
Optimal Finger Search Trees in the Pointer Machine

[Extended Abstract]

Gerth Stølting Brodal
�

Dept. of Comp. Sci.
University of Aarhus

BRICS
y

gerth@brics.dk

George Lagogiannis
Comp. Eng. & Inf. Dept.

University of Patras
& Computer Technology

Institute
Patra, PO 22500

lagogian@ceid.upatras.gr

Christos Makris
Comp. Eng. & Inf. Dept.

University of Patras
& Computer Technology

Institute
Patra, PO 22500

makri@ceid.upatras.gr

Athanasios Tsakalidis
Comp. Eng. & Inf. Dept.

University of Patras
& Computer Technology

Institute
Patra, PO 22500

tsak@cti.gr

Kostas Tsichlas
Comp. Eng. & Inf. Dept.

University of Patras
& Computer Technology

Institute
Patra, PO 22500

tsihlas@ceid.upatras.gr

ABSTRACTWe develop a new �nger searh tree with worst-ase onstantupdate time in the Pointer Mahine (PM) model of ompu-tation. This was a major problem in the �eld of Data Stru-tures and was tantalizingly open for over twenty years whilemany attempts by researhers were made to solve it. Theresult omes as a onsequene of the innovative mehanismthat guides the rebalaning operations ombined with inre-mental multiple splitting and fusion tehniques over nodes.
Keywordsbalaned trees, update operations, �nger searh trees, datastrutures, omplexity
1. INTRODUCTIONThe balaned searh tree is one of the most ommon datastrutures used in algorithms. Assuming that the update po-sition is known, balaned searh trees with O(1) amortizedupdate time have been presented long ago ([6, 14℄). It hasalso been known ([6, 16℄) that updates an be performed in�Researh onduted while visiting Computer TehnologyInstitute (CTI) and University of Patras, Greee.yBasi Researh in Computer Siene, www.bris.dk, fundedby the Danish National Researh Foundation.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’02, May 19-21, 2002, Montreal, Quebec, Canada.
Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

O(1) strutural hanges, but the nodes to be hanged haveto be searhed in
(log n) time. Levopoulos and Overmars([13℄) presented an algorithm ahieving O(1) worst ase up-date time by using a global splitting lemma that is basedon a pebble game ombined with the buketing tehnique ofOvermars ([14℄). Instead of storing single keys in the leavesof the searh tree, eah leaf an store a list of several keys.Unfortunately, the bukets in [13℄ have size O(log2 n), sothey need a two level hierarhy of lists in order to guaran-tee O(log n) query time within the bukets. Deletions arehandled by means of global rebuilding. Fleisher ([7℄) pre-sented a simpler approah to the problem. The rebalaningof the tree is distributed over the next log n insertions intothe buket whih was split. Eah buket is equipped witha pointer pointing to an anestor or to a node near an an-estor of the spei� buket. Insertions are performed by�rst inserting the new key into its respetive buket. Letu be the node pointed by the pointer of the buket. If uhas out-degree larger than b then u is split into two smallnodes, otherwise u is left intat. In any ase the pointer ofthe buket is moved up one level. It is proved that startingfrom an (a; b) tree, the degree of the internal nodes annotgrow more than 2b and the size of the bukets an grow upto 2 log n. Deletions are handled simply by using the globalrebuilding tehnique.Finger searh trees are searh trees for whih the searhproedure an start from any leaf of the tree, (this startingelement is termed a �nger) and the time omplexity of thesearh proedure is asymptotially equal to the logarithmof the distane between the �nger and the searh element.In the RAM model of omputation �nger searh tres withonstant update time have already been devised by Dietzand Raman ([5℄), while reently Andersson and Thorup ([1℄)have surpassed the logarithmi bound on the searh proe-dure. These two papers are based on a global rebalaningsheme ombined with the buketing tehniques presented

in [13℄. For the pointer mahine model of omputation, stepshave been made towards this diretion by researhers (see[3, 4, 8, 9, 10, 12, 17℄), but the problem remained tanta-lizingly open. The best solution is given by Brodal ([3℄),who proposed a �nger searh tree with onstant insertion,but with O(log� n) deletion time. This time bound of thedelete operation is a diret result of our diÆulty to handleeÆiently deletions in a loal rebalaning setting.In this paper we will present the �rst onstant update �n-ger searh tree. Note that the spae requirements of thisstruture will be, by ontrution, linear sine in onstanttime we an only aess onstant amount of spae. However,the tehnique of global rebuilding is essential to guarantee alinear bound on spae omplexity in the long-term. In Se-tion 2 we desribe the basi tehnique used to ahieve thealleged result. In Setion 3 we desribe a �nger searh treethat supports only the operation of insertion in worst-aseonstant time. This struture an be seen as an alternativesolution to the insertion only algorithm of [3℄. In Setion 4we desribe a �nger searh tree that supports solely the op-eration of deletion in worst-ase onstant time. In Setion 5we sketh the mehanism needed to guarantee eÆient �n-ger searhes. Finally, in Setion 6 we ombine both solutionsanalyzed in previous setions and we onlude at Setion 7with some �nal remarks. We must note that we left manytehnial details for a future journal version.
2. THE COMPONENTSThe tehnique of omponents is based on an idea previ-ously used in the work of Brodal on making worst-ase par-tially persistent data strutures ([2℄). Components de�ne alogial partition over the set of non-leaf nodes of the �ngersearh tree into onneted subtrees that ditate the positionof the rebalaning operations. We assume that we are givena height-balaned searh tree T and a omponent A over thenodes of T , where A is a subtree of T rooted at the nodeA:root. All leaves of T have equal depth. We say that theleaves are at level 0 while the level of a node is equal to thelevel of its hildren plus one. The maximum degree bi andthe minimum degree ai of a node at level i is a funtion of iwith the exeption of the root that has minimum out-degreeequal to two. Let ri = biai , be the ratio of bi and ai for leveli. Initially, all nodes of T are singleton omponents, that isomponents with only one node. The root of a singletonomponent is the node itself. For the general omponent Aroot of the omponent is A:root and this node will be thehandle of the omponent. In addition, all nodes v 2 A whohave a hild u suh that u 62 A onsistute the border of om-ponent A, whih is represented by border(A). As we willsee in the following setions the border of a omponent isthe part of the omponent that absorbs all the disturbanesaused by rebalaning operations in their subtrees. In Fig-ure 1 we depit the struture of a omponent A on a treeT with root z = A:root. These omponents must be main-tained under the operations of Link and Find, whih is wellknown that annot be implemented in onstant worst-asetime in the PM (see [15℄). However, here we exlpoit the spe-ial struture of the omponents and as a result we are ableto aquire a worst-ase onstant time omplexity. We wouldlike to support the following operations on omponents inworst-ase onstant time:

CR
A

A.root

T

CR

B

B.root

w

l

zFigure 1: The struture of a omponent A in a treeT . By CR we represent the omponent reord.1. Break(z): the omponent A with handle z is destroyedand the nodes that one belonged to A beome single-ton omponents.2. Add(v,z): adds the node v in the omponent with han-dle z (omponent A in Figure 1) ontaining the fatherof v.3. Find(v): returns the root of the omponent wherenode v belongs.4. Link(u,z): links omponents with handles u and z intoa new single omponent with handle u. It is assumedthat nodes u and z are siblings and that immediatelyafter the Link operation z is absorbed by u (an inre-mental fuse operation in the setting of (a,b)-trees).We represent eah omponent by a omponent reord. Theomponent reord for omponent A has a pointer to A:rootas well as a bit valid that indiates whether A is a validomponent (valid=TRUE) or an invalid one (valid=FALSE).When a omponent is invalid then eah node that points tothe respetive omponent reord is a singleton omponent.Eah node v 2 A has a pointer to the omponent reordof A. In this way operation Find(v) is performed in worst-ase onstant time. Operation Add(v,u) is also performedin onstant time sine we just need to make the pointer ofnode v to point to the omponent reord of the omponentwith root u. We assume that the omponent with root uis valid. Operation Break(z) is easily performed in onstanttime by setting the ag valid of the omponent reord of theomponent with handle z equal to FALSE. Finally, opera-tion Link(u,z) an be implemented in onstant worst-asetime due to the speial struture of the omponents. Thisis ahieved by using fusion reords. The omponents thatmust be joined have their omponent reords point to thisfusion reord whih further points to the root of the joinedomponents. Thus, eah omponent may be represented byits omponent reord or by the fusion reord when the om-ponent reord points to one. When two omponents thatare represented by fusion reords beome joined, we inre-mentally move the omponent reords from the one fusionreord to the other. In Setion 4 this operation is neessaryand we will see there that we have enough time to performit inrementally.We will now sketh how the mehanism of omponents isintegrated in a height balaned tree T to guide the rebalan-ing operations as a onsequene of the update operations inits leaves. Assume a leaf l, its father f and its grandfather

ff and assume that l is the reeiver of an update operation(either insertion or deletion). The reeiver of an update op-eration is the leaf pointed by the �nger that ditates theposition of the update operation. If f is a singleton ompo-nent (either the omponent reord to whih f points indi-ates that f is the root or this omponent reord is invalid)then a rebalaning operation is performed and it is added tothe omponent of ff . If f belongs in a non-singleton om-ponent A, then we rebalane w = A:root, we break A and�nally we add w in the omponent of its father. Thus, whenan update operation takes plae inside a omponent (that isat a leaf of a node that belongs to this omponent) then wemake a rebalaning operation at the root of this omponent.Operation Link is neessary as we will see in Setion 4 forthe performane of fusion operations. We silently assumedthat we have an eÆient rebalaning sheme and that inaddition this sheme guarantees a ontrollable out-degree ofinternal nodes. In the following setions we will see how toanel these assumptions.The main problem with the tehnique of omponents isthat it is not fast enough onerning the traversal of the an-estors with large height. This fat is given in the followinglemma.Lemma 1. A node v is rebalaned after its hildren aretwie rebalaned in the worst-ase.Proof. Assume a node v in the omponent A that be-longs to border(A). Then, all of its hildren must be rebal-aned at least one time to ensure that v 62 border(A). WhenA breaks, then all of the hildren of v may be rebalanedbefore v gets rebalaned as a root of a non-trivial omponent(a omponent whih does not onsist of a single node). Inaddition, a node is rebalaned three times if and only if theomponent mehanism does not add this node to the om-ponent of its father. However, it is lear by the mehanismof omponents that this situation is not possible and as aresult the lemma follows.Lemma 1 means that the ost of rebalaning, when usingthis sheduling algorithm, is exponentially inreasing withrespet to height j. Thus, this tehnique is not enough byitself to guarantee a bounded out-degree of internal nodes.However, we will see in the following setions that by mak-ing the rebalaning operations more aggressive we an om-pensate for the ineÆieny of the omponent mehanism.The term \aggressive" means that instead of making binarysplits or binary fusions we perform multiple splits and mul-tiple fusions respetively.
3. THE CASE OF INSERTIONSIn this setion we assume that we an only insert new el-ements in the tree struture (the disussion for deletions ispostponed to the next setion). The solution we are goingto desribe an be seen as a simpli�ed/alternative solutionto the insertions only algorithm desribed in ([3℄). First wemust formulate the main problem of the omponent meha-nism. This problem is loated in the border of a omponent.In Figure 2 we depit the four di�erent situations that anhappen in border(A). The olors over the edges desribethe potential of the hild node to give new nodes throughsuessive splitting operations.

