Optimal Finger Search Trees in the Pointer Machine

[Extended Abstract]

*

Gerth Stglting Brodal
Dept. of Comp. Sci.
University of Aarhus

BRICS f
gerth@brics.dk

Athanasios Tsakalidis
Comp. Eng. & Inf. Dept.
University of Patras
& Computer Technology
Institute
Patra, PO 22500

tsak@cti.gr

ABSTRACT

We develop a new finger search tree with worst-case constant
update time in the Pointer Machine (PM) model of compu-
tation. This was a major problem in the field of Data Struc-
tures and was tantalizingly open for over twenty years while
many attempts by researchers were made to solve it. The
result comes as a consequence of the innovative mechanism
that guides the rebalancing operations combined with incre-
mental multiple splitting and fusion techniques over nodes.

Keywords

balanced trees, update operations, finger search trees, data
structures, complexity

1. INTRODUCTION

The balanced search tree is one of the most common data
structures used in algorithms. Assuming that the update po-
sition is known, balanced search trees with O(1) amortized
update time have been presented long ago ([6, 14]). It has
also been known ([6, 16]) that updates can be performed in

*Research conducted while visiting Computer Technology
Institute (CTI) and University of Patras, Greece.

JrBasic Research in Computer Science, www.brics.dk, funded
by the Danish National Research Foundation.

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

STOC' 02, May 19-21, 2002, Montreal, Quebec, Canada.

Copyright 2002 ACM 1-58113-495-9/02/000585.00.

George Lagogiannis
Comp. Eng. & Inf. Dept.
University of Patras
& Computer Technology
Institute
Patra, PO 22500

lagogian@ceid.upatras.gr

Christos Makris
Comp. Eng. & Inf. Dept.
University of Patras
& Computer Technology
Institute
Patra, PO 22500

makri@ceid.upatras.gr

Kostas Tsichlas
Comp. Eng. & Inf. Dept.
University of Patras
& Computer Technology
Institute
Patra, PO 22500

tsinlas@ceid.upatras.gr

O(1) structural changes, but the nodes to be changed have
to be searched in Q(log n) time. Levcopoulos and Overmars
([13]) presented an algorithm achieving O(1) worst case up-
date time by using a global splitting lemma that is based
on a pebble game combined with the bucketing technique of
Overmars ([14]). Instead of storing single keys in the leaves
of the search tree, each leaf can store a list of several keys.
Unfortunately, the buckets in [13] have size O(log?n), so
they need a two level hierarchy of lists in order to guaran-
tee O(logn) query time within the buckets. Deletions are
handled by means of global rebuilding. Fleischer ([7]) pre-
sented a simpler approach to the problem. The rebalancing
of the tree is distributed over the next log n insertions into
the bucket which was split. Each bucket is equipped with
a pointer pointing to an ancestor or to a node near an an-
cestor of the specific bucket. Insertions are performed by
first inserting the new key into its respective bucket. Let
u be the node pointed by the pointer of the bucket. If u
has out-degree larger than b then w is split into two small
nodes, otherwise u is left intact. In any case the pointer of
the bucket is moved up one level. It is proved that starting
from an (a,b) tree, the degree of the internal nodes cannot
grow more than 2b and the size of the buckets can grow up
to 2logn. Deletions are handled simply by using the global
rebuilding technique.

Finger search trees are search trees for which the search
procedure can start from any leaf of the tree, (this starting
element is termed a finger) and the time complexity of the
search procedure is asymptotically equal to the logarithm
of the distance between the finger and the search element.
In the RAM model of computation finger search tres with
constant update time have already been devised by Dietz
and Raman ([5]), while recently Andersson and Thorup ([1])
have surpassed the logarithmic bound on the search proce-
dure. These two papers are based on a global rebalancing
scheme combined with the bucketing techniques presented

in [13]. For the pointer machine model of computation, steps
have been made towards this direction by researchers (see
[3, 4, 8, 9, 10, 12, 17]), but the problem remained tanta-
lizingly open. The best solution is given by Brodal ([3]),
who proposed a finger search tree with constant insertion,
but with O(log™ n) deletion time. This time bound of the
delete operation is a direct result of our difficulty to handle
efficiently deletions in a local rebalancing setting.

In this paper we will present the first constant update fin-
ger search tree. Note that the space requirements of this
structure will be, by contruction, linear since in constant
time we can only access constant amount of space. However,
the technique of global rebuilding is essential to guarantee a
linear bound on space complexity in the long-term. In Sec-
tion 2 we describe the basic technique used to achieve the
alleged result. In Section 3 we describe a finger search tree
that supports only the operation of insertion in worst-case
constant time. This structure can be seen as an alternative
solution to the insertion only algorithm of [3]. In Section 4
we describe a finger search tree that supports solely the op-
eration of deletion in worst-case constant time. In Section 5
we sketch the mechanism needed to guarantee efficient fin-
ger searches. Finally, in Section 6 we combine both solutions
analyzed in previous sections and we conclude at Section 7
with some final remarks. We must note that we left many
technical details for a future journal version.

2. THE COMPONENTS

The technique of components is based on an idea previ-
ously used in the work of Brodal on making worst-case par-
tially persistent data structures ([2]). Components define a
logical partition over the set of non-leaf nodes of the finger
search tree into connected subtrees that dictate the position
of the rebalancing operations. We assume that we are given
a height-balanced search tree T and a component A over the
nodes of T, where A is a subtree of T rooted at the node
A.root. All leaves of T have equal depth. We say that the
leaves are at level 0 while the level of a node is equal to the
level of its children plus one. The maximum degree b; and
the minimum degree a; of a node at level 7 is a function of ¢
with the exception of the root that has minimum out-degree
equal to two. Let r; = Z—i, be the ratio of b; and a; for level
i.

