
Optimal Finger Search Trees in the Pointer Machine

[Extended Abstract]

Gerth Stølting Brodal
�

Dept. of Comp. Sci.
University of Aarhus

BRICS
y

gerth@brics.dk

George Lagogiannis
Comp. Eng. & Inf. Dept.

University of Patras
& Computer Technology

Institute
Patra, PO 22500

lagogian@ceid.upatras.gr

Christos Makris
Comp. Eng. & Inf. Dept.

University of Patras
& Computer Technology

Institute
Patra, PO 22500

makri@ceid.upatras.gr

Athanasios Tsakalidis
Comp. Eng. & Inf. Dept.

University of Patras
& Computer Technology

Institute
Patra, PO 22500

tsak@cti.gr

Kostas Tsichlas
Comp. Eng. & Inf. Dept.

University of Patras
& Computer Technology

Institute
Patra, PO 22500

tsihlas@ceid.upatras.gr

ABSTRACTWe develop a new �nger sear
h tree with worst-
ase
onstantupdate time in the Pointer Ma
hine (PM) model of
ompu-tation. This was a major problem in the �eld of Data Stru
-tures and was tantalizingly open for over twenty years whilemany attempts by resear
hers were made to solve it. Theresult
omes as a
onsequen
e of the innovative me
hanismthat guides the rebalan
ing operations
ombined with in
re-mental multiple splitting and fusion te
hniques over nodes.
Keywordsbalan
ed trees, update operations, �nger sear
h trees, datastru
tures,
omplexity
1. INTRODUCTIONThe balan
ed sear
h tree is one of the most
ommon datastru
tures used in algorithms. Assuming that the update po-sition is known, balan
ed sear
h trees with O(1) amortizedupdate time have been presented long ago ([6, 14℄). It hasalso been known ([6, 16℄) that updates
an be performed in�Resear
h
ondu
ted while visiting Computer Te
hnologyInstitute (CTI) and University of Patras, Gree
e.yBasi
 Resear
h in Computer S
ien
e, www.bri
s.dk, fundedby the Danish National Resear
h Foundation.
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’02, May 19-21, 2002, Montreal, Quebec, Canada.
Copyright 2002 ACM 1-58113-495-9/02/0005 ...$5.00.

O(1) stru
tural
hanges, but the nodes to be
hanged haveto be sear
hed in
(log n) time. Lev
opoulos and Overmars([13℄) presented an algorithm a
hieving O(1) worst
ase up-date time by using a global splitting lemma that is basedon a pebble game
ombined with the bu
keting te
hnique ofOvermars ([14℄). Instead of storing single keys in the leavesof the sear
h tree, ea
h leaf
an store a list of several keys.Unfortunately, the bu
kets in [13℄ have size O(log2 n), sothey need a two level hierar
hy of lists in order to guaran-tee O(log n) query time within the bu
kets. Deletions arehandled by means of global rebuilding. Fleis
her ([7℄) pre-sented a simpler approa
h to the problem. The rebalan
ingof the tree is distributed over the next log n insertions intothe bu
ket whi
h was split. Ea
h bu
ket is equipped witha pointer pointing to an an
estor or to a node near an an-
estor of the spe
i�
 bu
ket. Insertions are performed by�rst inserting the new key into its respe
tive bu
ket. Letu be the node pointed by the pointer of the bu
ket. If uhas out-degree larger than b then u is split into two smallnodes, otherwise u is left inta
t. In any
ase the pointer ofthe bu
ket is moved up one level. It is proved that startingfrom an (a; b) tree, the degree of the internal nodes
annotgrow more than 2b and the size of the bu
kets
an grow upto 2 log n. Deletions are handled simply by using the globalrebuilding te
hnique.Finger sear
h trees are sear
h trees for whi
h the sear
hpro
edure
an start from any leaf of the tree, (this startingelement is termed a �nger) and the time
omplexity of thesear
h pro
edure is asymptoti
ally equal to the logarithmof the distan
e between the �nger and the sear
h element.In the RAM model of
omputation �nger sear
h tres with
onstant update time have already been devised by Dietzand Raman ([5℄), while re
ently Andersson and Thorup ([1℄)have surpassed the logarithmi
 bound on the sear
h pro
e-dure. These two papers are based on a global rebalan
ings
heme
ombined with the bu
keting te
hniques presented

in [13℄. For the pointer ma
hine model of
omputation, stepshave been made towards this dire
tion by resear
hers (see[3, 4, 8, 9, 10, 12, 17℄), but the problem remained tanta-lizingly open. The best solution is given by Brodal ([3℄),who proposed a �nger sear
h tree with
onstant insertion,but with O(log� n) deletion time. This time bound of thedelete operation is a dire
t result of our diÆ
ulty to handleeÆ
iently deletions in a lo
al rebalan
ing setting.In this paper we will present the �rst
onstant update �n-ger sear
h tree. Note that the spa
e requirements of thisstru
ture will be, by
ontru
tion, linear sin
e in
onstanttime we
an only a

ess
onstant amount of spa
e. However,the te
hnique of global rebuilding is essential to guarantee alinear bound on spa
e
omplexity in the long-term. In Se
-tion 2 we des
ribe the basi
 te
hnique used to a
hieve thealleged result. In Se
tion 3 we des
ribe a �nger sear
h treethat supports only the operation of insertion in worst-
ase
onstant time. This stru
ture
an be seen as an alternativesolution to the insertion only algorithm of [3℄. In Se
tion 4we des
ribe a �nger sear
h tree that supports solely the op-eration of deletion in worst-
ase
onstant time. In Se
tion 5we sket
h the me
hanism needed to guarantee eÆ
ient �n-ger sear
hes. Finally, in Se
tion 6 we
ombine both solutionsanalyzed in previous se
tions and we
on
lude at Se
tion 7with some �nal remarks. We must note that we left manyte
hni
al details for a future journal version.
2. THE COMPONENTSThe te
hnique of
omponents is based on an idea previ-ously used in the work of Brodal on making worst-
ase par-tially persistent data stru
tures ([2℄). Components de�ne alogi
al partition over the set of non-leaf nodes of the �ngersear
h tree into
onne
ted subtrees that di
tate the positionof the rebalan
ing operations. We assume that we are givena height-balan
ed sear
h tree T and a
omponent A over thenodes of T , where A is a subtree of T rooted at the nodeA:root. All leaves of T have equal depth. We say that theleaves are at level 0 while the level of a node is equal to thelevel of its
hildren plus one. The maximum degree bi andthe minimum degree ai of a node at level i is a fun
tion of iwith the ex
eption of the root that has minimum out-degreeequal to two. Let ri = biai , be the ratio of bi and ai for leveli. Initially, all nodes of T are singleton
omponents, that is
omponents with only one node. The root of a singleton
omponent is the node itself. For the general
omponent Aroot of the
omponent is A:root and this node will be thehandle of the
omponent. In addition, all nodes v 2 A whohave a
hild u su
h that u 62 A
onsistute the border of
om-ponent A, whi
h is represented by border(A). As we willsee in the following se
tions the border of a
omponent isthe part of the
omponent that absorbs all the disturban
es
aused by rebalan
ing operations in their subtrees. In Fig-ure 1 we depi
t the stru
ture of a
omponent A on a treeT with root z = A:root. These
omponents must be main-tained under the operations of Link and Find, whi
h is wellknown that
annot be implemented in
onstant worst-
asetime in the PM (see [15℄). However, here we exlpoit the spe-
ial stru
ture of the
omponents and as a result we are ableto a
quire a worst-
ase
onstant time
omplexity. We wouldlike to support the following operations on
omponents inworst-
ase
onstant time:

CR

A

A.root

T

CR

B

B.root

w

l

z
Figure 1: The stru
ture of a
omponent A in a treeT . By CR we represent the
omponent re
ord.1. Break(z): the
omponent A with handle z is destroyedand the nodes that on
e belonged to A be
ome single-ton
omponents.2. Add(v,z): adds the node v in the
omponent with han-dle z (
omponent A in Figure 1)
ontaining the fatherof v.3. Find(v): returns the root of the
omponent wherenode v belongs.4. Link(u,z): links
omponents with handles u and z intoa new single
omponent with handle u. It is assumedthat nodes u and z are siblings and that immediatelyafter the Link operation z is absorbed by u (an in
re-mental fuse operation in the setting of (a,b)-trees).We represent ea
h
omponent by a
omponent re
ord. The
omponent re
ord for
omponent A has a pointer to A:rootas well as a bit valid that indi
ates whether A is a valid
omponent (valid=TRUE) or an invalid one (valid=FALSE).When a
omponent is invalid then ea
h node that points tothe respe
tive
omponent re
ord is a singleton
omponent.Ea
h node v 2 A has a pointer to the
omponent re
ordof A. In this way operation Find(v) is performed in worst-
ase
onstant time. Operation Add(v,u) is also performedin
onstant time sin
e we just need to make the pointer ofnode v to point to the
omponent re
ord of the
omponentwith root u. We assume that the
omponent with root uis valid. Operation Break(z) is easily performed in
onstanttime by setting the
ag valid of the
omponent re
ord of the
omponent with handle z equal to FALSE. Finally, opera-tion Link(u,z)
an be implemented in
onstant worst-
asetime due to the spe
ial stru
ture of the
omponents. Thisis a
hieved by using fusion re
ords. The
omponents thatmust be joined have their
omponent re
ords point to thisfusion re
ord whi
h further points to the root of the joined
omponents. Thus, ea
h
omponent may be represented byits
omponent re
ord or by the fusion re
ord when the
om-ponent re
ord points to one. When two
omponents thatare represented by fusion re
ords be
ome joined, we in
re-mentally move the
omponent re
ords from the one fusionre
ord to the other. In Se
tion 4 this operation is ne
essaryand we will see there that we have enough time to performit in
rementally.We will now sket
h how the me
hanism of
omponents isintegrated in a height balan
ed tree T to guide the rebalan
-ing operations as a
onsequen
e of the update operations inits leaves. Assume a leaf l, its father f and its grandfather

ff and assume that l is the re
eiver of an update operation(either insertion or deletion). The re
eiver of an update op-eration is the leaf pointed by the �nger that di
tates theposition of the update operation. If f is a singleton
ompo-nent (either the
omponent re
ord to whi
h f points indi-
ates that f is the root or this
omponent re
ord is invalid)then a rebalan
ing operation is performed and it is added tothe
omponent of ff . If f belongs in a non-singleton
om-ponent A, then we rebalan
e w = A:root, we break A and�nally we add w in the
omponent of its father. Thus, whenan update operation takes pla
e inside a
omponent (that isat a leaf of a node that belongs to this
omponent) then wemake a rebalan
ing operation at the root of this
omponent.Operation Link is ne
essary as we will see in Se
tion 4 forthe performan
e of fusion operations. We silently assumedthat we have an eÆ
ient rebalan
ing s
heme and that inaddition this s
heme guarantees a
ontrollable out-degree ofinternal nodes. In the following se
tions we will see how to
an
el these assumptions.The main problem with the te
hnique of
omponents isthat it is not fast enough
on
erning the traversal of the an-
estors with large height. This fa
t is given in the followinglemma.Lemma 1. A node v is rebalan
ed after its
hildren aretwi
e rebalan
ed in the worst-
ase.Proof. Assume a node v in the
omponent A that be-longs to border(A). Then, all of its
hildren must be rebal-an
ed at least one time to ensure that v 62 border(A). WhenA breaks, then all of the
hildren of v may be rebalan
edbefore v gets rebalan
ed as a root of a non-trivial
omponent(a
omponent whi
h does not
onsist of a single node). Inaddition, a node is rebalan
ed three times if and only if the
omponent me
hanism does not add this node to the
om-ponent of its father. However, it is
lear by the me
hanismof
omponents that this situation is not possible and as aresult the lemma follows.Lemma 1 means that the
ost of rebalan
ing, when usingthis s
heduling algorithm, is exponentially in
reasing withrespe
t to height j. Thus, this te
hnique is not enough byitself to guarantee a bounded out-degree of internal nodes.However, we will see in the following se
tions that by mak-ing the rebalan
ing operations more aggressive we
an
om-pensate for the ineÆ
ien
y of the
omponent me
hanism.The term \aggressive" means that instead of making binarysplits or binary fusions we perform multiple splits and mul-tiple fusions respe
tively.
3. THE CASE OF INSERTIONSIn this se
tion we assume that we
an only insert new el-ements in the tree stru
ture (the dis
ussion for deletions ispostponed to the next se
tion). The solution we are goingto des
ribe
an be seen as a simpli�ed/alternative solutionto the insertions only algorithm des
ribed in ([3℄). First wemust formulate the main problem of the
omponent me
ha-nism. This problem is lo
ated in the border of a
omponent.In Figure 2 we depi
t the four di�erent situations that
anhappen in border(A). The
olors over the edges des
ribethe potential of the
hild node to give new nodes throughsu

essive splitting operations.

