the heap H .

delete-min(H) Delete the item with minimum key from
the heap H .

delete(H,e) Delete an item from the heap H given a ref-
erence e to where it is stored.

decrease-key(H,e, k) Decrease the key of the item given
by the reference e in heap H to the new key k.

There are many heap implementations in the literature,
with a variety of characteristics. We can divide them into
two main categories, depending on whether the time bounds
are worst case or amortized. Most of the heaps in the lit-
erature are based on heap-ordered trees, i.e. tree structures
where the item stored in a node has a key not smaller than
the key of the item stored in its parent. Heap-ordered trees
give heap implementations that achieve logarithmic time for
all the operations. Early examples are the implicit binary
heaps of Williams [25], the leftist heaps of Crane [5] as modi-
fied by Knuth [20], and the binomial heaps of Vuillemin [24].

The introduction of Fibonacci heaps [15] by Fredman and
Tarjan was a breakthrough since they achieved O(1) amor-
tized time for all the operations above except for delete and
delete-min, which require O(lg n) amortized time, where n
is the number of items in the heap and lg the base-two log-
arithm. The drawback of Fibonacci heaps is that they are
complicated compared to existing solutions and not as ef-
ficient in practice as other, theoretically less efficient solu-
tions. Thus, Fibonacci heaps opened the way for further



progress on the problem of heaps, and many solutions based
on the amortized approach have been presented since then,
trying to match the time complexities of Fibonacci heaps
while being at the same time simpler and more efficient in
practice.

Self adjusting data structures provided a framework to-
wards this direction. A self-adjusting data structure is a
structure that does not maintain structural information (like
size or height) within its nodes, but still can adjust itself
to perform efficiently. Within this framework, Sleator and
Tarjan introduced the skew heap [23], which was an amor-
tized version of the leftist heap. They matched the com-
plexity of Fibonacci heaps on all the operations except for
decrease-key, which takes O(lg n) amortized time. The pair-
ing heap, introduced by Fredman, Sedgewick, Sleator and
Tarjan [14], was the amortized version of the binomial heap,
and it achieved the same time complexity as Fibonacci heaps
except again for the decrease-key, the time complexity of
which remained unknown for many years. In 1999, Fred-
man [13] proved that the lower bound for the decrease-key
operation on pairing heaps is Ω(lg lg n); thus the amortized
performance of pairing heaps does not match the amor-
tized performance of Fibonacci heaps. In 2005, Pettie [22]
proved that the time complexity of the decrease-key oper-

ation is 2O(
√

lg lg n). Later, Elmasry [9] gave a variant of
pairing heaps that needs only O(lg lgn) amortized time for
decrease-key.

Heaps having amortized performance matching the amor-
tized time complexities of Fibonacci heaps have also been
presented. In particular, Driscoll, Gabow, Shrairman and
Tarjan [6] proposed rank-relaxed heaps, Kaplan and Tar-
jan [19] presented thin heaps, Chan [4] introduced quake
heaps, Haeupler, Sen and Tarjan introduced rank-pairing
heaps [16], and Elmasry introduced violation heaps [10]. El-
masry improved the number of comparisons of Fibonacci
heaps by a constant factor [7] and also examined versions
of pairing heaps, skew heaps, and skew-pairing heaps [8].
Some researchers, aiming to match the amortized bounds
of Fibonacci heaps in a simpler way, followed different di-
rections. Peterson [21] presented a structure based on AVL
trees and Høyer [17] presented several structures, including
ones based on red-black trees, AVL trees, and (a, b)-trees.

Let us now review the progress on this problem, based
on the worst-case approach. The goal of worst-case efficient
heaps is to eliminate the unpredictability of amortized ones,
since this unpredictability is not desired in e.g. real time
applications.