Initially, all nodes of 1" are singleton components, that is
components with only one node. The root of a singleton
component is the node itself. For the general component A
root of the component is A.root and this node will be the
handle of the component. In addition, all nodes v € A who
have a child u such that u € A consistute the border of com-
ponent A, which is represented by border(A). As we will
see in the following sections the border of a component is
the part of the component that absorbs all the disturbances
caused by rebalancing operations in their subtrees. In Fig-
ure 1 we depict the structure of a component A on a tree
T with root z = A.root. These components must be main-
tained under the operations of Link and Find, which is well
known that cannot be implemented in constant worst-case
time in the PM (see [15]). However, here we exlpoit the spe-
cial structure of the components and as a result we are able
to acquire a worst-case constant time complexity. We would
like to support the following operations on components in
worst-case constant time:

Figure 1: The structure of a component A in a tree
T. By CR we represent the component record.

1. Break(z): the component A with handle z is destroyed
and the nodes that once belonged to A become single-
ton components.

2. Add(v,z): adds the node v in the component with han-
dle z (component A in Figure 1) containing the father
of v.

3. Find(v): returns the root of the component where
node v belongs.

4. Link(u,z): links components with handles v and z into
a new single component with handle w. It is assumed
that nodes u and z are siblings and that immediately
after the Link operation z is absorbed by u (an incre-
mental fuse operation in the setting of (a,b)-trees).

We represent each component by a component record. The
component record for component A has a pointer to A.root
as well as a bit walid that indicates whether A is a valid
component (valid=TRUE) or an invalid one (valid=FALSE).
When a component is invalid then each node that points to
the respective component record is a singleton component.
Each node v € A has a pointer to the component record
of A. In this way operation Find(v) is performed in worst-
case constant time. Operation Add(v,u) is also performed
in constant time since we just need to make the pointer of
node v to point to the component record of the component
with root u. We assume that the component with root
is valid. Operation Break(z) is easily performed in constant
time by setting the flag valid of the component record of the
component with handle z equal to FALSE. Finally, opera-
tion Link(u,z) can be implemented in constant worst-case
time due to the special structure of the components. This
is achieved by using fusion records. The components that
must be joined have their component records point to this
fusion record which further points to the root of the joined
components. Thus, each component may be represented by
its component record or by the fusion record when the com-
ponent record points to one. When two components that
are represented by fusion records become joined, we incre-
mentally move the component records from the one fusion
record to the other. In Section 4 this operation is necessary
and we will see there that we have enough time to perform
it incrementally.

We will now sketch how the mechanism of components is
integrated in a height balanced tree T' to guide the rebalanc-
ing operations as a consequence of the update operations in
its leaves. Assume a leaf [, its father f and its grandfather

ff and assume that [is the receiver of an update operation
(either insertion or deletion). The receiver of an update op-
eration is the leaf pointed by the finger that dictates the
position of the update operation. If f is a singleton compo-
nent (either the component record to which f points indi-
cates that f is the root or this component record is invalid)
then a rebalancing operation is performed and it is added to
the component of ff. If f belongs in a non-singleton com-
ponent A, then we rebalance w = A.root, we break A and
finally we add w in the component of its father. Thus, when
an update operation takes place inside a component (that is
at a leaf of a node that belongs to this component) then we
make a rebalancing operation at the root of this component.
Operation Link is necessary as we will see in Section 4 for
the performance of fusion operations. We silently assumed
that we have an efficient rebalancing scheme and that in
addition this scheme guarantees a controllable out-degree of
internal nodes. In the following sections we will see how to
cancel these assumptions.

The main problem with the technique of components is
that it is not fast enough concerning the traversal of the an-
cestors with large height. This fact is given in the following
lemma.

LEMMA 1. A node v is rebalanced after its children are
twice rebalanced in the worst-case.

PROOF. Assume a node v in the component A that be-
longs to border(A). Then, all of its children must be rebal-
anced at least one time to ensure that v ¢ border(A). When
A breaks, then all of the children of v may be rebalanced
before v gets rebalanced as a root of a non-trivial component
(a component which does not consist of a single node). In
addition, a node is rebalanced three times if and only if the
component mechanism does not add this node to the com-
ponent of its father. However, it is clear by the mechanism
of components that this situation is not possible and as a
result the lemma follows. [

Lemma 1 means that the cost of rebalancing, when using
this scheduling algorithm, is exponentially increasing with
respect to height j. Thus, this technique is not enough by
itself to guarantee a bounded out-degree of internal nodes.
However, we will see in the following sections that by mak-
ing the rebalancing operations more aggressive we can com-
pensate for the inefficiency of the component mechanism.
The term “aggressive” means that instead of making binary
splits or binary fusions we perform multiple splits and mul-
tiple fusions respectively.

3. THE CASE OF INSERTIONS

In this section we assume that we can only insert new el-
ements in the tree structure (the discussion for deletions is
postponed to the next section). The solution we are going
to describe can be seen as a simplified/alternative solution
to the insertions only algorithm described in ([3]). First we
must formulate the main problem of the component mecha-
nism. This problem is located in the border of a component.
In Figure 2 we depict the four different situations that can
happen in border(A). The colors over the edges describe
the potential of the child node to give new nodes through
successive splitting operations.

j
green | red

'
!
1
]
v
I
v

N -

(d)

Figure 2: The definition of split groups at the border
of components (v is at level i while w is at level i+1),
(a) v is a singleton component while w belongs to a
non-singleton component, (b) v is inserted into the
component of w, (c) the component of w is broken
and (d) v belongs to the component of w where w is
the root.