w

v

w

v

w

v

w

v

(a)
 (b)
 (c)
 (d)

green
 red
 red
 D-red

i

i+1

Figure 2: The de�nition of split groups at the borderof
omponents (v is at level i while w is at level i+1),(a) v is a singleton
omponent while w belongs to anon-singleton
omponent, (b) v is inserted into the
omponent of w, (
) the
omponent of w is brokenand (d) v belongs to the
omponent of w where w isthe root.Assume node v at level i with maximum degree bi. Toguarantee an upper bound on the out-degree of internalnodes when we use the
omponent me
hanism we must per-form a multiple split operation, that is to split v into manynodes vi with out-degree at least equal to ai. Thus, we needto split v into at most ri nodes. In Figure 2 it is easy to seethat when edge (w; v) is green (phase (a)) then all
hildrenof w may split resulting in phase (b). Phase (
) is derivedfrom phase (b) by performing a Break operation on the
om-ponent that w belongs. Finally, phase (d) is derived fromphase (
) when all
hildren of w are again multiple split.Thus, a green edge may produ
e up to ri red edges while ared edge may produ
e up to ri D-red edges. From the dis-
ussion above it is
lear that D-red edges don't produ
e anynew nodes. These observations
an be expressed by the useof a potential fun
tion �. This fun
tion
ounts the numberof new edges introdu
ed in a node at level i+1 due to split-ting operations at level i. We de�ne the potential fun
tionfor an arbitrary node at level i + 1 represented by vi+1 asfollows:�(vi+1) = r2i �#green + ri �#red +#D-red; (1)where #green denotes the number of green edges, #red de-notes the number of red edges and #D-red denotes the num-ber of D-red edges.We would like to bound this potential by the maximumdegree of vi+1, that is we need to
hoose bi+1 su
h that:�(vi+1) � bi+1: (2)In the above dis
ussion we implied that multiple splittingof a node is imperative to guarantee an upper bound on theout-degree of internal nodes. The problem is how to im-plement this multiple splitting pro
edure in
onstant worst-
ase time while satisfying Equation 2. This will be a
hievedby using multiple levels of indire
tion and by in
rementals
heduling te
hniques.It is essential to des
ribe how
hild pointers are stru
turedin this tree stru
ture T . The nodes of tree T are partitionedinto split groups and only
onse
utive nodes may be partof a split group. Nodes at level i
ontain at least ai
hildpointers and at most b3i�1. The
hild pointers of a node arefurther partitioned into blo
ks with ea
h blo
k at level i stor-ing less than ai+ 2bi�1 edges. The partitioning of the
hild

. . .

Node Record
Group

Record

Father

pointer

pointer to

component

record

Node

Block

Split Group

. . .
 ...

...
 . . .

Pair

. . .
 ...

...
 . . .

. . .

Pointers to level
i
-1
Figure 3: The stru
ture of a single split group atlevel i. The split group
onsists of a set of nodeswhi
h are further partitioned into a three-level hi-erar
hy of blo
ks.pointers of a node into blo
ks is a

omplished by stru
tur-ing blo
ks in a three-level tree stru
ture. The
omponentme
hanism on tree T is de�ned over the set of split groupsin T . Intuitionally, if we
ollapse ea
h split group into a sin-gle node then the tree that results (we
an
all it the grouptree) in fa
t implements the multiple split operation, as wewill see later in this dis
ussion. The operations applied onsplit groups are Break(G), whi
h breaks the split group Ginto singleton split groups (split groups with just one node)and Add(v,G) that adds node v to split group G.Ea
h split group is represented by a split group re
ordwith a pointer to the respe
tive
omponent, a boolean �eld
ag that indi
ates whether the split group is broken or notand a father pointer. Ea
h node has a node re
ord thatstores a pointer to the split group of the node. For a nodew we allow the operation Split(w) that
reates a new nodew0 to the right of w (w and w0 both belong in the samesplit group). The new node w0 is formed by moving a setof blo
ks of
hild pointers from w to w0. Two operations
an be applied on blo
ks, Add(e,e0) and Remove(e). Theformer operation adds a new
hild pointer e0 next to the
hild pointer e while the latter operation removes a
hildpointer e from the blo
k. Finally, we apply on blo
ks thepair me
hanism, whi
h in fa
t implements the in
rementalsplitting of this obje
t. Ea
h pair of blo
ks
onsist of twoblo
ks and ea
h blo
k is
ontained in exa
tly one pair. Allpairs of blo
ks at level i store at least ai
hild pointers withthe possible ex
eption of the root. On pairs we apply theoperation Break(p) so that if p = (B1; B2), where Bi is ablo
k and jBij � ai, then after this operation two new pairsp0 = (B1; B01) and p00 = (B2; B02) substitute p where B01 andB02 are empty blo
ks. In Figure 3 we depi
t the internalstru
ture of split groups.Firstly, we will des
ribe the insertion algorithm based onFigure 1, and then we will pro
eed to the analysis dis
ussion.So assume that we want to insert a new element immedi-ately to the right of an element l. We �rst lo
ate the rootz = A:root of the
omponent A that
ontains the father of l.Break
omponent A and insert split group z into the
om-ponent B of its father w (note that w is just a node thatbelongs to a split group). Break z into singleton groups andsplit w into two nodes, w and w0. The new node w0 is formedby moving from w the rightmost blo
k at level two of theinternal stru
ture of blo
ks. Then w0 is added to the blo
k