The targets for the worst case approach were given by
Fibonacci heaps, i.e. the time bounds of Fibonacci heaps
should ideally be matched in the worst case. The next im-
provement after binomial heaps came with the the implicit
heaps of Carlsson, Munro and Poblete [3] supporting worst-
case O(1) time insertions and O(lg n) time deletions on a
single heap stored in an array. Run-relaxed heaps [6] achieve
the amortized bounds given by Fibonacci heaps in the worst
case, with the exception of the meld operation, which is sup-
ported in O(lg n) time in the worst case. The same result
was later also achieved by Kaplan and Tarjan [18] with fat
heaps. Fat heaps without meld can be implemented on a
pointer machine, but to support meld in O(lg n) time arrays
are required. The meld operation was the next target for
achieving constant time in the worst case framework, in or-
der to match the time complexities of Fibonacci heaps. Bro-

dal [1] achieved O(1) worst case time for the meld operation
on a pointer machine, but not for the decrease-key opera-
tion. It then became obvious that although the decrease-key
and the meld operation can be achieved in O(1) worst case
time separately, it is very difficult to achieve constant time
for both operations in the same data structure. Brodal [2]
managed to solve this problem, but his solution is very com-
plicated and requires the use of (extendable) arrays. For
the pointer machine model of computation, the problem of
matching the time bounds of Fibonacci heaps remained open
until now, and progress within the worst case framework has
been accomplished only in other directions. In particular,
Elmasry, Jensen and Katajainen presented two-tier relaxed
heaps [12] in which the number of key comparisons is re-
duced to lgn + 3 lg lg n + O(1) per delete operation. They
also presented [11] a new idea (which we adapt in this paper)
for handling decrease-key operations by introducing struc-
tural violations instead of heap order violations.

1.1 Our contribution
In this paper we present the first heap implementation

that matches the time bounds of Fibonacci heaps in the
worst case on a pointer machine, i.e. we achieve a linear
space data structure supporting make-heap, insert, find-min,
meld and decrease-key in worst-case O(1) time, and delete
and delete-min in worst-case O(lg n) time. This adds the
final step after the previous step made by Brodal [2] and
answers the long standing open problem of whether such a
heap is possible.

Much of the previous work, including [1, 2, 3, 11, 12, 18],
used redundant binary counting schemes to keep the struc-
tural violations logarithmically bounded during operations.
For the heaps described in this paper we use the simpler
approach of applying the pigeonhole principle. Our heaps
are essentially heap ordered trees, where the structural vio-
lations are subtrees being cut off (and attached to the root),
as in Fibonacci heaps. The crucial new idea is that when
melding two heaps, the data structures maintained for the
smaller tree are discarded by marking all these nodes as be-
ing passive. We mark all (active) nodes in the smaller tree
passive in O(1) time using an indirectly accessed shared flag.

In Sections 2-4 we describe our data structure, ignoring
the pointer-level representation, and analyze it in Section 5.
The pointer-level representation is given in Section 6. In
Section 7 we give some concluding remarks and discuss pos-
sible variations.

2. DATA STRUCTURE AND INVARIANTS
In this section we describe our data structure on an ab-

stract level. The representation at the pointer level is given
in Section 6.

A heap storing n items is represented by a single ordered
tree with n nodes. Each node stores one item. The size of a
tree is the number of nodes it contains. The degree of a node
is the number of children of the node. We assume that all
keys are distinct; if not, we break ties by item identifier. We
let x.key denote the key of the item stored in node x. The
items satisfy heap order, i.e. if x is a child of y then x.key >
y.key. Heap order implies that the item with minimum key
is stored in the root.

The basic idea of our construction is to ensure that all
nodes have logarithmic degree, that a meld operation makes
the root with the larger key a child of the root with the



smaller key, and that a decrease-key operation on a node
detaches the subtree rooted at the node and reattaches it as
a subtree of the root. To guide the necessary restructuring,
we need the following concepts and invariants.

Each node is marked either active or passive. An active
node with a passive parent is called an active root. The
rank of an active node is the number of active children.
Each active node is assigned a non-negative integer loss.
The total loss of a heap is the sum of the loss over all
active nodes. A passive node is linkable if all its children
are passive.