Assume node v at level ¢ with maximum degree b;. To
guarantee an upper bound on the out-degree of internal
nodes when we use the component mechanism we must per-
form a multiple split operation, that is to split v into many
nodes v; with out-degree at least equal to a;. Thus, we need
to split v into at most r; nodes. In Figure 2 it is easy to see
that when edge (w,v) is green (phase (a)) then all children
of w may split resulting in phase (b). Phase (c) is derived
from phase (b) by performing a Break operation on the com-
ponent that w belongs. Finally, phase (d) is derived from
phase (c¢) when all children of w are again multiple split.
Thus, a green edge may produce up to r; red edges while a
red edge may produce up to r; D-red edges. From the dis-
cussion above it is clear that D-red edges don’t produce any
new nodes. These observations can be expressed by the use
of a potential function ®. This function counts the number
of new edges introduced in a node at level ¢+ 1 due to split-
ting operations at level i. We define the potential function
for an arbitrary node at level i + 1 represented by v;+1 as
follows:

®(viy1) = 17 - #green + r; - #red + #D-red, (1)

where #green denotes the number of green edges, #red de-
notes the number of red edges and #D-red denotes the num-
ber of D-red edges.

We would like to bound this potential by the maximum
degree of v;41, that is we need to choose b; 41 such that:

®(vit1) < bit1. (2)

In the above discussion we implied that multiple splitting
of a node is imperative to guarantee an upper bound on the
out-degree of internal nodes. The problem is how to im-
plement this multiple splitting procedure in constant worst-
case time while satisfying Equation 2. This will be achieved
by using multiple levels of indirection and by incremental
scheduling techniques.

It is essential to describe how child pointers are structured
in this tree structure 7. The nodes of tree T are partitioned
into split groups and only consecutive nodes may be part
of a split group. Nodes at level ¢ contain at least a; child
pointers and at most b>_;. The child pointers of a node are
further partitioned into blocks with each block at level i stor-
ing less than a; + 2b;—1 edges. The partitioning of the child

pointer to

Father
component

pointer

Pointers to leveiF1

Figure 3: The structure of a single split group at
level i. The split group consists of a set of nodes
which are further partitioned into a three-level hi-
erarchy of blocks.

pointers of a node into blocks is accomplished by structur-
ing blocks in a three-level tree structure. The component
mechanism on tree T is defined over the set of split groups
in T'. Intuitionally, if we collapse each split group into a sin-
gle node then the tree that results (we can call it the group
tree) in fact implements the multiple split operation, as we
will see later in this discussion. The operations applied on
split groups are Break(G), which breaks the split group G
into singleton split groups (split groups with just one node)
and Add(v,G) that adds node v to split group G.

Each split group is represented by a split group record
with a pointer to the respective component, a boolean field
flag that indicates whether the split group is broken or not
and a father pointer. Each node has a node record that
stores a pointer to the split group of the node. For a node
w we allow the operation Split(w) that creates a new node
w' to the right of w (w and w’ both belong in the same
split group). The new node w’ is formed by moving a set
of blocks of child pointers from w to w’. Two operations
can be applied on blocks, Add(e,e’) and Remove(e). The
former operation adds a new child pointer ¢ next to the
child pointer e while the latter operation removes a child
pointer e from the block. Finally, we apply on blocks the
pair mechanism, which in fact implements the incremental
splitting of this object. Each pair of blocks consist of two
blocks and each block is contained in exactly one pair. All
pairs of blocks at level ¢ store at least a; child pointers with
the possible exception of the root. On pairs we apply the
operation Break(p) so that if p = (B1, Bz), where B; is a
block and |B;| > aj, then after this operation two new pairs
p' = (B1, B}) and p" = (Bs, Bj) substitute p where B} and
Bj are empty blocks. In Figure 3 we depict the internal
structure of split groups.

Firstly, we will describe the insertion algorithm based on
Figure 1, and then we will proceed to the analysis discussion.

So assume that we want to insert a new element immedi-
ately to the right of an element . We first locate the root
z = A.root of the component A that contains the father of [.
Break component A and insert split group z into the com-
ponent B of its father w (note that w is just a node that
belongs to a split group). Break z into singleton groups and
split w into two nodes, w and w’. The new node w' is formed
by moving from w the rightmost block at level two of the
internal structure of blocks. Then w' is added to the block

that contains w as a child (this is the implementation of op-
eration Add(e,e’')). The new node w’ belongs to a pair of
blocks. If the leftmost block of the pair has size > a; + b;_1
move the rightmost edge of the left block to the right block.
If the right block has size > a; and there is a split group
with edges in both blocks of the pair move one edge from
left to right. Note that after at most b;—1 such operations,
all elements of the split group have been moved to the right
block and the pair can be split at this time. Finally, check
the levels two and three of the hierarchy of blocks for pairs
that need splitting.

In order to prove the correctness of the described proce-
dure we need to guarrantee an upper bound on the degree of
the internal nodes. So,going back to Figure 1 assume that
z = A.root is a split group and that its father is a node (in-
side a split group) w that belongs to the component B. Then
after some operation in a leaf that belongs to component A,
we break A and we break split group z into singleton groups
containing only one node. Finally, we insert these singleton
split groups to the component of w. The break of a split
group into singleton split groups can be implemented in a
lazy way by maintaining a flag in the split group record that
indicates whether the split group is valid or invalid.