that
ontains w as a
hild (this is the implementation of op-eration Add(e,e0)). The new node w0 belongs to a pair ofblo
ks. If the leftmost blo
k of the pair has size � ai+ bi�1move the rightmost edge of the left blo
k to the right blo
k.If the right blo
k has size � ai and there is a split groupwith edges in both blo
ks of the pair move one edge fromleft to right. Note that after at most bi�1 su
h operations,all elements of the split group have been moved to the rightblo
k and the pair
an be split at this time. Finally,
he
kthe levels two and three of the hierar
hy of blo
ks for pairsthat need splitting.In order to prove the
orre
tness of the des
ribed pro
e-dure we need to guarrantee an upper bound on the degree ofthe internal nodes. So,going ba
k to Figure 1 assume thatz = A:root is a split group and that its father is a node (in-side a split group) w that belongs to the
omponentB. Thenafter some operation in a leaf that belongs to
omponent A,we break A and we break split group z into singleton groups
ontaining only one node. Finally, we insert these singletonsplit groups to the
omponent of w. The break of a splitgroup into singleton split groups
an be implemented in alazy way by maintaining a
ag in the split group re
ord thatindi
ates whether the split group is valid or invalid.We stated previously that the size of a blo
k at level i+1 is bounded by ai+1 and ai+1 + 2bi. Ea
h node has atmost 2b2i � 1 and at least 1 su
h blo
k. In this way, ea
hnode groups at most 6b3i (requiring ai+1 < bi)
hild pointersand at least ai+1
hild pointers. As a
onsequen
e, whenstarting from a singleton split group at level i + 1 we
an
learly see that the split group has < 6b3i out-degree. Sin
ethe maximum degree at level i is bi and we want to havesingleton split groups with minimum degree equal to ai wemay split ea
h split group into at most ri = biai singletonsplit groups. Thus, if we assume that initially we start witha singleton group gi+1 at level i + 1 whose
hild pointersmay be of arbitrary
olor (green, red or D-red) then themaximum number of nodes before being split into singletongroups is r2i .For the split group gi+1 equation 2 states that �(gi+1) �bi+1. We need to ensure that the potential in
reases onlyunder
ertain
onditions so that we
an ensure the validity ofequation 2. Sin
e one green edge may produ
e ri red edgesand one red edge may produ
e ri D-red edges and by equa-tion 1 we dedu
e that the potential does not in
rease duringthe transitions between the four phases shown in Figure 2.This holds for all
ases with the ex
eption of the transitionfrom phase (d) to phase (a), where D-red edges may againbe
ome green. In this way we have an in
rease in potentialof order O(r2i) for ea
h D-red edge. However, multiple split-ting
orre
ts this problem by making singleton groups witha
ontrollable out-degree.From the above dis
ussion it is easy to dedu
e that thepotential bounds the number of
hild pointers whi
h may beprodu
ed by a singleton group. Assuming that this singletonsplit at level i+1 has maximum
apa
ity (it has < 6b3i out-degree) and that all
hild pointers are green by equations 1and 2 we dedu
e that:6b3i r2i � bi+1) 6b3i (biai)2 � bi+1) 6b5i � bi+1 (3)From re
urren
e 3 we get:6b5i � bi+1) 6(6(: : :)5)5 � bi+1)

v

(a)

i-1

w

z

v

w

z

(b)

v

(c)

w

z

v

w

z

(d)

v

w

z

(e)

i

i+1

Figure 4: The
onse
utive phases of binary splits:(a) group w was just multiple split, (b) the multiplesplit of v results in the addition of a
hild pointer atz, (d) the multiple split at level i � 1 results in theaddition of one more
hild pointer at level i+ 1, (e)a multiple split takes pla
e at level i. A single splitgroup at level i� 1 when in phase (a) may produ
eup to bi�1 + 1
hild pointers at level i + 1 when inphase (e).650651652 : : : 65i � bi+1) 6Pij=0 5j � bi+1)6 5i�15�1 � bi+1) 6 5i�14 � bi+1) bi+1 � 223i�1 (4)The above analysis would be fully
orre
t if we had a wayto ensure that binary splittings
aused by multiple splittingsone level lower are terminal so that no
as
ading splittingsof nodes are produ
ed. Unfortunately, the de�nition of po-tential does not
apture this situation but as we will see withthe appropriate tuning of the me
hanism that implementsmultiple splitting we
ir
umvent this problem. We will baseour argument on Figure 4. The me
hanism of
omponentsas shown in the previous se
tion ensures that a split groupat level i will be rebalan
ed only when the split groups atlevel i � 1 are twi
e rebalan
ed. This means that a single
hild pointer of a node at level i + 1 may produ
e at most2b4i�1 new edges due to multiple splittings at level i�1 thatprodu
e binary splittings at level i. Sin
e a node at level i+1has maximum
apa
ity b3i and by the above observations wededu
e that after the phases depi
ted in Figure 4 the num-ber of
hild pointers of the node at level i+1 will be at mostb3i b3i�1bi�1, where b3i is the maximum initial out-degree of anode at level i + 1, b3i�1 is the maximum out-degree of anode at level i and bi�1 is for the double splitting due to the
omponent me
hanism. This means that the out-degree ofnodes is in
reased in an un
ontrollable fashion. However, ifwe
hange slightly the multiple splitting me
hanism we
anensure that this situation will not happen. When a multiplesplitting at level i takes pla
e (
reates bi new split groups)then at level i+ 1 we
reate a new node by moving b2i
hildpointers. This means that we let at this node b2i � bi freespa
e for edges from binary splittings. Sin
e we have bi newnodes we demand that this free spa
e is enough for all point-ers from binary splittings. Thus, from the above dis
ussionwe demand: b2i � 2bib4i�1) bi � 2b4i�1 (5)However, equation 5 is fully
overed by equation 4 and soby
hoosing a value for bi+1 su
h that equation 4 is satis�edwe know for sure that a node will always have pla
e forpointers due to binary splittings and so we
an ensure thatas far as insertions are
onsidered the out-degree of internalnodes will be bounded.

The following theorem (mat
hing the bounds stated in [3℄)is the result of the above dis
ussion:Theorem 1. Assuming that �nger sear
hes
an be imple-mented eÆ
iently, we
an maintain a �nger sear
h tree withworst-
ase
onstant �nger insertion time when deletions arenot allowed.
4. THE CASE OF DELETIONSIn this se
tion we assume that the only allowable opera-tion on an initial set of elements, whi
h is represented bythe tree stru
ture T , is delete(l), where l is a pointer to theleaf that is going to be deleted. The s
heduling me
hanismfor the rebalan
ing operations is the me
hanism of
ompo-nents. Due to the ineÆ
ien
y of this me
hanism des
ribedin Se
tion 2 we need to resort to a multiple version of knownrebalan
ing operations for the
ase of deletions. In this
asewe are going to use the notion of multiple fusion. The mul-tiple fusion is like the ordinary fuse operation for (a,b)-treeswith the diferen
e that many nodes parti
ipate in this op-eration. Generally, the strategy we follow for deletions issymmetri
 to insertions and this symmetry will be madeexpli
it whenever ne
essary.Assume that we have a