In order to keep the node degrees logarithmic during dele-
tions, we maintain all nodes of a heap except for the root in
a queue Q. A non-root node has position p if it is the p-th
node on the queue Q.

Invariants
Let R = 2 lgn+6. Note that R is not necessarily an integer.
We later show that R is a bound on the rank of active nodes
(Corollary 1). The value of R is only needed for the analysis
— it is not maintained by the algorithms.

I1 (Structure) For all nodes the active children are to the
left of the passive children. The root is passive and the
linkable passive children of the root are the rightmost
children. For an active node, the i-th rightmost active
child has rank+loss at least i− 1. An active root has
loss zero.

I2 (Active roots) The total number of active roots is at
most R + 1.

I3 (Loss) The total loss is at most R + 1.

I4 (Degrees) The maximum degree of the root is R + 3.
Let x be a non-root node, and let p denote its posi-
tion in Q. If x is a passive node or an active node
with positive loss its degree is at most 2 lg(2n−p)+9;
otherwise, x is an active node with loss zero and is
allowed to have degree one higher, i.e. degree at most
2 lg(2n− p) + 10.

Note that I4 implies that all nodes have degree at most
2 lgn+12. The above invariants imply a bound on the max-
imum rank an active node can have. The following lemma
captures how the maximum rank depends on the value of R,
for arbitrary values of R.

Lemma 1. If I1 is satisfied and the total loss is L, then
the maximum rank is at most lgn+

√
2L+ 2.

Proof. Assume x is an active node of maximum rank
r ≥ k + 1 + lgn, where k is the minimum integer such that
k(k + 1)/2 ≥ L. We will prove the contradiction that the
subtree rooted at x contains at least n + 1 nodes. Let Tx

be the subtree rooted at x. We prune from Tx all subtrees
rooted at passive nodes. If y is a child of x, z is a child of y,
and there is a node with positive loss in the subtree rooted
at z, then we prune the subtree rooted at z and increase
the loss of y by one (so that I1 remains satisfied). This re-
moves the positive loss contributed by the subtree rooted at
z, and only increases the loss of y by one, i.e. the total loss
is still bounded by L. Now only the children of x can have a
positive loss. We reduce the rank+loss of the i-th rightmost
child of x to i− 1, by lowering the loss and possibly pruning

grandchildren. Finally, for all nodes v 6= x we repeatedly
prune grandchildren such that the i-th rightmost child of v
has degree exactly i − 1. The remaining subtrees Tv are
binomial trees of size 2degree(v). The minimum size of such
a Tx is achieved by starting with a binomial tree of size 2r,
and repeating the following step L times: prune a grand-
child of the root with maximum degree. Since the maximum
grandchild degree of a binomial tree of size 2r is r − 2, and
generally there are j grandchildren of degree r− j−1, there
are

∑k

j=1 j = k(k+1)/2 grandchildren of degree ≥ r−k−1.

Since k(k + 1)/2 ≥ L, no grandchild of degree ≤ r − k − 2
is pruned, i.e. the (r − k)-th rightmost child w of x has de-
gree r − k − 1 and loss zero. By the assumption on r, the
degree of w is ≥ lgn and Tw has size ≥ n. It follows that Tx

has size at least n + 1, which is a contradiction. This gives
r < k+1+ lgn ≤

√
2L+2+ lg n, since (k− 1)k/2 < L.

By I3 we have L ≤ R+1. Since lgn+
√

2(R + 1)+2 ≤ R
for R = 2 lgn+ 6, we have the following corollary:

Corollary 1. All nodes have rank ≤ R.

The corollary implies a bound on the maximal rank be-
fore a heap operation. If we violate I2 or I3 temporarily
during a heap operation, then the pigeonhole principle guar-
antees that we can apply the transformations described in
Section 3. If the total loss is > R+1, then there exists either
a node with loss at least two, or there exist two nodes with
equal rank each with loss exactly one. Similarly if there are
> R+1 active roots, then at least two active roots have the
same rank. Finally, if I1-I3 are satisfied but the root violates
I4, then the root has at least three passive linkable children,
since the root has at most R + 1 children or grandchildren
that can be active roots, i.e. at most R + 1 children of the
root are active roots or passive non-linkable nodes.