w

v

w

v

w

v

w

v

(a) (b) (c) (d)

green red red D-red

i

i+1

Figure 2: The de�nition of split groups at the borderof omponents (v is at level i while w is at level i+1),(a) v is a singleton omponent while w belongs to anon-singleton omponent, (b) v is inserted into theomponent of w, () the omponent of w is brokenand (d) v belongs to the omponent of w where w isthe root.Assume node v at level i with maximum degree bi. Toguarantee an upper bound on the out-degree of internalnodes when we use the omponent mehanism we must per-form a multiple split operation, that is to split v into manynodes vi with out-degree at least equal to ai. Thus, we needto split v into at most ri nodes. In Figure 2 it is easy to seethat when edge (w; v) is green (phase (a)) then all hildrenof w may split resulting in phase (b). Phase () is derivedfrom phase (b) by performing a Break operation on the om-ponent that w belongs. Finally, phase (d) is derived fromphase () when all hildren of w are again multiple split.Thus, a green edge may produe up to ri red edges while ared edge may produe up to ri D-red edges. From the dis-ussion above it is lear that D-red edges don't produe anynew nodes. These observations an be expressed by the useof a potential funtion �. This funtion ounts the numberof new edges introdued in a node at level i+1 due to split-ting operations at level i. We de�ne the potential funtionfor an arbitrary node at level i + 1 represented by vi+1 asfollows:�(vi+1) = r2i �#green + ri �#red +#D-red; (1)where #green denotes the number of green edges, #red de-notes the number of red edges and #D-red denotes the num-ber of D-red edges.We would like to bound this potential by the maximumdegree of vi+1, that is we need to hoose bi+1 suh that:�(vi+1) � bi+1: (2)In the above disussion we implied that multiple splittingof a node is imperative to guarantee an upper bound on theout-degree of internal nodes. The problem is how to im-plement this multiple splitting proedure in onstant worst-ase time while satisfying Equation 2. This will be ahievedby using multiple levels of indiretion and by inrementalsheduling tehniques.It is essential to desribe how hild pointers are struturedin this tree struture T . The nodes of tree T are partitionedinto split groups and only onseutive nodes may be partof a split group. Nodes at level i ontain at least ai hildpointers and at most b3i�1. The hild pointers of a node arefurther partitioned into bloks with eah blok at level i stor-ing less than ai+ 2bi�1 edges. The partitioning of the hild

. . .
Node RecordGroup

Record

Father
pointer

pointer to
component

record

Node

Block

Split Group

.

... . . .

Pair
.

... . . .

. . .
Pointers to level i-1Figure 3: The struture of a single split group atlevel i. The split group onsists of a set of nodeswhih are further partitioned into a three-level hi-erarhy of bloks.pointers of a node into bloks is aomplished by strutur-ing bloks in a three-level tree struture. The omponentmehanism on tree T is de�ned over the set of split groupsin T . Intuitionally, if we ollapse eah split group into a sin-gle node then the tree that results (we an all it the grouptree) in fat implements the multiple split operation, as wewill see later in this disussion. The operations applied onsplit groups are Break(G), whih breaks the split group Ginto singleton split groups (split groups with just one node)and Add(v,G) that adds node v to split group G.Eah split group is represented by a split group reordwith a pointer to the respetive omponent, a boolean �eldag that indiates whether the split group is broken or notand a father pointer. Eah node has a node reord thatstores a pointer to the split group of the node. For a nodew we allow the operation Split(w) that reates a new nodew0 to the right of w (w and w0 both belong in the samesplit group). The new node w0 is formed by moving a setof bloks of hild pointers from w to w0. Two operationsan be applied on bloks, Add(e,e0) and Remove(e). Theformer operation adds a new hild pointer e0 next to thehild pointer e while the latter operation removes a hildpointer e from the blok. Finally, we apply on bloks thepair mehanism, whih in fat implements the inrementalsplitting of this objet. Eah pair of bloks onsist of twobloks and eah blok is ontained in exatly one pair. Allpairs of bloks at level i store at least ai hild pointers withthe possible exeption of the root. On pairs we apply theoperation Break(p) so that if p = (B1; B2), where Bi is ablok and jBij � ai, then after this operation two new pairsp0 = (B1; B01) and p00 = (B2; B02) substitute p where B01 andB02 are empty bloks. In Figure 3 we depit the internalstruture of split groups.Firstly, we will desribe the insertion algorithm based onFigure 1, and then we will proeed to the analysis disussion.So assume that we want to insert a new element immedi-ately to the right of an element l. We �rst loate the rootz = A:root of the omponent A that ontains the father of l.Break omponent A and insert split group z into the om-ponent B of its father w (note that w is just a node thatbelongs to a split group). Break z into singleton groups andsplit w into two nodes, w and w0. The new node w0 is formedby moving from w the rightmost blok at level two of theinternal struture of bloks. Then w0 is added to the blok