We stated previously that the size of a block at level 7 +
1 is bounded by a;4+1 and a;+1 + 2b;. Each node has at
most 2b? — 1 and at least 1 such block. In this way, each
node groups at most 6b7 (requiring a; 41 < b;) child pointers
and at least a;4+1 child pointers. As a consequence, when
starting from a singleton split group at level i + 1 we can
clearly see that the split group has < 6b7 out-degree. Since
the maximum degree at level ¢ is b; and we want to have
singleton split groups with minimum degree equal to a; we
may split each split group into at most r; = Z_Z singleton
split groups. Thus, if we assume that initially we start with
a singleton group g¢i+1 at level ¢ + 1 whose child pointers
may be of arbitrary color (green, red or D-red) then the
maximum number of nodes before being split into singleton
groups is 7.

For the split group g;+1 equation 2 states that ®(g;+1) <
bi+1. We need to ensure that the potential increases only
under certain conditions so that we can ensure the validity of
equation 2. Since one green edge may produce r; red edges
and one red edge may produce r; D-red edges and by equa-
tion 1 we deduce that the potential does not increase during
the transitions between the four phases shown in Figure 2.
This holds for all cases with the exception of the transition
from phase (d) to phase (a), where D-red edges may again
become green. In this way we have an increase in potential
of order O(r?) for each D-red edge. However, multiple split-
ting corrects this problem by making singleton groups with
a controllable out-degree.

From the above discussion it is easy to deduce that the
potential bounds the number of child pointers which may be
produced by a singleton group. Assuming that this singleton
split at level i 4+ 1 has maximum capacity (it has < 6b3 out-
degree) and that all child pointers are green by equations 1
and 2 we deduce that:

b

a;

6b;r; < bip1 => 6b;(—)? < biyr =>6b] <bip1 (3

From recurrence 3 we get:

6b7 < biyy = 6(6(...)")" < biys =

Figure 4: The consecutive phases of binary splits:
(a) group w was just multiple split, (b) the multiple
split of v results in the addition of a child pointer at
z, (d) the multiple split at level i — 1 results in the
addition of one more child pointer at level i + 1, (e)
a multiple split takes place at level i. A single split
group at level i — 1 when in phase (a) may produce
up to b;—1 + 1 child pointers at level i + 1 when in
phase (e).

6767 67 ... 6% < bis1 = 6207 < =

5i—1 511 93i—1
65-1T < bi+1 =6 7 < bi+1 = bi+1 > 2 (4)

The above analysis would be fully correct if we had a way
to ensure that binary splittings caused by multiple splittings
one level lower are terminal so that no cascading splittings
of nodes are produced. Unfortunately, the definition of po-
tential does not capture this situation but as we will see with
the appropriate tuning of the mechanism that implements
multiple splitting we circumvent this problem. We will base
our argument on Figure 4. The mechanism of components
as shown in the previous section ensures that a split group
at level ¢ will be rebalanced only when the split groups at
level ¢ — 1 are twice rebalanced. This means that a single
child pointer of a node at level ¢ + 1 may produce at most
2b}_; new edges due to multiple splittings at level i —1 that
produce binary splittings at level ¢. Since a node at level 141
has maximum capacity b3 and by the above observations we
deduce that after the phases depicted in Figure 4 the num-
ber of child pointers of the node at level i+ 1 will be at most
b2b?_1b;_1, where b? is the maximum initial out-degree of a
node at level i + 1, b5_, is the maximum out-degree of a
node at level ¢ and b;_ is for the double splitting due to the
component mechanism. This means that the out-degree of
nodes is increased in an uncontrollable fashion. However, if
we change slightly the multiple splitting mechanism we can
ensure that this situation will not happen. When a multiple
splitting at level i takes place (creates b; new split groups)
then at level i + 1 we create a new node by moving b? child
pointers. This means that we let at this node b7 — b; free
space for edges from binary splittings. Since we have b; new
nodes we demand that this free space is enough for all point-
ers from binary splittings. Thus, from the above discussion
we demand:

b; > 2bib}_y = b; > 2b; (5)

However, equation 5 is fully covered by equation 4 and so
by choosing a value for b; 1 such that equation 4 is satisfied
we know for sure that a node will always have place for
pointers due to binary splittings and so we can ensure that
as far as insertions are considered the out-degree of internal
nodes will be bounded.

The following theorem (matching the bounds stated in [3])
is the result of the above discussion:

THEOREM 1. Assuming that finger searches can be imple-
mented efficiently, we can maintain a finger search tree with
worst-case constant finger insertion time when deletions are
not allowed.

4. THE CASE OF DELETIONS

In this section we assume that the only allowable opera-
tion on an initial set of elements, which is represented by
the tree structure 7', is delete(l), where [is a pointer to the
leaf that is going to be deleted. The scheduling mechanism
for the rebalancing operations is the mechanism of compo-
nents. Due to the inefficiency of this mechanism described
in Section 2 we need to resort to a multiple version of known
rebalancing operations for the case of deletions. In this case
we are going to use the notion of multiple fusion. The mul-
tiple fusion is like the ordinary fuse operation for (a,b)-trees
with the diference that many nodes participate in this op-
eration. Generally, the strategy we follow for deletions is
symmetric to insertions and this symmetry will be made
explicit whenever necessary.