3. TRANSFORMATIONS
The basic transformation is to link a node x and its sub-

tree below another node y, by removing x from the child list
of its current parent and making x a child of y. If x is active
it is made the leftmost child of y; if x is passive it is made
the rightmost child of y.

The following transformations use link to reestablish the
invariants I2-I4 when they get violated. The transformations
are illustrated in Figure 1 and the main properties of the
transformations are captured by Table 1.

Active root reduction Let x and y be active roots of
equal rank r. Compare x.key and y.key. Assume w.l.o.g.
x.key < y.key. Link y to x and increase the rank of x
by one. If the rightmost child z of x is passive make z a
child of the root. In this transform the number of active
roots is decreased by one and the degree of the root possibly
increased by one.

Root degree reduction Let x, y, z be the three rightmost
passive linkable children of the root. Using three compar-
isons, sort x, y, z by key. Assume w.l.o.g. x.key < y.key <
z.key. Mark x and y as active. Link z to y, and link y
to x. Make x the leftmost child of the root. Assign both x
and y loss zero, and rank one and zero respectively. In this
transform both x and y change from being passive to active
with loss zero, both get one more child, and x becomes a
new active root. The degree of the root decreases by two
and the number of active roots increases by one.
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Figure 1: Transformations to reduce the root degree, the number of active roots, and the total loss.
Black/white nodes are passive/active nodes. For an active node r/ℓ shows rank/loss.

Loss reduction To reduce the total loss we have two
different transformations. The one-node loss reduction

applies when there exists an active node x with loss ≥ 2.
Let y be the parent of x. In this case x is linked to the
root and made an active root with loss zero, and the rank
of y is decreased by one. If y is not an active root, the loss
of y is increased by one. Since the loss of x decreases by at
least two, the total loss is decreased by at least one. The
second transformation, two-node loss reduction, applies
when two active nodes x and y with rank r both have a loss
of exactly one. Compare x.key and y.key. Assume w.l.o.g.
x.key < y.key. Let z be the parent of y. Link y to x, in-
crease the rank of x, and set the loss of x and y to zero.
The degree and rank of z is decreased by one. If z is not an
active root, the loss of z is increased by one.

Certain combinations of active root reductions and root
degree reductions have only beneficial effects (see Table 1).
When doing such combinations, we do the reductions“to the
extent possible”: we do them in any order, stopping only
when all reductions are done or when no undone reduction
can be done. An active root reduction and a root degree
reduction decrease the root degree by at least one. Two
active root reductions and a root degree reduction decrease
the number of active roots by one without increasing the root
degree. Three active root reductions and two root degree
reductions decrease both the number of active roots and the
root degree by at least one.

It should be noted that the distinct key assumption to-
gether with the heap order invariant ensures that no cycles
are created in the tree when an active root reduction or
two-node loss reduction is performed.

4. IMPLEMENTATION OF THE HEAP OP-
ERATIONS

The various heap operations are implemented as follows.
To find the minimum in a heap, return the item in the root.
To make an empty heap, return an empty tree. To insert an
item into a heap, create a new one-node tree with a passive
root containing the item, and meld this with the existing

heap. To delete an arbitrary item, decrease its key to minus
infinity and do a minimum deletion.

To decrease the key of the item in node x, in the tree with
root z, begin by decreasing the key of the item. If x is the
root we are done. Otherwise, if x.key < z.key, swap the
items in x and z (actually we assume each node only stores
a pointer to the item that is stored externally with a pointer
to the node of the item). Let y be the parent of x. Make
x a child of the root. If x was an active node but not an
active root, then x becomes an active root with loss zero and
the rank of y is decreased by one. If y is active but not an
active root, then the loss of y is increased by one. Do a loss
reduction if possible. Finally, do six active root reductions
and four root degree reductions to the extent possible.