that ontains w as a hild (this is the implementation of op-eration Add(e,e0)). The new node w0 belongs to a pair ofbloks. If the leftmost blok of the pair has size � ai+ bi�1move the rightmost edge of the left blok to the right blok.If the right blok has size � ai and there is a split groupwith edges in both bloks of the pair move one edge fromleft to right. Note that after at most bi�1 suh operations,all elements of the split group have been moved to the rightblok and the pair an be split at this time. Finally, hekthe levels two and three of the hierarhy of bloks for pairsthat need splitting.In order to prove the orretness of the desribed proe-dure we need to guarrantee an upper bound on the degree ofthe internal nodes. So,going bak to Figure 1 assume thatz = A:root is a split group and that its father is a node (in-side a split group) w that belongs to the omponentB. Thenafter some operation in a leaf that belongs to omponent A,we break A and we break split group z into singleton groupsontaining only one node. Finally, we insert these singletonsplit groups to the omponent of w. The break of a splitgroup into singleton split groups an be implemented in alazy way by maintaining a ag in the split group reord thatindiates whether the split group is valid or invalid.We stated previously that the size of a blok at level i+1 is bounded by ai+1 and ai+1 + 2bi. Eah node has atmost 2b2i � 1 and at least 1 suh blok. In this way, eahnode groups at most 6b3i (requiring ai+1 < bi) hild pointersand at least ai+1 hild pointers. As a onsequene, whenstarting from a singleton split group at level i + 1 we anlearly see that the split group has < 6b3i out-degree. Sinethe maximum degree at level i is bi and we want to havesingleton split groups with minimum degree equal to ai wemay split eah split group into at most ri = biai singletonsplit groups. Thus, if we assume that initially we start witha singleton group gi+1 at level i + 1 whose hild pointersmay be of arbitrary olor (green, red or D-red) then themaximum number of nodes before being split into singletongroups is r2i .For the split group gi+1 equation 2 states that �(gi+1) �bi+1. We need to ensure that the potential inreases onlyunder ertain onditions so that we an ensure the validity ofequation 2. Sine one green edge may produe ri red edgesand one red edge may produe ri D-red edges and by equa-tion 1 we dedue that the potential does not inrease duringthe transitions between the four phases shown in Figure 2.This holds for all ases with the exeption of the transitionfrom phase (d) to phase (a), where D-red edges may againbeome green. In this way we have an inrease in potentialof order O(r2i) for eah D-red edge. However, multiple split-ting orrets this problem by making singleton groups witha ontrollable out-degree.From the above disussion it is easy to dedue that thepotential bounds the number of hild pointers whih may beprodued by a singleton group. Assuming that this singletonsplit at level i+1 has maximum apaity (it has < 6b3i out-degree) and that all hild pointers are green by equations 1and 2 we dedue that:6b3i r2i � bi+1) 6b3i (biai)2 � bi+1) 6b5i � bi+1 (3)From reurrene 3 we get:6b5i � bi+1) 6(6(: : :)5)5 � bi+1)

v

(a)

i-1

w

z

v

w

z

(b)

v

(c)

w

z

v

w

z

(d)

v

w

z

(e)

i

i+1

Figure 4: The onseutive phases of binary splits:(a) group w was just multiple split, (b) the multiplesplit of v results in the addition of a hild pointer atz, (d) the multiple split at level i � 1 results in theaddition of one more hild pointer at level i+ 1, (e)a multiple split takes plae at level i. A single splitgroup at level i� 1 when in phase (a) may produeup to bi�1 + 1 hild pointers at level i + 1 when inphase (e).650651652 : : : 65i � bi+1) 6Pij=0 5j � bi+1)6 5i�15�1 � bi+1) 6 5i�14 � bi+1) bi+1 � 223i�1 (4)The above analysis would be fully orret if we had a wayto ensure that binary splittings aused by multiple splittingsone level lower are terminal so that no asading splittingsof nodes are produed. Unfortunately, the de�nition of po-tential does not apture this situation but as we will see withthe appropriate tuning of the mehanism that implementsmultiple splitting we irumvent this problem. We will baseour argument on Figure 4. The mehanism of omponentsas shown in the previous setion ensures that a split groupat level i will be rebalaned only when the split groups atlevel i � 1 are twie rebalaned. This means that a singlehild pointer of a node at level i + 1 may produe at most2b4i�1 new edges due to multiple splittings at level i�1 thatprodue binary splittings at level i. Sine a node at level i+1has maximum apaity b3i and by the above observations wededue that after the phases depited in Figure 4 the num-ber of hild pointers of the node at level i+1 will be at mostb3i b3i�1bi�1, where b3i is the maximum initial out-degree of anode at level i + 1, b3i�1 is the maximum out-degree of anode at level i and bi�1 is for the double splitting due to theomponent mehanism. This means that the out-degree ofnodes is inreased in an unontrollable fashion. However, ifwe hange slightly the multiple splitting mehanism we anensure that this situation will not happen. When a multiplesplitting at level i takes plae (reates bi new split groups)then at level i+ 1 we reate a new node by moving b2i hildpointers. This means that we let at this node b2i � bi freespae for edges from binary splittings. Sine we have bi newnodes we demand that this free spae is enough for all point-ers from binary splittings. Thus, from the above disussionwe demand: b2i � 2bib4i�1) bi � 2b4i�1 (5)However, equation 5 is fully overed by equation 4 and soby hoosing a value for bi+1 suh that equation 4 is satis�edwe know for sure that a node will always have plae forpointers due to binary splittings and so we an ensure thatas far as insertions are onsidered the out-degree of internalnodes will be bounded.