Assume that we have access to a procedure that we call
oracle, which performs the multiple fusion procedure in con-
stant worst-case time. Thus, the oracle is a mechanism that
takes as input a set of adjacent brother nodes and outputs
in O(1) worst-case time a single node that results from the
fusion of all these nodes. The set of nodes that participates
in a call to the oracle is called fusion group. We will see later
in this section how to cancel this assumption. First, recall
Figure 1. In a nutshell, the algorithm for the deletion of a
leaf | consists of five steps: a) find the set A in which the
father of I belongs, b)remove leaf I, ¢) break component A,
d) call the oracle for the root £ = A.root of the component
A and e) add to the component of its father the new node
2’ produced by the oracle. Below we show, based on the
assumption of the existence of such oracle, that the above
algorithm is correct.

First, we need to define the fusion factor, a;, for all nodes
of each level i. The fusion factor for level ¢ is the required
out-degree for each new node produced by a call to the or-
acle. Thus, after the application of a rebalancing operation
implemented by the oracle at level 7, we can assure that the
new node v has out-degree a;. We set the lower bound on the
degree of a node to be equal to 2 - in the worst-case we ex-
pect to have a binary tree. Considering the fusion factors of
levels i and i — 1 (a; and a;—1 respectively) we may generate
a recurrence relation that bounds the fusion factor, based
on the fact that the lower bound in the degree of a node is
equal to 2. In this way we produce the following recurrence
relation: @Z:’W >4, where a1 =4 (at level 1 we want at
least an out-degree of 4). To generate this recurrence rela-
tion we have to note that a node at level ¢ with initial out
degree a; may, by applying multiple fuse operations twice at
its children due to Lemma 1, have at least degree equal to 2.
The oracle at level i — 1 needs to fuse at most a;—1/2 nodes
(thus, the maximum number of nodes inside a fusion group
is a;—1/2) with minimum degree 2 during a multiple fuse
operation at this level while by Lemma 1 the multiple fuses
will involve at most (a;—1/2)”. It will be made clear below
why we have chosen this fraction to be larger than 4 and
not larger than 2. Thus, by solving the above recurrence we

Figure 5: The three possible different situations in
the fuse operation between fusion groups. All other
situations are symmetric.

get:

i i+1
a,—Za?,l,a1=4:>aiZ42 =aq; >2°

(6)
Choosing a value for a; such that equation 6 is satisfied we
may ensure that the above algorithm implements deletions
in constant worst-case time with a guaranteed non-trivial
lower bound on the degree of the nodes. However, there
are two issues that need clarification. The first one refers
to the maintenance of components under the multiple fuse
operation while the other refers to the structure of nodes
and the maintenance of the lower bound on the degree of
the nodes.

The first problem as we mentioned above is to maintain
the components during a multiple fuse operation. We will
assume that a multiple fuse operation is in fact a sequence
of ordinary binary fusions. All possible cases for the fusion
of adjacent nodes are depicted in Figure 5. In case (a) we
break component rooted at w, we fuse it with « and add the
new node to the component of z. In case (b) we break both
components rooted at w and z and add the new node that
comes from the fusion of w and z at the component of its
father. Finally, case (c) is easy to implement by breaking
the component rooted at w and inserting w into its father
component by fusing it with its brother z. We must also
ensure that this fusion will not lead to a single fusion group
as a child of a fusion group at the upper level. If this hap-
pens, then we cannot guarantee the lower bound of 2. This
is due to the fact that the distribution of update operations
between the different subtrees is not known. The following
lemma solves this problem.

LEMMA 2. For every distribution of update operations be-
tween subtrees rooted at the children of a node v, the choice
of the fusion factor given in equation 6 can guarantee that
the number of fusion groups is at least 2.

ProOOF. Note that in equation 6 we demand that the frac-
tion be larger than 4. This means that if we were given a
worst-case sequence of operations at the children of a node v
at level ¢ beforehand (offline updates), then we could guar-
antee that at the end (just before rebalancing v at level i),
v would have exactly 4 children (this would work even for 3
children). However, since the updates are online we have to
define fusion groups on the fly. However, even in this case
we can guarantee a lower bound of two children for each
node since there are always many children to construct two
fusion groups indepedently of the distribution of the update
operations. [

In addition, note that the early break of the components
does not incur any problems with the component mecha-

nism. In fact, this early break accelerates the mechanism of
components.

We must also consider the internal structure of nodes.
Assume a node at level i. This node is structured into at
least a;—1 blocks of size exactly a;—i. Thus, the out-degree
of a node at level i is a?_; immediately after the multiple
fuse operation, which of course satisfies equation 6. In this
way, each block defines at least two new nodes at level ¢ —
1 (due to Lemma 2) after the application of the multiple
fusion operation at this level. Thus, the block may have
after this operation less that a;_1 child pointers. To remedy
this problem we form a pair between this block and one of
its adjacent blocks. If both adjacent blocks already belong
in a pair then break an existing pair and create a new one.
The mechanism of pairs guarantees that there will be no
cascading breaks of pairs. Nodes (and as a result fusion
groups) are also structured into pairs, so that incremental
fusion between nodes is possible. Lemma 2 ensures that
each node will have at least two children.

In the above discussion we assumed the existence of an or-
acle to show that by using components and the mechanism
of multiple fusion one can come up with an implementa-
tion of deletions in constant worst-case time while keeping
the structure balanced. At this point, we need to cancel
this assumption. To achieve this, we have to implement
the multiple fusion operation in an incremental way. This
means that the fusion groups are constructed incrementally
and are not formed in constant worst-case time as in the
imaginary mechanism of the oracle. The fusion group, as
defined above, is a set of consecutive nodes that at the end
will form by fusion a single new node. The total out-degree
of a fusion group at level 7 must be at least a;, since each
fusion group is in fact a node under construction. In ad-
dition, note that components are defined on fusion groups
since these will become single nodes at some time in the fu-
ture. Below we describe when and how the fusion groups
are formed.