To delete the minimum in the tree with root z, first find
the node x of minimum key among the children of the root.
If x is active then make x passive and all active children
of x become active roots. Make each of the other children
of z a child of x. Make the passive linkable children of x
the rightmost children of x. Remove x from Q. Destroy z.
Repeat twice: move the front node y on Q to the back; link
the two rightmost children of y to x, if they are passive. Do
a loss reduction if possible. Do active root reductions and
root degree reductions in any order until none of either is
possible.

To meld two heaps with roots x and y, rename x and y if
necessary so that the tree rooted at x has size at most the
size of the tree rooted at y. Make all nodes in the tree rooted
at x passive. (Do this implicitly, as described in Section 6, so
that it takes O(1) time.) Let u be the root of smaller key and
v the other root. Make v a child of u. Set Q = Qx&[v]&Qy,
where “&”denotes catenation and Qx and Qy are the queues
of the heaps with root x and y respectively. Do an active
root reduction and a root degree reduction to the extent
possible.

This method of melding “forgets” the structure of the tree
of smaller size, which eliminates the need to combine com-
plicated data structures during melding. This is the main
novelty in the presented data structure.



Table 1: Effect of the different transformations
Root Total Active Key
degree loss roots comparisons

Active root reduction (A) ≤ +1 0 −1 +1
Root degree reduction (R) −2 0 +1 +3
Loss reduction ≤ +1 ≤ −1 ≤ +1 ≤ +1
– one-node +1 ≤ −1 +1 0
– two-node 0 −1 0 +1
(A) + (R) ≤ −1 0 0 +4
2×(A) + (R) ≤ 0 0 −1 +5
3×(A) + 2×(R) ≤ −1 0 −1 +9

Table 2: The changes caused by the different heap operations
Root degree Total loss Active roots

decrease-key ≤ 1 + 1 + 6− 8 ≤ 1− 1 + 0 + 0 ≤ 1 + 1− 6 + 4
meld ≤ 1 + 0 + 1− 2 ≤ 0 + 0 + 0 + 0 ≤ 0 + 0− 1 + 1
delete-min ≤ (2 lg n+ 12 + 4) + 1 ≤ 0− 1 ≤ R + 1

5. CORRECTNESS
In the following we verify that each operation preserves

the invariants I1-I4.
For I1 the interesting property to verify is that the i-th ac-

tive child of an active node has rank+loss ≥ i− 1. All other
properties in I1 are straightforward to verify. We start by ob-
serving that if an active child x is detached from its parent y
satisfying I1, then I1 is also satisfied for y after the detach-
ment. This follows since the i-th rightmost active child z
after the detachment was either the i-th or (i+ 1)-st active
child before the detachment, i.e. for z the new rank+loss is
at least i − 1. An active node only gets a new active child
as a result of an active root reduction, two-node loss reduc-
tion, or root degree reduction. In the first two cases a new
(r + 1)-st rightmost active child is added with rank r (and
loss zero), and in the later case I1 holds by construction for
the two new active nodes.

For invariants I2 and I3, Table 2 captures the change to
the degree of the root, the total loss, and the number of
active roots when performing the operations decrease-key,
meld, and delete-min, respectively. Each entry is a sum of
four terms stating the change caused by the initial trans-
formations performed by the operations, and by the loss
reduction transformations, active root reductions, and root
degree reductions. Each entry is an upper bound on the
change, except for the cases where no reduction is possible
(e.g. the loss increases, but is still ≤ R + 1). For meld the
root degree is the change to the old root that becomes the
new root, whereas total loss and number of active roots is
compared to the heap that is not made passive. For delete-
min the bounds are stated before the repeated active root
and root degree transformations are applied.