The following theorem (mathing the bounds stated in [3℄)is the result of the above disussion:Theorem 1. Assuming that �nger searhes an be imple-mented eÆiently, we an maintain a �nger searh tree withworst-ase onstant �nger insertion time when deletions arenot allowed.
4. THE CASE OF DELETIONSIn this setion we assume that the only allowable opera-tion on an initial set of elements, whih is represented bythe tree struture T , is delete(l), where l is a pointer to theleaf that is going to be deleted. The sheduling mehanismfor the rebalaning operations is the mehanism of ompo-nents. Due to the ineÆieny of this mehanism desribedin Setion 2 we need to resort to a multiple version of knownrebalaning operations for the ase of deletions. In this asewe are going to use the notion of multiple fusion. The mul-tiple fusion is like the ordinary fuse operation for (a,b)-treeswith the diferene that many nodes partiipate in this op-eration. Generally, the strategy we follow for deletions issymmetri to insertions and this symmetry will be madeexpliit whenever neessary.Assume that we have aess to a proedure that we allorale, whih performs the multiple fusion proedure in on-stant worst-ase time. Thus, the orale is a mehanism thattakes as input a set of adjaent brother nodes and outputsin O(1) worst-ase time a single node that results from thefusion of all these nodes. The set of nodes that partiipatesin a all to the orale is alled fusion group. We will see laterin this setion how to anel this assumption. First, reallFigure 1. In a nutshell, the algorithm for the deletion of aleaf l onsists of �ve steps: a) �nd the set A in whih thefather of l belongs, b)remove leaf l,) break omponent A,d) all the orale for the root x = A:root of the omponentA and e) add to the omponent of its father the new nodex0 produed by the orale. Below we show, based on theassumption of the existene of suh orale, that the abovealgorithm is orret.First, we need to de�ne the fusion fator, ai, for all nodesof eah level i. The fusion fator for level i is the requiredout-degree for eah new node produed by a all to the or-ale. Thus, after the appliation of a rebalaning operationimplemented by the orale at level i, we an assure that thenew node v has out-degree ai. We set the lower bound on thedegree of a node to be equal to 2 - in the worst-ase we ex-pet to have a binary tree. Considering the fusion fators oflevels i and i�1 (ai and ai�1 respetively) we may generatea reurrene relation that bounds the fusion fator, basedon the fat that the lower bound in the degree of a node isequal to 2. In this way we produe the following reurrenerelation: ai(ai�1=2)2 � 4, where a1 = 4 (at level 1 we want atleast an out-degree of 4). To generate this reurrene rela-tion we have to note that a node at level i with initial outdegree ai may, by applying multiple fuse operations twie atits hildren due to Lemma 1, have at least degree equal to 2.The orale at level i� 1 needs to fuse at most ai�1=2 nodes(thus, the maximum number of nodes inside a fusion groupis ai�1=2) with minimum degree 2 during a multiple fuseoperation at this level while by Lemma 1 the multiple fuseswill involve at most (ai�1=2)2. It will be made lear belowwhy we have hosen this fration to be larger than 4 andnot larger than 2. Thus, by solving the above reurrene we

z

w x

(a)

z

w x

(b)

z

w x

(c)Figure 5: The three possible di�erent situations inthe fuse operation between fusion groups. All othersituations are symmetri.get: ai � a2i�1; a1 = 4) ai � 42i) ai � 22i+1 (6)Choosing a value for ai suh that equation 6 is satis�ed wemay ensure that the above algorithm implements deletionsin onstant worst-ase time with a guaranteed non-triviallower bound on the degree of the nodes. However, thereare two issues that need lari�ation. The �rst one refersto the maintenane of omponents under the multiple fuseoperation while the other refers to the struture of nodesand the maintenane of the lower bound on the degree ofthe nodes.The �rst problem as we mentioned above is to maintainthe omponents during a multiple fuse operation. We willassume that a multiple fuse operation is in fat a sequeneof ordinary binary fusions. All possible ases for the fusionof adjaent nodes are depited in Figure 5. In ase (a) webreak omponent rooted at w, we fuse it with x and add thenew node to the omponent of z. In ase (b) we break bothomponents rooted at w and x and add the new node thatomes from the fusion of w and x at the omponent of itsfather. Finally, ase () is easy to implement by breakingthe omponent rooted at w and inserting w into its fatheromponent by fusing it with its brother x. We must alsoensure that this fusion will not lead to a single fusion groupas a hild of a fusion group at the upper level. If this hap-pens, then we annot guarantee the lower bound of 2. Thisis due to the fat that the distribution of update operationsbetween the di�erent subtrees is not known. The followinglemma solves this problem.Lemma 2. For every distribution of update operations be-tween subtrees rooted at the hildren of a node v, the hoieof the fusion fator given in equation 6 an guarantee thatthe number of fusion groups is at least 2.Proof. Note that in equation 6 we demand that the fra-tion be larger than 4. This means that if we were given aworst-ase sequene of operations at the hildren of a node vat level i beforehand (o�ine updates), then we ould guar-antee that at the end (just before rebalaning v at level i),v would have exatly 4 hildren (this would work even for 3hildren). However, sine the updates are online we have tode�ne fusion groups on the y. However, even in this asewe an guarantee a lower bound of two hildren for eahnode sine there are always many hildren to onstrut twofusion groups indepedently of the distribution of the updateoperations.In addition, note that the early break of the omponentsdoes not inur any problems with the omponent meha-

nism. In fat, this early break aelerates the mehanism ofomponents.We must also onsider the internal struture of nodes.Assume a node at level i. This node is strutured into atleast ai�1 bloks of size exatly ai�1. Thus, the out-degreeof a node at level i is a2i�1 immediately after the multiplefuse operation, whih of ourse satis�es equation 6. In thisway, eah blok de�nes at least two new nodes at level i �1 (due to Lemma 2) after the appliation of the multiplefusion operation at this level. Thus, the blok may haveafter this operation less that ai�1 hild pointers. To remedythis problem we form a pair between this blok and one ofits adjaent bloks. If both adjaent bloks already belongin a pair then break an existing pair and reate a new one.The mehanism of pairs guarantees that there will be noasading breaks of pairs. Nodes (and as a result fusiongroups) are also strutured into pairs, so that inrementalfusion between nodes is possible. Lemma 2 ensures thateah node will have at least two hildren.In the above disussion we assumed the existene of an or-ale to show that by using omponents and the mehanismof multiple fusion one an ome up with an implementa-tion of deletions in onstant worst-ase time while keepingthe struture balaned. At this point, we need to anelthis assumption. To ahieve this, we have to implementthe multiple fusion operation in an inremental way. Thismeans that the fusion groups are onstruted inrementallyand are not formed in onstant worst-ase time as in theimaginary mehanism of the orale. The fusion group, asde�ned above, is a set of onseutive nodes that at the endwill form by fusion a single new node. The total out-degreeof a fusion group at level i must be at least ai, sine eahfusion group is in fat a node under onstrution. In ad-dition, note that omponents are de�ned on fusion groupssine these will beome single nodes at some time in the fu-ture. Below we desribe when and how the fusion groupsare formed.First we give some details of the deletion algorithm basedon Figure 1, assuming that we want to delete leaf l. Thealgorithm follows:1. Find the omponent A in whih the father of l belongs.Let new fg be the new fusion group whih is the rootof A at level i� 1.2. Break A. Let B the omponent of its father.3. Add(new fg,B). Let xj be the node whih is father ofnew fg and let xj+1 be its brother node inside the pairor if it does not belong in the pair one of its adjaentnodes. Both nodes belong in the same fusion group fgat level i (note that fg is the real node while xj andxj+1 are nodes whih should be fused).4. Make an inremental fuse operation between xj andxj+1.5. If out degree(fg) � ai then fuse an adjaent fusiongroup with fg and fuse the respetive adjaent bloksat level i+ 1 (all these fusions are inremental).The above algorithm makes two assumptions. The �rstassumption is that a fusion group is fully ontained in ablok one level above. This assumption holds by using theindutive argument stemming from the maintenane of the