First we give some details of the deletion algorithm based
on Figure 1, assuming that we want to delete leaf I. The
algorithm follows:

1. Find the component A in which the father of I belongs.
Let new_fg be the new fusion group which is the root
of A at level i — 1.

2. Break A. Let B the component of its father.

3. Add(new_fg,B). Let z; be the node which is father of
new_fg and let x; 11 be its brother node inside the pair
or if it does not belong in the pair one of its adjacent
nodes. Both nodes belong in the same fusion group fg
at level 7 (note that fg is the real node while z; and
zj+1 are nodes which should be fused).

4. Make an incremental fuse operation between z; and
Tj+1-

5. If out_degree(fg) < a; then fuse an adjacent fusion
group with fg and fuse the respective adjacent blocks
at level ¢ + 1 (all these fusions are incremental).

The above algorithm makes two assumptions. The first
assumption is that a fusion group is fully contained in a
block one level above. This assumption holds by using the
inductive argument stemming from the maintenance of the

blocks in the deletion algorithm given above. The second as-
sumption is that the fusion between nodes that takes place
as a result of a multiple fuse one level below may damage
the out-degree of the fusion group one level above. However,
this is not true since the fusion between two nodes due to
a multiple fuse in the level below is contained in the incre-
mental construction of the single node by the fusion group
containing both nodes. Thus, generally one could say that a
multiple fusion (the incremental fusion of fusion groups) at
level 7 — 1 results in a binary fusion (the incremental fusion
of nodes) at level ¢ which further results in the removal of
a child edge from a block at level i + 1. Symmetrically, in
insertions a multiple split at level ¢ — 1 results in a binary
split at level 4 which further results in the insertion of a new
child pointer in a block at level 7 + 1.

In addition, the fusion of adjacent fusion groups affects
the component mechanism. All possible cases for compo-
nents are depicted in Figure 5. Case (a) is easy to solve by
inserting fusion group z into the component with root the
fusion group w. Case (c) is also easy to solve by breaking the
component with root w and inserting w into the component
where = belongs, after initiating the incremental fusion of w
and z. Since z is a full fusion group (it has the necessary
out-degree) one can say that it may absorbs all of its broth-
ers and thus violate the lower bound of 2 on the degree of
fusion groups. However, this is not the case since we may
fuse w with its right or left brother and as a result in the
worst-case this procedure will lead to two fusion groups at
the level of w. Case (c) can be tackled by using the Link op-
eration described in Section 2. The aim here is to unite both
components rooted at w and z. This can be accomplished
by the Link operation. However, we mentioned in Section 2
that we may have to incrementally join two components rep-
resented by fusion records. The incremental step is to make
a constant number of component records to point to one of
the two fusion records and it is carried out while execut-
ing step 4. Since this procedure starts as soon as the fusion
group has a; —1 out-degree we have enough time available to
execute the transfer of componenet records from one fusion
group to the other.

To summarize, the mechanism of components is applied
on fusion groups. The components are represented by com-
ponent records as in the case of insertions, but to achieve a
worst-case constant implementation of the union of two ad-
jacent components (the adjacency is defined with respect to
their roots) we introduced another level of indirection, the
fusion records. Thus, each component is represented either
by a component record when the pointer field that points
to the fusion record is nill or by the fusion record pointed
by this pointer. Each fusion group represents a future node
and consists of a set of nodes with the restriction that its
out-degree is at least equal to a;.

In the above discussion we devised a data structure that
implements deletions in constant worst-case time in the poi-
nter machine model of computation. The only problem now
remaining is to combine both solutions into a new one that
implements the worst-case constant update finger search
tree and to show how to support finger searches in O(log d)
time, where d is the distance between the finger and the
element we search.

THEOREM 2. Assuming that finger searches can be imple-
mented efficiently, we can maintain a finger search tree with
worst-case constant finger deletion time when insertions are

not allowed.

5. THE FINGER SEARCH OPERATION

In this section we sketch how the tree structure for inser-
tions and for deletions can support efficiently finger searches.
In a finger search we are given a finger f and an element x
and we want to find element x in the tree structure starting
the search from f and completing the task in time O(log d),
where d is the distance between f and z in the structure.
The main problem with the structure is that there are nodes
which have large degree and thus we need to investigate the
complexity of the search procedure in these nodes.

If we solve the problem for the insertion structure then we
can apply the same approach for for the structure supporting
deletions as well as for the general structure. Each block at
level ¢ + 1 - considering the insertion tree structure - has
maximum degree 3b;_1, for which by equation 4 holds that

b; > 223“71)71. Thus, the degree of the blocks at level i is

O(2%"). First we use level linking ([11]) on the node tree
structure. As a result, the search procedure basically starts
from a leaf pointed by a finger f and traverses the ancestors
of f until we find the first ancestor v (or one adjacent to this
node by using level pointers) that contains z in his range.
Then we search the specific subtree for z. It is imperative to
show an upper bound on the distance between = and f based
on the level of node v. Assume that v is at level 4. Then,
the maximum distance d will be 0(22)0(2%')...0(22") =
O(222+1). The lower bound on the distance between f and
x when v is at level 4 is O(2") since the minimum degree of
internal nodes is 2. The following Lemma from [3] will help:

LeEMMA 3. There exists a pointer-based implementation
of finger search trees which supports arbitrary finger searches
in O(log log n+log d) time, and finger updates in worst-case
constant time.