Observe that for both decrease-key and meld all sums are
zero, and that R increases during a meld, i.e. invariants I2
and I3 remain valid for each of these operations. Delete-min
reduces the size of the heap by one, reducing R = 2 lg n+ 6
by at most one, if n ≥ 4 before the delete-min operation (if
n ≤ 3 before the delete-min operation, I2 and I3 are triv-
ially true after). The reduction in loss by one ensures that
I3 is valid after delete-min. Since active root reductions are
performed until they are not possible, I2 trivially holds —

provided that the repeated application of active root reduc-
tions and root degree reductions terminate. Termination
immediately follows from the facts that both reductions re-
duce the measure

2 · root degree + 3 ·#active roots

by one, and that the initial value of this measure is O(log n).
This immediately also implies the claimed time bounds for
our heap.

To prove the validity of I4, we first observe that for the
degree of the root we can use the same argument as above
using Table 2.

During the transformations a non-root node can only in-
crease its degree in three cases. During an active root reduc-
tion there is no passive right-child to detach. In this case all
children of the node are active, and the degree bound fol-
lows from Corollary 1. During a two-node loss reduction the
degree of the node x increases by one, but this is okay by I4
since the loss of the node decreases from one to zero. Dur-
ing a root degree transformation two passive nodes become
active, both getting loss zero and degree increased by one.
Again this is okay by I4. During a meld one root becomes a
non-root, but since R+3 ≤ 2 lg(2n−p)+9 for all possible p,
again I4 holds. The interesting case is when we perform a
delete-min operation. I4 holds for the root trivially, since
we repeatedly perform root degree reductions until none are
possible. For non-root nodes we observe that their invariant
is strengthened since R decreases. The role of Q is to deal
with this case. By removing the two first nodes in the queue,
all nodes get their position in Q decreased by two or three
(depending if they were in front of the deleted node in the
queue). By observing that 2n − p does not increase in this
case, it follows that the invariant for non-root nodes is not
strengthened and I4 remains valid. For the two nodes moved
to the end of the queue the term 2 lg(2n − p) decreases by
two, implying that their degree constraint is strengthened
by two. Since we detach two passive nodes from these nodes
I4 remains valid for these nodes also. During meld all ele-
ments in the smaller heap become passive, and their degree
constraint goes from the “+10” to the “+9” case. But since
they remain in their position in the queue, and the result-



ing queue is at least twice the size, we have that 2n − p
increases by a factor two, and I4 remains valid for the ele-
ments in the smaller heap. For the elements in the larger of
the two heaps, they keep their active status. Both n and p
increase for these elements by the size of the smaller queue.
Therefore 2n− p is non-decreasing and I4 remains valid.

A note on the loss: In the previous description the loss of a
node is assumed to be a non-negative integer. Even though
the loss plays an essential role in invariant I1, only values 0,
1, and ′′ ≥ 2′′ are relevant for the algorithm. As soon as the
loss is ≥ 2, then the loss can only decrease when it is set to
zero by a one-node loss transformation. Since the algorithm
only tests if the loss is zero, one or ≥ 2, it is sufficient for
the algorithm to keep track of these three states. It follows
that we can store the loss using only two bits.

6. REPRESENTATION DETAILS
To represent a heap we have the following types of records,

also illustrated in Figures 2 and 3. Each node is represented
by a node record. To mark if a node is active or passive
we will not store the flag directly in the node but indirectly
in an active record. In particular all active nodes of a tree
point to the same active record. This allows all nodes of
a tree to be made passive in O(1) time by only changing
a single flag. The entry point to a heap is a pointer to a
heap record, that has a pointer to the root of the tree and
additional information required for accessing the relevant
nodes for performing the operations described in Section 4.