ess to a pro
edure that we
allora
le, whi
h performs the multiple fusion pro
edure in
on-stant worst-
ase time. Thus, the ora
le is a me
hanism thattakes as input a set of adja
ent brother nodes and outputsin O(1) worst-
ase time a single node that results from thefusion of all these nodes. The set of nodes that parti
ipatesin a
all to the ora
le is
alled fusion group. We will see laterin this se
tion how to
an
el this assumption. First, re
allFigure 1. In a nutshell, the algorithm for the deletion of aleaf l
onsists of �ve steps: a) �nd the set A in whi
h thefather of l belongs, b)remove leaf l,
) break
omponent A,d)
all the ora
le for the root x = A:root of the
omponentA and e) add to the
omponent of its father the new nodex0 produ
ed by the ora
le. Below we show, based on theassumption of the existen
e of su
h ora
le, that the abovealgorithm is
orre
t.First, we need to de�ne the fusion fa
tor, ai, for all nodesof ea
h level i. The fusion fa
tor for level i is the requiredout-degree for ea
h new node produ
ed by a
all to the or-a
le. Thus, after the appli
ation of a rebalan
ing operationimplemented by the ora
le at level i, we
an assure that thenew node v has out-degree ai. We set the lower bound on thedegree of a node to be equal to 2 - in the worst-
ase we ex-pe
t to have a binary tree. Considering the fusion fa
tors oflevels i and i�1 (ai and ai�1 respe
tively) we may generatea re
urren
e relation that bounds the fusion fa
tor, basedon the fa
t that the lower bound in the degree of a node isequal to 2. In this way we produ
e the following re
urren
erelation: ai(ai�1=2)2 � 4, where a1 = 4 (at level 1 we want atleast an out-degree of 4). To generate this re
urren
e rela-tion we have to note that a node at level i with initial outdegree ai may, by applying multiple fuse operations twi
e atits
hildren due to Lemma 1, have at least degree equal to 2.The ora
le at level i� 1 needs to fuse at most ai�1=2 nodes(thus, the maximum number of nodes inside a fusion groupis ai�1=2) with minimum degree 2 during a multiple fuseoperation at this level while by Lemma 1 the multiple fuseswill involve at most (ai�1=2)2. It will be made
lear belowwhy we have
hosen this fra
tion to be larger than 4 andnot larger than 2. Thus, by solving the above re
urren
e we

z

w
 x

(a)

z

w
 x

(b)

z

w
 x

(c)
Figure 5: The three possible di�erent situations inthe fuse operation between fusion groups. All othersituations are symmetri
.get: ai � a2i�1; a1 = 4) ai � 42i) ai � 22i+1 (6)Choosing a value for ai su
h that equation 6 is satis�ed wemay ensure that the above algorithm implements deletionsin
onstant worst-
ase time with a guaranteed non-triviallower bound on the degree of the nodes. However, thereare two issues that need
lari�
ation. The �rst one refersto the maintenan
e of
omponents under the multiple fuseoperation while the other refers to the stru
ture of nodesand the maintenan
e of the lower bound on the degree ofthe nodes.The �rst problem as we mentioned above is to maintainthe
omponents during a multiple fuse operation. We willassume that a multiple fuse operation is in fa
t a sequen
eof ordinary binary fusions. All possible
ases for the fusionof adja
ent nodes are depi
ted in Figure 5. In
ase (a) webreak
omponent rooted at w, we fuse it with x and add thenew node to the
omponent of z. In
ase (b) we break both
omponents rooted at w and x and add the new node that
omes from the fusion of w and x at the
omponent of itsfather. Finally,
ase (
) is easy to implement by breakingthe
omponent rooted at w and inserting w into its father
omponent by fusing it with its brother x. We must alsoensure that this fusion will not lead to a single fusion groupas a
hild of a fusion group at the upper level. If this hap-pens, then we
annot guarantee the lower bound of 2. Thisis due to the fa
t that the distribution of update operationsbetween the di�erent subtrees is not known. The followinglemma solves this problem.Lemma 2. For every distribution of update operations be-tween subtrees rooted at the
hildren of a node v, the
hoi
eof the fusion fa
tor given in equation 6
an guarantee thatthe number of fusion groups is at least 2.Proof. Note that in equation 6 we demand that the fra
-tion be larger than 4. This means that if we were given aworst-
ase sequen
e of operations at the
hildren of a node vat level i beforehand (o�ine updates), then we
ould guar-antee that at the end (just before rebalan
ing v at level i),v would have exa
tly 4
hildren (this would work even for 3
hildren). However, sin
e the updates are online we have tode�ne fusion groups on the
y. However, even in this
asewe
an guarantee a lower bound of two
hildren for ea
hnode sin
e there are always many
hildren to
onstru
t twofusion groups indepedently of the distribution of the updateoperations.In addition, note that the early break of the
omponentsdoes not in
ur any problems with the
omponent me
ha-

nism. In fa
t, this early break a

elerates the me
hanism of
omponents.We must also
onsider the internal stru
ture of nodes.Assume a node at level i. This node is stru
tured into atleast ai�1 blo
ks of size exa
tly ai�1. Thus, the out-degreeof a node at level i is a2i�1 immediately after the multiplefuse operation, whi
h of
ourse satis�es equation 6. In thisway, ea
h blo
k de�nes at least two new nodes at level i �1 (due to Lemma 2) after the appli
ation of the multiplefusion operation at this level. Thus, the blo
k may haveafter this operation less that ai�1
hild pointers. To remedythis problem we form a pair between this blo
k and one ofits adja
ent blo
ks. If both adja
ent blo
ks already belongin a pair then break an existing pair and
reate a new one.The me
hanism of pairs guarantees that there will be no
as
ading breaks of pairs. Nodes (and as a result fusiongroups) are also stru
tured into pairs, so that in
rementalfusion between nodes is possible. Lemma 2 ensures thatea
h node will have at least two
hildren.In the above dis
ussion we assumed the existen
e of an or-a
le to show that by using
omponents and the me
hanismof multiple fusion one
an
ome up with an implementa-tion of deletions in
onstant worst-
ase time while keepingthe stru
ture balan
ed. At this point, we need to
an
elthis assumption. To a
hieve this, we have to implementthe multiple fusion operation in an in
remental way. Thismeans that the fusion groups are
onstru
ted in
rementallyand are not formed in
onstant worst-
ase time as in theimaginary me
hanism of the ora
le. The fusion group, asde�ned above, is a set of
onse
utive nodes that at the endwill form by fusion a single new node. The total out-degreeof a fusion group at level i must be at least ai, sin
e ea
hfusion group is in fa
t a node under
onstru
tion. In ad-dition, note that
omponents are de�ned on fusion groupssin
e these will be
ome single nodes at some time in the fu-ture. Below we des
ribe when and how the fusion groupsare formed.First we give some details of the deletion algorithm basedon Figure 1, assuming that we want to delete leaf l. Thealgorithm follows:1. Find the
omponent A in whi
h the father of l belongs.Let new fg be the new fusion group whi
h is the rootof A at level i� 1.2. Break A. Let B the
omponent of its father.3. Add(new fg,B). Let xj be the node whi
h is father ofnew fg and let xj+1 be its brother node inside the pairor if it does not belong in the pair one of its adja
entnodes. Both nodes belong in the same fusion group fgat level i (note that fg is the real node while xj andxj+1 are nodes whi
h should be fused).4. Make an in
remental fuse operation between xj andxj+1.5. If out degree(fg) � ai then fuse an adja
ent fusiongroup with fg and fuse the respe
tive adja
ent blo
ksat level i+ 1 (all these fusions are in
remental).The above algorithm makes two assumptions. The �rstassumption is that a fusion group is fully
ontained in ablo
k one level above. This assumption holds by using theindu
tive argument stemming from the maintenan
e of the