PrROOF. The lemma is obtained by combining the fin-
ger search trees of Dietz and Raman ([5]) and the search
trees of Levcopoulos and Overmars ([13]). For more details

see [3]. O

We represent each block by using the structure of Lemma 3.
Internal blocks (they are used in the three level tree struc-
ture for blocks) are also structured by using Lemma 3. Thus,
the search procedure at the blocks By of node v can be per-
formed in O(loglog|Bk| + logd). In the worst-case |Bi| =
b; = 22" and as a result the finger search can be performed
in O(loglog 22" 4 logd) = O(i+logd). Assuming that they
have maximum distance (d = 2(2%")) we get (for minimum
distance it is symmetric):

i1 _
O(i + logd) + Z O(log2”) =

j=1

0(2" +1logd) = O(log d) (7)

since logd = Q(2).

The procedure sketched above can be as well applied in the
case of deletions with minor modifications. In addition, the
same techniques can also be applied in the combined solu-
tion for insertions and deletions described in Section 6. The
following theorem summarizes the discussion in this section.

Split Group

Fusion Group

Fusion Group

Node Record Node

Split Group

Figure 6: The hierarchy of objects in the tree struc-
ture is depicted (split groups comnsisting of fusion
groups consisting of nodes consisting of blocks).
This hierarchy is maintained by pointers between
the different objects, which are stored in the re-
spective records (eg. for a node the respective node
record has a pointer field that points to the fusion
group in which this node belongs).

THEOREM 3. There exists a pointer-based implementation
of finger search trees that support arbitrary finger searches
in O(log d) time and finger insertions in worst-case constant
time. The same holds for the tree structure that supports
deletions.

6. CONSTANT UPDATE FINGER SEARCH
TREES

In this section we sketch an implementation of a worst-
case constant update finger search tree in the pointer ma-
chine based on the structures given in Sections 3 and 4. In
general we have considered two strategies to join the struc-
tures for deletions and insertions in a single data structure.
The first one is to allow the existence of fusion groups and
split groups simultaneously into the structure. However,
with this approach the structure becomes much more com-
plicated since we have to make a distinction between fusion
components and split components. The second approach,
which we analyze in this paper, is to define a hierarchy be-
tween split and fusion groups. As a result, components refer
to update operations and not solely to insertions or dele-
tions.

The hierarchy of objects that we use inside the tree struc-
ture consists of blocks, nodes, fusion groups and finally split
groups and it is depicted in figure 6. In this way, each
split group consists of fusion groups, which are further par-
titioned into nodes. Finally, nodes consist of blocks that
group the child pointers. The idea of this approach is the
following: the split group that resides at the root of the com-
ponent is first split into singleton split groups. A singleton
split group contains only one fusion group (as in insertions
only case where each singleton split group contains only one
node). In the extreme case where only insertions are al-
lowed, the fusion groups will always consist of single nodes
while in the case where only deletions are allowed, the split
groups will always contain only one fusion group with a suf-
ficient number of nodes as shown in Section 4. In the general
case, the split groups will contain a number of fusion groups
which further contain a number of nodes. Thus, intuitively
we managed to have components handle both multiple splits

and multiple fusions at the same time. This is achieved by
applying the component mechanism only on split groups.

In Sections 3 and 4 certain invariants where applied on
the size of the blocks and on the size of the nodes. These
invariants must also hold in the general setting where inser-
tions and deletions are allowed simultaneously. The sizes of
fusion and split groups are derived based on the validity of
the invariants given below.

INVARIANT 1. The mazimum out-degree of a block at level
P95 a; +2-bi_1.

INVARIANT 2. The minimum out-degree of a block at level
115 2.

INVARIANT 3. Each node at level i has out-degree at least
2 and at most b}_,.

INVARIANT 4. The fusion factor at level 1+ 1 must be less
than b; (ai+1 < bl)

It is obvious that the initial state satisfies invariants 1
to 4. For the extreme cases also holds he same invariants.
For example, if we consider deletions then the split group
coincides with the fusion group and thus, invariants 1 to 4
hold by the discussion made in Section 4. In the case of
insertions only, the fusion groups coincide with nodes and
as a result invariants 1 to 4 hold by the discussion made in
Section 3.

The main difficulty lies in the general setting where inser-
tions and deletions are allowed simultaneously. This prob-
lem is related to the interaction of the mechanisms of dele-
tions and insertions. First, we sketch the update algorithm,
based on Figure 1. Assume that an update operation takes
place at leaf I. The father f of the leaf | belongs in the
component A, while the father (the split group) of A.root
belongs in the component B. We make a rebalancing oper-
ation at A.root, which assume that lies at level 4 — 1. This
rebalancing operation involves a break of the split group
A.root into singleton split groups (groups with one fusion
group). At this point, if the father node at level i is large
or small we respectively split it or fuse it with an adjacent
node. Thus, we need to apply a size control mechanism for
nodes. We can achieve this in a straightforward way by re-
quiring that a node with out-degree less than a; is small
while a node with out-degree larger than b?_; is large. The
result of a binary split (fusion) operation at level 4 is that an
edge is inserted (deleted) at (from) level ¢ + 1. At this level
we just have to update blocks in a manner similar to the
one described in the previous sections. Below we sketch the
main steps of the update algorithm at a leaf [(the algorithm
is based on figure 1).

1. Find the component A in which the father of I belongs.
Let new_sg be the spit group which is the root of A at
level ¢ — 1.

2. Break A. Let B the component of its father.

3. Add(new_sg,B) and Break(new_sg). Let z; be the node
which is father of new_fg and let z;41 be its brother
node inside the pair or if it does not belong in the pair
one of its adjacent nodes. Both nodes belong in the
same fusion group fg at level i (note that fg is the
real node while z; and ;4 are nodes which should
be fused).