bloks in the deletion algorithm given above. The seond as-sumption is that the fusion between nodes that takes plaeas a result of a multiple fuse one level below may damagethe out-degree of the fusion group one level above. However,this is not true sine the fusion between two nodes due toa multiple fuse in the level below is ontained in the inre-mental onstrution of the single node by the fusion groupontaining both nodes. Thus, generally one ould say that amultiple fusion (the inremental fusion of fusion groups) atlevel i� 1 results in a binary fusion (the inremental fusionof nodes) at level i whih further results in the removal ofa hild edge from a blok at level i + 1. Symmetrially, ininsertions a multiple split at level i � 1 results in a binarysplit at level i whih further results in the insertion of a newhild pointer in a blok at level i+ 1.In addition, the fusion of adjaent fusion groups a�etsthe omponent mehanism. All possible ases for ompo-nents are depited in Figure 5. Case (a) is easy to solve byinserting fusion group x into the omponent with root thefusion group w. Case () is also easy to solve by breaking theomponent with root w and inserting w into the omponentwhere x belongs, after initiating the inremental fusion of wand x. Sine x is a full fusion group (it has the neessaryout-degree) one an say that it may absorbs all of its broth-ers and thus violate the lower bound of 2 on the degree offusion groups. However, this is not the ase sine we mayfuse w with its right or left brother and as a result in theworst-ase this proedure will lead to two fusion groups atthe level of w. Case () an be takled by using the Link op-eration desribed in Setion 2. The aim here is to unite bothomponents rooted at w and x. This an be aomplishedby the Link operation. However, we mentioned in Setion 2that we may have to inrementally join two omponents rep-resented by fusion reords. The inremental step is to makea onstant number of omponent reords to point to one ofthe two fusion reords and it is arried out while exeut-ing step 4. Sine this proedure starts as soon as the fusiongroup has ai�1 out-degree we have enough time available toexeute the transfer of omponenet reords from one fusiongroup to the other.To summarize, the mehanism of omponents is appliedon fusion groups. The omponents are represented by om-ponent reords as in the ase of insertions, but to ahieve aworst-ase onstant implementation of the union of two ad-jaent omponents (the adjaeny is de�ned with respet totheir roots) we introdued another level of indiretion, thefusion reords. Thus, eah omponent is represented eitherby a omponent reord when the pointer �eld that pointsto the fusion reord is nill or by the fusion reord pointedby this pointer. Eah fusion group represents a future nodeand onsists of a set of nodes with the restrition that itsout-degree is at least equal to ai.In the above disussion we devised a data struture thatimplements deletions in onstant worst-ase time in the poi-nter mahine model of omputation. The only problem nowremaining is to ombine both solutions into a new one thatimplements the worst-ase onstant update �nger searhtree and to show how to support �nger searhes in O(log d)time, where d is the distane between the �nger and theelement we searh.Theorem 2. Assuming that �nger searhes an be imple-mented eÆiently, we an maintain a �nger searh tree withworst-ase onstant �nger deletion time when insertions are

not allowed.
5. THE FINGER SEARCH OPERATIONIn this setion we sketh how the tree struture for inser-tions and for deletions an support eÆiently �nger searhes.In a �nger searh we are given a �nger f and an element xand we want to �nd element x in the tree struture startingthe searh from f and ompleting the task in time O(log d),where d is the distane between f and x in the struture.The main problem with the struture is that there are nodeswhih have large degree and thus we need to investigate theomplexity of the searh proedure in these nodes.If we solve the problem for the insertion struture then wean apply the same approah for for the struture supportingdeletions as well as for the general struture. Eah blok atlevel i + 1 - onsidering the insertion tree struture - hasmaximum degree 3bi�1, for whih by equation 4 holds thatbi � 223(i�1)�1 . Thus, the degree of the bloks at level i isO(22i). First we use level linking ([11℄) on the node treestruture. As a result, the searh proedure basially startsfrom a leaf pointed by a �nger f and traverses the anestorsof f until we �nd the �rst anestor v (or one adjaent to thisnode by using level pointers) that ontains x in his range.Then we searh the spei� subtree for x. It is imperative toshow an upper bound on the distane between x and f basedon the level of node v. Assume that v is at level i. Then,the maximumdistane d will be O(22i)O(22i�1) : : : O(221) =O(22i+1). The lower bound on the distane between f andx when v is at level i is O(2i) sine the minimum degree ofinternal nodes is 2. The following Lemma from [3℄ will help:Lemma 3. There exists a pointer-based implementationof �nger searh trees whih supports arbitrary �nger searhesin O(log log n+log d) time, and �nger updates in worst-aseonstant time.Proof. The lemma is obtained by ombining the �n-ger searh trees of Dietz and Raman ([5℄) and the searhtrees of Levopoulos and Overmars ([13℄). For more detailssee [3℄.We represent eah blok by using the struture of Lemma 3.Internal bloks (they are used in the three level tree stru-ture for bloks) are also strutured by using Lemma 3. Thus,the searh proedure at the bloks Bk of node v an be per-formed in O(log log jBkj + log d). In the worst-ase jBkj =bi = 223i and as a result the �nger searh an be performedin O(log log 223i +log d) = O(i+log d). Assuming that theyhave maximum distane (d =
(22i)) we get (for minimumdistane it is symmetri):O(i+ log d) + i�1Xj=1O(log 22j))O(2i + log d)) O(log d) (7)sine log d =
(2i).The proedure skethed above an be as well applied in thease of deletions with minor modi�ations. In addition, thesame tehniques an also be applied in the ombined solu-tion for insertions and deletions desribed in Setion 6. Thefollowing theorem summarizes the disussion in this setion.