We call a rank active-root transformable, if there are
at least two active roots of that rank. We call a rank loss

transformable, if the total loss of the nodes of that rank is
at least two. For each rank we maintain a node, and all such
nodes belong to the rank-list. The rightmost node corre-
sponds to rank zero, and the node that corresponds to rank
k is the left sibling of the one that corresponds to k−1. (see
Figure 3). We maintain all active nodes that potentially
could participate in one of the transformations from Sec-
tion 3 (i.e. active roots and active nodes with positive loss)
in a list called the fix-list. Each node with rank k on the fix-
list points to node k of the rank-list. The fix-list is divided
left-to-right into four parts (1-4), where Parts 1-2 contain
active roots and Parts 3-4 contain nodes with positive loss.
Part 1 contains the active roots of active-root transformable
ranks. All the active roots of the same rank are adjacent,
and one of the nodes has a pointer from the corresponding
node of the rank-list. Part 2 contains the remaining active
roots. Each node has a pointer from the corresponding node
of the rank-list. Part 3 contains active nodes with loss one
and a rank that is not loss-transformable. Each node of
this part has a pointer from the corresponding node of the
rank-list. Finally, Part 4 contains all the active nodes of loss
transformable rank. As in Part 1, all nodes of equal rank
are adjacent and one of the nodes is pointed to by the corre-
sponding node of the rank-list. Observe that for some ranks
there may exist only one node in Part 1 (because if the loss
of a node is at least two, its rank is loss-transformable).

From the above description it follows that we can always
perform an active root reduction as long as Part 1 of the fix-
list is nonempty, and we can always perform a loss reduction
transformation as long as Part 4 is nonempty. We maintain
a pointer (in the heap record) indicating the boundary be-
tween Parts 2 and 3. The above construction and pointers
(see Figure 3 for more details) allow us to take the following

ref-countactive

...

left

right
parent

flag

active record

x

left-child

Q-next

Q-prev

rank

Figure 2: The fields of a node record x and an active
record. The fields of x not shown are the item and
the loss.

actions: In order to perform a loss reduction transformation,
we go to the right-end of the fix-list and perform a one-node
loss reduction (if we access a node of multiple loss) or a two-
node loss reduction (if the two rightmost nodes of the fix-list
have loss one). Otherwise Part 4 is empty. After a loss re-
duction transformation on a rank k, we may have to transfer
one node of rank k into Part 3, if its loss is one and it is the
last node in Part 3 with this rank. Whenever the loss of a
node that has a loss-transformable rank increases, we insert
it into (the appropriate group of) Part 4. If its rank is not
loss transformable, we insert it into Part 3, unless there is
another node of the same rank there, in which case we move
both nodes into Part 4 at the right end of the fix-list.

In order to perform an active root reduction, we go to the
left end of the fix-list and link the two leftmost active roots,
if they have the same rank (otherwise, Part 1 is empty). If
after the reduction, the two leftmost nodes in the fix-list are
not active roots of equal degree, we transfer the leftmost
node into Part 2. When an active node of rank k becomes
an active root and there is no other active root of the same
rank, we insert the new active root into Part 2. Otherwise,
we insert it adjacent to the active roots of that rank, unless
only one active root has this rank (i.e. it is located in Part 2),
in which case we transfer the existing active root of rank k
with the new one into Part 1 (at the left end of the fix-
list). When the rank of a node that belongs to the fix-list
changes, we can easily perform the necessary updates to the
fix-list so that all parts of the list are consistent with the
above description. The details are straightforward and thus
omitted.

The details of the fields of the individual records are as
follows (see also Figures 2 and 3).

Node record

item A pointer to the item (including its associated key).
left, right, parent, left-child Pointers to the node re-

cords for the the left and right sibling of the node (the
left and right pointers form a cyclic linked list), the
parent node, and the leftmost child. The later two are
NULL if the nodes do not exist.

active Pointer to an active record, indicating if the node is
active or passive.