blo
ks in the deletion algorithm given above. The se
ond as-sumption is that the fusion between nodes that takes pla
eas a result of a multiple fuse one level below may damagethe out-degree of the fusion group one level above. However,this is not true sin
e the fusion between two nodes due toa multiple fuse in the level below is
ontained in the in
re-mental
onstru
tion of the single node by the fusion group
ontaining both nodes. Thus, generally one
ould say that amultiple fusion (the in
remental fusion of fusion groups) atlevel i� 1 results in a binary fusion (the in
remental fusionof nodes) at level i whi
h further results in the removal ofa
hild edge from a blo
k at level i + 1. Symmetri
ally, ininsertions a multiple split at level i � 1 results in a binarysplit at level i whi
h further results in the insertion of a new
hild pointer in a blo
k at level i+ 1.In addition, the fusion of adja
ent fusion groups a�e
tsthe
omponent me
hanism. All possible
ases for
ompo-nents are depi
ted in Figure 5. Case (a) is easy to solve byinserting fusion group x into the
omponent with root thefusion group w. Case (
) is also easy to solve by breaking the
omponent with root w and inserting w into the
omponentwhere x belongs, after initiating the in
remental fusion of wand x. Sin
e x is a full fusion group (it has the ne
essaryout-degree) one
an say that it may absorbs all of its broth-ers and thus violate the lower bound of 2 on the degree offusion groups. However, this is not the
ase sin
e we mayfuse w with its right or left brother and as a result in theworst-
ase this pro
edure will lead to two fusion groups atthe level of w. Case (
)
an be ta
kled by using the Link op-eration des
ribed in Se
tion 2. The aim here is to unite both
omponents rooted at w and x. This
an be a

omplishedby the Link operation. However, we mentioned in Se
tion 2that we may have to in
rementally join two
omponents rep-resented by fusion re
ords. The in
remental step is to makea
onstant number of
omponent re
ords to point to one ofthe two fusion re
ords and it is
arried out while exe
ut-ing step 4. Sin
e this pro
edure starts as soon as the fusiongroup has ai�1 out-degree we have enough time available toexe
ute the transfer of
omponenet re
ords from one fusiongroup to the other.To summarize, the me
hanism of
omponents is appliedon fusion groups. The
omponents are represented by
om-ponent re
ords as in the
ase of insertions, but to a
hieve aworst-
ase
onstant implementation of the union of two ad-ja
ent
omponents (the adja
en
y is de�ned with respe
t totheir roots) we introdu
ed another level of indire
tion, thefusion re
ords. Thus, ea
h
omponent is represented eitherby a
omponent re
ord when the pointer �eld that pointsto the fusion re
ord is nill or by the fusion re
ord pointedby this pointer. Ea
h fusion group represents a future nodeand
onsists of a set of nodes with the restri
tion that itsout-degree is at least equal to ai.In the above dis
ussion we devised a data stru
ture thatimplements deletions in
onstant worst-
ase time in the poi-nter ma
hine model of
omputation. The only problem nowremaining is to
ombine both solutions into a new one thatimplements the worst-
ase
onstant update �nger sear
htree and to show how to support �nger sear
hes in O(log d)time, where d is the distan
e between the �nger and theelement we sear
h.Theorem 2. Assuming that �nger sear
hes
an be imple-mented eÆ
iently, we
an maintain a �nger sear
h tree withworst-
ase
onstant �nger deletion time when insertions are

not allowed.
5. THE FINGER SEARCH OPERATIONIn this se
tion we sket
h how the tree stru
ture for inser-tions and for deletions
an support eÆ
iently �nger sear
hes.In a �nger sear
h we are given a �nger f and an element xand we want to �nd element x in the tree stru
ture startingthe sear
h from f and
ompleting the task in time O(log d),where d is the distan
e between f and x in the stru
ture.The main problem with the stru
ture is that there are nodeswhi
h have large degree and thus we need to investigate the
omplexity of the sear
h pro
edure in these nodes.If we solve the problem for the insertion stru
ture then we
an apply the same approa
h for for the stru
ture supportingdeletions as well as for the general stru
ture. Ea
h blo
k atlevel i + 1 -
onsidering the insertion tree stru
ture - hasmaximum degree 3bi�1, for whi
h by equation 4 holds thatbi � 223(i�1)�1 . Thus, the degree of the blo
ks at level i isO(22i). First we use level linking ([11℄) on the node treestru
ture. As a result, the sear
h pro
edure basi
ally startsfrom a leaf pointed by a �nger f and traverses the an
estorsof f until we �nd the �rst an
estor v (or one adja
ent to thisnode by using level pointers) that
ontains x in his range.Then we sear
h the spe
i�
 subtree for x. It is imperative toshow an upper bound on the distan
e between x and f basedon the level of node v. Assume that v is at level i. Then,the maximumdistan
e d will be O(22i)O(22i�1) : : : O(221) =O(22i+1). The lower bound on the distan
e between f andx when v is at level i is O(2i) sin
e the minimum degree ofinternal nodes is 2. The following Lemma from [3℄ will help:Lemma 3. There exists a pointer-based implementationof �nger sear
h trees whi
h supports arbitrary �nger sear
hesin O(log log n+log d) time, and �nger updates in worst-
ase
onstant time.Proof. The lemma is obtained by
ombining the �n-ger sear
h trees of Dietz and Raman ([5℄) and the sear
htrees of Lev
opoulos and Overmars ([13℄). For more detailssee [3℄.We represent ea
h blo
k by using the stru
ture of Lemma 3.Internal blo
ks (they are used in the three level tree stru
-ture for blo
ks) are also stru
tured by using Lemma 3. Thus,the sear
h pro
edure at the blo
ks Bk of node v
an be per-formed in O(log log jBkj + log d). In the worst-
ase jBkj =bi = 223i and as a result the �nger sear
h
an be performedin O(log log 223i +log d) = O(i+log d). Assuming that theyhave maximum distan
e (d =
(22i)) we get (for minimumdistan
e it is symmetri
):O(i+ log d) + i�1Xj=1O(log 22j))O(2i + log d)) O(log d) (7)sin
e log d =
(2i).The pro
edure sket
hed above
an be as well applied in the
ase of deletions with minor modi�
ations. In addition, thesame te
hniques
an also be applied in the
ombined solu-tion for insertions and deletions des
ribed in Se
tion 6. Thefollowing theorem summarizes the dis
ussion in this se
tion.