Split Group

. . .

Fusion Group

. . .

Node

...
. . .

Block

Fusion Group
Record

Split Group
Record

Node Record

...
. . .

Figure 6: The hierarhy of objets in the tree stru-ture is depited (split groups onsisting of fusiongroups onsisting of nodes onsisting of bloks).This hierarhy is maintained by pointers betweenthe di�erent objets, whih are stored in the re-spetive reords (eg. for a node the respetive nodereord has a pointer �eld that points to the fusiongroup in whih this node belongs).Theorem 3. There exists a pointer-based implementationof �nger searh trees that support arbitrary �nger searhesin O(log d) time and �nger insertions in worst-ase onstanttime. The same holds for the tree struture that supportsdeletions.
6. CONSTANT UPDATE FINGER SEARCH

TREESIn this setion we sketh an implementation of a worst-ase onstant update �nger searh tree in the pointer ma-hine based on the strutures given in Setions 3 and 4. Ingeneral we have onsidered two strategies to join the stru-tures for deletions and insertions in a single data struture.The �rst one is to allow the existene of fusion groups andsplit groups simultaneously into the struture. However,with this approah the struture beomes muh more om-pliated sine we have to make a distintion between fusionomponents and split omponents. The seond approah,whih we analyze in this paper, is to de�ne a hierarhy be-tween split and fusion groups. As a result, omponents referto update operations and not solely to insertions or dele-tions.The hierarhy of objets that we use inside the tree stru-ture onsists of bloks, nodes, fusion groups and �nally splitgroups and it is depited in �gure 6. In this way, eahsplit group onsists of fusion groups, whih are further par-titioned into nodes. Finally, nodes onsist of bloks thatgroup the hild pointers. The idea of this approah is thefollowing: the split group that resides at the root of the om-ponent is �rst split into singleton split groups. A singletonsplit group ontains only one fusion group (as in insertionsonly ase where eah singleton split group ontains only onenode). In the extreme ase where only insertions are al-lowed, the fusion groups will always onsist of single nodeswhile in the ase where only deletions are allowed, the splitgroups will always ontain only one fusion group with a suf-�ient number of nodes as shown in Setion 4. In the generalase, the split groups will ontain a number of fusion groupswhih further ontain a number of nodes. Thus, intuitivelywe managed to have omponents handle both multiple splits

and multiple fusions at the same time. This is ahieved byapplying the omponent mehanism only on split groups.In Setions 3 and 4 ertain invariants where applied onthe size of the bloks and on the size of the nodes. Theseinvariants must also hold in the general setting where inser-tions and deletions are allowed simultaneously. The sizes offusion and split groups are derived based on the validity ofthe invariants given below.Invariant 1. The maximum out-degree of a blok at leveli is ai + 2 � bi�1.Invariant 2. The minimum out-degree of a blok at leveli is 2.Invariant 3. Eah node at level i has out-degree at least2 and at most b3i�1.Invariant 4. The fusion fator at level i+1 must be lessthan bi (ai+1 < bi).It is obvious that the initial state satis�es invariants 1to 4. For the extreme ases also holds he same invariants.For example, if we onsider deletions then the split groupoinides with the fusion group and thus, invariants 1 to 4hold by the disussion made in Setion 4. In the ase ofinsertions only, the fusion groups oinide with nodes andas a result invariants 1 to 4 hold by the disussion made inSetion 3.The main diÆulty lies in the general setting where inser-tions and deletions are allowed simultaneously. This prob-lem is related to the interation of the mehanisms of dele-tions and insertions. First, we sketh the update algorithm,based on Figure 1. Assume that an update operation takesplae at leaf l. The father f of the leaf l belongs in theomponent A, while the father (the split group) of A:rootbelongs in the omponent B. We make a rebalaning oper-ation at A:root, whih assume that lies at level i � 1. Thisrebalaning operation involves a break of the split groupA:root into singleton split groups (groups with one fusiongroup). At this point, if the father node at level i is largeor small we respetively split it or fuse it with an adjaentnode. Thus, we need to apply a size ontrol mehanism fornodes. We an ahieve this in a straightforward way by re-quiring that a node with out-degree less than ai is smallwhile a node with out-degree larger than b3i�1 is large. Theresult of a binary split (fusion) operation at level i is that anedge is inserted (deleted) at (from) level i+ 1. At this levelwe just have to update bloks in a manner similar to theone desribed in the previous setions. Below we sketh themain steps of the update algorithm at a leaf l (the algorithmis based on �gure 1).1. Find the omponent A in whih the father of l belongs.Let new sg be the spit group whih is the root of A atlevel i� 1.2. Break A. Let B the omponent of its father.3. Add(new sg,B) and Break(new sg). Let xj be the nodewhih is father of new fg and let xj+1 be its brothernode inside the pair or if it does not belong in the pairone of its adjaent nodes. Both nodes belong in thesame fusion group fg at level i (note that fg is thereal node while xj and xj+1 are nodes whih shouldbe fused).