Q-prev, Q-next Pointers to the node records for the previ-
ous and the next node on the queue Q, which is main-
tained as a cyclic linked list.
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Figure 3: The heap-record, rank-list, and fix-list. The ref-count field in the records of the rank-list is not
shown. Only pointers for nodes with rank equal to one are shown. The numbers in the nodes in the rank-list
and fix-list are the ranks of the active nodes pointing to these nodes; these numbers are not stored.

loss Non-negative integer equal to the loss of the node. Un-
defined if the node is passive.

rank If the node is passive, the value of the pointer is not
defined (it points to some old node that has been re-
leased for garbage collection). If the node is an active
root or an active node with positive loss (i.e. it is on
the fix-list), rank points to the corresponding record in
the fix-list. Otherwise rank points to the record in the
rank-list corresponding to the rank of the node. (The
cases can be distinguished using the active field of the
node and the parent together with the loss field).

Active record

flag A Boolean value. Nodes pointing to this record are
active if and only if the flag is true.

ref-count The number of nodes pointing to the record. If
flag is false and ref-count = 0, then the node is released
for garbage collection.

Heap record

size An integer equal to the number of items in the heap.
root A pointer to the node record of the root (NULL if and

only if the heap is empty).
active-record A pointer to the active record shared by all

active nodes in the heap (one distinct active record for
each heap).

non-linkable-child A pointer to the node record of the
leftmost passive non-linkable child of the root. If all
passive children of the root are linkable the pointer is
to the rightmost active child of the root. Otherwise it
is NULL.

Q-head A pointer to the node record for the node that is
the head of the queue Q.

rank-list A pointer to the rightmost record in the rank-list.
fix-list A pointer to the rightmost node in the fix-list.
singles A pointer to the leftmost node in the fix-list with

a positive loss, if such a node exists. Otherwise it is
NULL.

Rank-list record (representing rank r)

inc, dec Pointers to the records on the rank-list for rank
r + 1 and r − 1, if they exist. Otherwise they are
NULL.

loss A pointer to a record in the fix-list for an active node
with rank r and positive loss. NULL if no such node
exists.

active-roots A pointer to a record in the fix-list for an
active root with rank r. NULL if no such node exists.

ref-count The number of node records and fix-list records
pointing to this record. If the leftmost record on the
rank-list gets a ref-count = 0, then the record is deleted
from the rank-list and is released for garbage collec-
tion.

Fix-list record

node A pointer to the node record for the node.
left, right Pointers to the left and right siblings on the fix-

list, that is maintained as a cyclic linked list.
rank A pointer to the record in the rank-list corresponding

to the rank of this node.

A detail concerning garbage collection: When performing
a meld operation on two heaps, all nodes in one heap are
first made passive by clearing the flag in the active record
given by the heap record. The heap record, the rank-list,
and the fix-list for this heap are released for incremental
garbage collection.

We now bound the space required by our structure. For
each item we have one node record and possibly one fix-list
record. The number of active records is bounded by the
number of nodes, since in the worst case each active record
has a ref-count = 1. Finally for each heap we have one
heap-record and a number of rank-list records bounded by
one plus the maximum rank of a node, i.e. logarithmic in the
size of the heap. It follows that the total space for a heap is
linear in the number of stored items.



7. CONCLUSION
We have described the first pointer-based heap implemen-

tation achieving the performance of Fibonacci heaps in the
worst-case. What we presented is just one possible imple-
mentation. Based on the active/passive node idea we have
considered many alternative implementations. One option
is to allow a third explicit marking “active root” (instead of
an active root being a function of the active/passive marks),
such that a child of an active node can also be an active root.
This eliminates the distinction between passive linkable and
non-linkable nodes. Another option is to allow the root to
be active also. This simplifies the decrease-key operation,
since then the node getting a smaller key can also be made
the root, without ever swapping items in the nodes. A third
option is to adopt redundant counters instead of the pigeon-
hole principle to bound the number of active roots and holes
created by cutting of subtrees. Further alternatives are to
consider ternary linking instead of binary linking, and us-
ing a different “inactivation” criterion during meld, e.g. size
plus number of active nodes. All these variations can be
combined, each solution implying different bounds on the
maximum degrees, constants in the time bounds, and com-
plexity in the reduction transformations. In the presented
solution we aimed at reducing the complexity in the descrip-
tion, whereas the constants in the solution were of secondary
interest.
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