4. If z; is small then start an incremental fusion of z;
and z;41. If z; is a big node then split z;.

5. If out_degree(fg) < a; then fuse an adjacent fusion
group with fg and fuse the respective adjacent blocks
at level i + 1 (all these fusions are incremental). The
split groups should be reorganized accordingly if af-
fected by this operation.

In step 5 of the algorithm split groups are affected by the
fusion of adjacent fusion groups. If the split group is not
singleton, that is it contains more than one fusion groups,
then none split group is affected. However, if the split group
is singleton then if in step 5 the unique fusion group needs
to be fused with some other node then we put this singleton
in an adjacent split group and make the incremental fusion.

The split and fuse operations applied on nodes are incre-
mentally implemented by using the mechanism of pairs. In
general, all size invariants are maintained by applying the
same mechanisms as in Sections 3 and 4 with some minor
modifications. Note that the incremental fusion and splits
of nodes affects the fusion and split groups in the same way
as described in Sections 4 and 3 respectively. In addition,
fusions of nodes does not affect the split groups. However,
it is necessary to introduce the split operation (apart from
the fuse operation) in fusion groups due to splits of nodes.
When a node is split into two nodes, it is necessary to split
the fusion group into two fusion groups.

This can be acomplished in worst-case constant time if we
build a structure on nodes similar to the structure of blocks
that consist a single node. This three level structure will
allow us to implement the split of a fusion group in worst-
case constant time in a similar way to the split of nodes.
It is easy to maintain a balanced partition (with respect
to the out-degree of the nodes) of these nodes since their
out-degree is increased or decreased by one (the insertion or
deletion of an edge respectively).

The following theorem summarizes the result given in this
paper:

THEOREM 4. We can maintain o finger search tree in
the pointer machine model of computation such that finger
searches are performed in worst-case optimal time O(log d)
while updates are performed in constant worst-case time.

7. CONCLUSIONS

In this paper we sketched a solution to the long-standing
problem of devising worst-case constant update finger search
trees in the pointer machine. This was accomplished by us-
ing an innovative scheduling mechanism of rebalancing op-
erations as well as a multiple version of known rebalancing
operations in (a,b)-trees (fusions and splits).

The solution is complicated and we would surely like to see
a simpler solution to this problem that could also be applied
to trees of constant out-degree. However, it is our intuition
that to do so one must either enhance the technique of com-
ponents or maybe combine it with some other techniques.
In addition, it would be interested to find applications of the
component technique in other problems. Finally, we must
note that several technical details were not included in this
extended abstract but they will be considered in a future
journal version.

8. REFERENCES

[1] A. Anderson and M. Thorup. Tight(er) Worst-case
Bounds on Dynamic Searching and Priority Queues. In
Proc. 82nd Annual ACM Symposium On Theory of
Computing (STOC), pages 335-342. ACM, 2000.

[2] G.S. Brodal. Partially Persistent Data Structures of
Bounded Degree with Constant Update Time. Nordic
Journal of Computing, 3(3):238-255, 1996.

[3] G.S. Brodal. Finger Search Trees with Constant
Insertion Time. In Proc. 9th Annual ACM-SIAM
Symposium on Discrete Algorithms(SODA), pages
540-549, 1998.

[4] M.J. Clancy and D.E. Knuth. A programming and
problem-solving seminar. T.R. STAN-CS-77-606, Dept.
of Comp. Science, Stanford University, 1977.

[5] P. Dietz and R. Raman. A Constant Update Time
Finger Search Tree. Information Processing Letters,
52:147-154, 1994.

[6] J.R. Driscoll, N. Sarnak, D.D.Sleator and R.E. Tarjan.
Making Data Structures Persistent. Journal of
Computer and System Sciences, 38:86-124, 1989.

[7] R. Fleischer. A Simple Balanced Search Tree with O(1)
Worst Case Update Time. International Journal of
Foundations of Computer Science, 7:137-149, 1996.

[8] L.J. Guibas, E.M. McCreight, M.P. Plass and J.R.
Roberts. A New Representation for Linear Lists. In
Proc. 9th Annual ACM Symposium On Theory of
Computing (STOC), pages 49-60. ACM, 1977.

[9] D. Harel. Fast Updates with a Guaranteed Time Bound
per Update. T.R. 154, Dept of ICS, University of
California at Irvine, 1980.

[10] D. Harel and G. Lueker. A Data Structure with
Mowable Fingers and Deletions. T.R. 145, Dept of ICS,
University of California at Irvine, 1979.

[11] S. Huddleston and K. Mehlhorn. A New Data
Structure for Representing Sorted Lists. Acta
Informatica, 17:157-184, 1982.

[12] S.R. Kosaraju. Localized Search in Sorted Lists. In
Proc. 14th Annual ACM Symposium On Theory of
Computing (STOC), pages 62-69. ACM, 1981.

[13] C. Levcopoulos and M.H. Overmars. A Balanced
Search Tree with O(1) Worst Case Update Time. Acta
Informatica, 26:269-277, 1988.

[14] M.H. Overmars. An O(1) Average Time Update
Scheme for Balanced Search Trees. Bulletin of EATCS,
18:27-29, 1982.

[15] R.E. Tarjan. A Class of Algorithms which Require
Nonlinear Time to Maintain Disjoint Sets. Journal of
Computer and System Sciences, 18:110-127, 1979.

[16] R.E. Tarjan. Updating a Balanced Search Tree in
O(1) Rotations. Information Processing Letters,
16:253-257, 1983.

[17] A.K. Tsakalidis. AVL-trees for Localized Search.
Information and Control, 67:173-194, 1985.