4. If xj is small then start an inremental fusion of xjand xj+1. If xj is a big node then split xj .5. If out degree(fg) � ai then fuse an adjaent fusiongroup with fg and fuse the respetive adjaent bloksat level i + 1 (all these fusions are inremental). Thesplit groups should be reorganized aordingly if af-feted by this operation.In step 5 of the algorithm split groups are a�eted by thefusion of adjaent fusion groups. If the split group is notsingleton, that is it ontains more than one fusion groups,then none split group is a�eted. However, if the split groupis singleton then if in step 5 the unique fusion group needsto be fused with some other node then we put this singletonin an adjaent split group and make the inremental fusion.The split and fuse operations applied on nodes are inre-mentally implemented by using the mehanism of pairs. Ingeneral, all size invariants are maintained by applying thesame mehanisms as in Setions 3 and 4 with some minormodi�ations. Note that the inremental fusion and splitsof nodes a�ets the fusion and split groups in the same wayas desribed in Setions 4 and 3 respetively. In addition,fusions of nodes does not a�et the split groups. However,it is neessary to introdue the split operation (apart fromthe fuse operation) in fusion groups due to splits of nodes.When a node is split into two nodes, it is neessary to splitthe fusion group into two fusion groups.This an be aomplished in worst-ase onstant time if webuild a struture on nodes similar to the struture of bloksthat onsist a single node. This three level struture willallow us to implement the split of a fusion group in worst-ase onstant time in a similar way to the split of nodes.It is easy to maintain a balaned partition (with respetto the out-degree of the nodes) of these nodes sine theirout-degree is inreased or dereased by one (the insertion ordeletion of an edge respetively).The following theorem summarizes the result given in thispaper:Theorem 4. We an maintain a �nger searh tree inthe pointer mahine model of omputation suh that �ngersearhes are performed in worst-ase optimal time O(log d)while updates are performed in onstant worst-ase time.
7. CONCLUSIONSIn this paper we skethed a solution to the long-standingproblem of devising worst-ase onstant update �nger searhtrees in the pointer mahine. This was aomplished by us-ing an innovative sheduling mehanism of rebalaning op-erations as well as a multiple version of known rebalaningoperations in (a,b)-trees (fusions and splits).The solution is ompliated and we would surely like to seea simpler solution to this problem that ould also be appliedto trees of onstant out-degree. However, it is our intuitionthat to do so one must either enhane the tehnique of om-ponents or maybe ombine it with some other tehniques.In addition, it would be interested to �nd appliations of theomponent tehnique in other problems. Finally, we mustnote that several tehnial details were not inluded in thisextended abstrat but they will be onsidered in a futurejournal version.

8. REFERENCES[1℄ A. Anderson and M. Thorup. Tight(er) Worst-aseBounds on Dynami Searhing and Priority Queues. InPro. 32nd Annual ACM Symposium On Theory ofComputing (STOC), pages 335-342. ACM, 2000.[2℄ G.S. Brodal. Partially Persistent Data Strutures ofBounded Degree with Constant Update Time. NordiJournal of Computing, 3(3):238-255, 1996.[3℄ G.S. Brodal. Finger Searh Trees with ConstantInsertion Time. In Pro. 9th Annual ACM-SIAMSymposium on Disrete Algorithms(SODA), pages540-549, 1998.[4℄ M.J. Clany and D.E. Knuth. A programming andproblem-solving seminar. T.R. STAN-CS-77-606, Dept.of Comp. Siene, Stanford University, 1977.[5℄ P. Dietz and R. Raman. A Constant Update TimeFinger Searh Tree. Information Proessing Letters,52:147-154, 1994.[6℄ J.R. Drisoll, N. Sarnak, D.D.Sleator and R.E. Tarjan.Making Data Strutures Persistent. Journal ofComputer and System Sienes, 38:86-124, 1989.[7℄ R. Fleisher. A Simple Balaned Searh Tree with O(1)Worst Case Update Time. International Journal ofFoundations of Computer Siene, 7:137-149, 1996.[8℄ L.J. Guibas, E.M. MCreight, M.P. Plass and J.R.Roberts. A New Representation for Linear Lists. InPro. 9th Annual ACM Symposium On Theory ofComputing (STOC), pages 49-60. ACM, 1977.[9℄ D. Harel. Fast Updates with a Guaranteed Time Boundper Update. T.R. 154, Dept of ICS, University ofCalifornia at Irvine, 1980.[10℄ D. Harel and G. Lueker. A Data Struture withMovable Fingers and Deletions. T.R. 145, Dept of ICS,University of California at Irvine, 1979.[11℄ S. Huddleston and K. Mehlhorn. A New DataStruture for Representing Sorted Lists. AtaInformatia, 17:157-184, 1982.[12℄ S.R. Kosaraju. Loalized Searh in Sorted Lists. InPro. 14th Annual ACM Symposium On Theory ofComputing (STOC), pages 62-69. ACM, 1981.[13℄ C. Levopoulos and M.H. Overmars. A BalanedSearh Tree with O(1) Worst Case Update Time. AtaInformatia, 26:269-277, 1988.[14℄ M.H. Overmars. An O(1) Average Time UpdateSheme for Balaned Searh Trees. Bulletin of EATCS,18:27-29, 1982.[15℄ R.E. Tarjan. A Class of Algorithms whih RequireNonlinear Time to Maintain Disjoint Sets. Journal ofComputer and System Sienes, 18:110-127, 1979.[16℄ R.E. Tarjan. Updating a Balaned Searh Tree inO(1) Rotations. Information Proessing Letters,16:253-257, 1983.[17℄ A.K. Tsakalidis. AVL-trees for Loalized Searh.Information and Control, 67:173-194, 1985.