Split Group

. . .

Fusion Group

. . .

Node

...

. . .

Block

Fusion Group

Record

Split Group

Record

Node Record

...

. . .

Figure 6: The hierar
hy of obje
ts in the tree stru
-ture is depi
ted (split groups
onsisting of fusiongroups
onsisting of nodes
onsisting of blo
ks).This hierar
hy is maintained by pointers betweenthe di�erent obje
ts, whi
h are stored in the re-spe
tive re
ords (eg. for a node the respe
tive nodere
ord has a pointer �eld that points to the fusiongroup in whi
h this node belongs).Theorem 3. There exists a pointer-based implementationof �nger sear
h trees that support arbitrary �nger sear
hesin O(log d) time and �nger insertions in worst-
ase
onstanttime. The same holds for the tree stru
ture that supportsdeletions.
6. CONSTANT UPDATE FINGER SEARCH

TREESIn this se
tion we sket
h an implementation of a worst-
ase
onstant update �nger sear
h tree in the pointer ma-
hine based on the stru
tures given in Se
tions 3 and 4. Ingeneral we have
onsidered two strategies to join the stru
-tures for deletions and insertions in a single data stru
ture.The �rst one is to allow the existen
e of fusion groups andsplit groups simultaneously into the stru
ture. However,with this approa
h the stru
ture be
omes mu
h more
om-pli
ated sin
e we have to make a distin
tion between fusion
omponents and split
omponents. The se
ond approa
h,whi
h we analyze in this paper, is to de�ne a hierar
hy be-tween split and fusion groups. As a result,
omponents referto update operations and not solely to insertions or dele-tions.The hierar
hy of obje
ts that we use inside the tree stru
-ture
onsists of blo
ks, nodes, fusion groups and �nally splitgroups and it is depi
ted in �gure 6. In this way, ea
hsplit group
onsists of fusion groups, whi
h are further par-titioned into nodes. Finally, nodes
onsist of blo
ks thatgroup the
hild pointers. The idea of this approa
h is thefollowing: the split group that resides at the root of the
om-ponent is �rst split into singleton split groups. A singletonsplit group
ontains only one fusion group (as in insertionsonly
ase where ea
h singleton split group
ontains only onenode). In the extreme
ase where only insertions are al-lowed, the fusion groups will always
onsist of single nodeswhile in the
ase where only deletions are allowed, the splitgroups will always
ontain only one fusion group with a suf-�
ient number of nodes as shown in Se
tion 4. In the general
ase, the split groups will
ontain a number of fusion groupswhi
h further
ontain a number of nodes. Thus, intuitivelywe managed to have
omponents handle both multiple splits

and multiple fusions at the same time. This is a
hieved byapplying the
omponent me
hanism only on split groups.In Se
tions 3 and 4
ertain invariants where applied onthe size of the blo
ks and on the size of the nodes. Theseinvariants must also hold in the general setting where inser-tions and deletions are allowed simultaneously. The sizes offusion and split groups are derived based on the validity ofthe invariants given below.Invariant 1. The maximum out-degree of a blo
k at leveli is ai + 2 � bi�1.Invariant 2. The minimum out-degree of a blo
k at leveli is 2.Invariant 3. Ea
h node at level i has out-degree at least2 and at most b3i�1.Invariant 4. The fusion fa
tor at level i+1 must be lessthan bi (ai+1 < bi).It is obvious that the initial state satis�es invariants 1to 4. For the extreme
ases also holds he same invariants.For example, if we
onsider deletions then the split group
oin
ides with the fusion group and thus, invariants 1 to 4hold by the dis
ussion made in Se
tion 4. In the
ase ofinsertions only, the fusion groups
oin
ide with nodes andas a result invariants 1 to 4 hold by the dis
ussion made inSe
tion 3.The main diÆ
ulty lies in the general setting where inser-tions and deletions are allowed simultaneously. This prob-lem is related to the intera
tion of the me
hanisms of dele-tions and insertions. First, we sket
h the update algorithm,based on Figure 1. Assume that an update operation takespla
e at leaf l. The father f of the leaf l belongs in the
omponent A, while the father (the split group) of A:rootbelongs in the
omponent B. We make a rebalan
ing oper-ation at A:root, whi
h assume that lies at level i � 1. Thisrebalan
ing operation involves a break of the split groupA:root into singleton split groups (groups with one fusiongroup). At this point, if the father node at level i is largeor small we respe
tively split it or fuse it with an adja
entnode. Thus, we need to apply a size
ontrol me
hanism fornodes. We
an a
hieve this in a straightforward way by re-quiring that a node with out-degree less than ai is smallwhile a node with out-degree larger than b3i�1 is large. Theresult of a binary split (fusion) operation at level i is that anedge is inserted (deleted) at (from) level i+ 1. At this levelwe just have to update blo
ks in a manner similar to theone des
ribed in the previous se
tions. Below we sket
h themain steps of the update algorithm at a leaf l (the algorithmis based on �gure 1).1. Find the
omponent A in whi
h the father of l belongs.Let new sg be the spit group whi
h is the root of A atlevel i� 1.2. Break A. Let B the
omponent of its father.3. Add(new sg,B) and Break(new sg). Let xj be the nodewhi
h is father of new fg and let xj+1 be its brothernode inside the pair or if it does not belong in the pairone of its adja
ent nodes. Both nodes belong in thesame fusion group fg at level i (note that fg is thereal node while xj and xj+1 are nodes whi
h shouldbe fused).

4. If xj is small then start an in
remental fusion of xjand xj+1. If xj is a big node then split xj .5. If out degree(fg) � ai then fuse an adja
ent fusiongroup with fg and fuse the respe
tive adja
ent blo
ksat level i + 1 (all these fusions are in
remental). Thesplit groups should be reorganized a

ordingly if af-fe
ted by this operation.In step 5 of the algorithm split groups are a�e
ted by thefusion of adja
ent fusion groups. If the split group is notsingleton, that is it
ontains more than one fusion groups,then none split group is a�e
ted. However, if the split groupis singleton then if in step 5 the unique fusion group needsto be fused with some other node then we put this singletonin an adja
ent split group and make the in
remental fusion.The split and fuse operations applied on nodes are in
re-mentally implemented by using the me
hanism of pairs. Ingeneral, all size invariants are maintained by applying thesame me
hanisms as in Se
tions 3 and 4 with some minormodi�
ations. Note that the in
remental fusion and splitsof nodes a�e
ts the fusion and split groups in the same wayas des
ribed in Se
tions 4 and 3 respe
tively. In addition,fusions of nodes does not a�e
t the split groups. However,it is ne
essary to introdu
e the split operation (apart fromthe fuse operation) in fusion groups due to splits of nodes.When a node is split into two nodes, it is ne
essary to splitthe fusion group into two fusion groups.This
an be a
omplished in worst-
ase
onstant time if webuild a stru
ture on nodes similar to the stru
ture of blo
ksthat
onsist a single node. This three level stru
ture willallow us to implement the split of a fusion group in worst-
ase
onstant time in a similar way to the split of nodes.It is easy to maintain a balan
ed partition (with respe
tto the out-degree of the nodes) of these nodes sin
e theirout-degree is in
reased or de
reased by one (the insertion ordeletion of an edge respe
tively).The following theorem summarizes the result given in thispaper:Theorem 4. We
an maintain a �nger sear
h tree inthe pointer ma
hine model of
omputation su
h that �ngersear
hes are performed in worst-
ase optimal time O(log d)while updates are performed in
onstant worst-
ase time.
7. CONCLUSIONSIn this paper we sket
hed a solution to the long-standingproblem of devising worst-
ase
onstant update �nger sear
htrees in the pointer ma
hine. This was a

omplished by us-ing an innovative s
heduling me
hanism of rebalan
ing op-erations as well as a multiple version of known rebalan
ingoperations in (a,b)-trees (fusions and splits).The solution is
ompli
ated and we would surely like to seea simpler solution to this problem that
ould also be appliedto trees of
onstant out-degree. However, it is our intuitionthat to do so one must either enhan
e the te
hnique of
om-ponents or maybe
ombine it with some other te
hniques.In addition, it would be interested to �nd appli
ations of the
omponent te
hnique in other problems. Finally, we mustnote that several te
hni
al details were not in
luded in thisextended abstra
t but they will be
onsidered in a futurejournal version.

8. REFERENCES[1℄ A. Anderson and M. Thorup. Tight(er) Worst-
aseBounds on Dynami
 Sear
hing and Priority Queues. InPro
. 32nd Annual ACM Symposium On Theory ofComputing (STOC), pages 335-342. ACM, 2000.[2℄ G.S. Brodal. Partially Persistent Data Stru
tures ofBounded Degree with Constant Update Time. Nordi
Journal of Computing, 3(3):238-255, 1996.[3℄ G.S. Brodal. Finger Sear
h Trees with ConstantInsertion Time. In Pro
. 9th Annual ACM-SIAMSymposium on Dis
rete Algorithms(SODA), pages540-549, 1998.[4℄ M.J. Clan
y and D.E. Knuth. A programming andproblem-solving seminar. T.R. STAN-CS-77-606, Dept.of Comp. S
ien
e, Stanford University, 1977.[5℄ P. Dietz and R. Raman. A Constant Update TimeFinger Sear
h Tree. Information Pro
essing Letters,52:147-154, 1994.[6℄ J.R. Dris
oll, N. Sarnak, D.D.Sleator and R.E. Tarjan.Making Data Stru
tures Persistent. Journal ofComputer and System S
ien
es, 38:86-124, 1989.[7℄ R. Fleis
her. A Simple Balan
ed Sear
h Tree with O(1)Worst Case Update Time. International Journal ofFoundations of Computer S
ien
e, 7:137-149, 1996.[8℄ L.J. Guibas, E.M. M
Creight, M.P. Plass and J.R.Roberts. A New Representation for Linear Lists. InPro
. 9th Annual ACM Symposium On Theory ofComputing (STOC), pages 49-60. ACM, 1977.[9℄ D. Harel. Fast Updates with a Guaranteed Time Boundper Update. T.R. 154, Dept of ICS, University ofCalifornia at Irvine, 1980.[10℄ D. Harel and G. Lueker. A Data Stru
ture withMovable Fingers and Deletions. T.R. 145, Dept of ICS,University of California at Irvine, 1979.[11℄ S. Huddleston and K. Mehlhorn. A New DataStru
ture for Representing Sorted Lists. A
taInformati
a, 17:157-184, 1982.[12℄ S.R. Kosaraju. Lo
alized Sear
h in Sorted Lists. InPro
. 14th Annual ACM Symposium On Theory ofComputing (STOC), pages 62-69. ACM, 1981.[13℄ C. Lev
opoulos and M.H. Overmars. A Balan
edSear
h Tree with O(1) Worst Case Update Time. A
taInformati
a, 26:269-277, 1988.[14℄ M.H. Overmars. An O(1) Average Time UpdateS
heme for Balan
ed Sear
h Trees. Bulletin of EATCS,18:27-29, 1982.[15℄ R.E. Tarjan. A Class of Algorithms whi
h RequireNonlinear Time to Maintain Disjoint Sets. Journal ofComputer and System S
ien
es, 18:110-127, 1979.[16℄ R.E. Tarjan. Updating a Balan
ed Sear
h Tree inO(1) Rotations. Information Pro
essing Letters,16:253-257, 1983.[17℄ A.K. Tsakalidis. AVL-trees for Lo
alized Sear
h.Information and Control, 67:173-194, 1985.

