
Optimal Static Range Reporting in One Dimension

Stephen Alstrup
∗

The IT University of
Copenhagen

stephen@it-c.dk

Gerth Stølting Brodal
†

BRICS
‡

Dept. of Computer Science
University of Aarhus

gerth@brics.dk

Theis Rauhe
∗

The IT University of
Copenhagen

theis@it-c.dk

ABSTRACT
We consider static one dimensional range searching prob-
lems. These problems are to build static data structures for
an integer set S ⊆ U , where U = {0, 1, . . . , 2w − 1}, which
support various queries for integer intervals of U . For the
query of reporting all integers in S contained within a query
interval, we present an optimal data structure with linear
space cost and with query time linear in the number of inte-
gers reported. This result holds in the unit cost RAM model
with word size w and a standard instruction set. We also
present a linear space data structure for approximate range
counting. A range counting query for an interval returns
the number of integers in S contained within the interval.
For any constant ε > 0, our range counting data structure
returns in constant time an approximate answer which is
within a factor of at most 1 + ε of the correct answer.

1. INTRODUCTION
Let S be a subset of the universe U = {0, 1, . . . , 2w − 1}

for some parameter w. We consider static data structures
for storing the set S such that various types of range search
queries can be answered for S. Our bounds are valid in
the standard unit cost RAM with word size w and a stan-
dard instruction set. We present an optimal data struc-
ture for the fundamental problem of reporting all elements
from S contained within a given query interval. We also pro-
vide a data structure that supports an approximate range
counting query and show how this can be applied for multi-
dimensional orthogonal range searching. In particular, we
provide new results for the following query operations.

∗Partially supported by a grant from The Danish Natural
Science Research Council, grant no. 51-00-0390.
†Partially supported by the IST Programme of the EU under
contract number IST-1999-14186 (ALCOM-FT)
‡Basic Research in Computer Science, www.brics.dk, funded
by the Danish National Research Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’01, July 6-8, 2001, Hersonissos, Crete, Greece.
Copyright 2001 ACM 1-58113-349-9/01/0007 ...$5.00.

FindAny(a, b), a, b ∈ U : Report any element in S ∩ [a, b] or
⊥ if there is no such element.

Report(a, b), a, b ∈ U : Report all elements in S ∩ [a, b].

Countε(a, b), a, b ∈ U, ε ≥ 0: Return an integer k such that
|S ∩ [a, b]| ≤ k ≤ (1 + ε)|S ∩ [a, b]|.

We let n denote the size of S and let u = 2w denote the size
of universe U . Our main result is a static data structure
with space cost O(n) that supports the query FindAny in
constant time. As a corollary, the data structure allows
Report in time O(k), where k is the number of elements to
be reported.

Furthermore, we give linear space structures for the ap-
proximate range counting problem. We present a data struc-
ture that uses space O(n) and supports Countε in constant
time, for any constant ε > 0.

The preprocessing time for the mentioned data structures
is expected time O(n

√
log u).

1.1 Related work
Efficient static data structures for range searching have

been studied intensively over the past 30 years, for surveys
and books see e.g. [1, 18, 20]. In one dimension there has
been much focus on the following two fundamental problems:
the membership problem and the predecessor problem. These
problems address the following queries respectively:

Member(a), a ∈ U : Return yes if and only if a ∈ S.

Pred(a), a ∈ U : Return the predecessor of a, i.e., max(S ∩
[0, a]) or ⊥ if there are no such element.

The Member query is easily solved by FindAny, Report or
Countε by restricting the query to unit size. On the other
hand, it is straightforward to compute these three queries
by at most two predecessor queries given an additional sort-
ed (relative to U) list of the points S, where each point is
associated its list rank.

An information theoretic lower bound implies that any
data structure supporting any of the above queries, includ-
ing Member, requires at least log

�
u
n

�
bits, i.e., has linear

space cost in terms of w = log u bit words for n ≤ u1−Ω(1).
In [12], Fredman, Komlós and Szemeredi give an optimal
solution for the static membership problem, which support-
s Member in constant time and with space cost O(n). In
contrast, the predecessor problem does not permit a data
structure with constant query time for a space cost bound-
ed by nO(1). This was first proved by Ajtai [3], and later

Beame and Fich [8] improved Ajtai’s lower bound and in
addition gave a matching upper bound of

O(min(log log u/ log log log u,
p

log n/ log log n))

on the query time for space cost O(n1+δ) for any constant
δ > 0. Beam and Fich’s lower bound holds for exact count-
ing queries, i.e., Countε where ε = 0. Our result shows that
it is possible to circumvent this lower bound by allowing a
slack in the precision of the result of the queries.

For data structures with linear space cost, Willard [24]
provides a data structure with time O(log log u) for predeces-
sor queries. Andersson and Thorup [7] show how to obtain
a dynamic predecessor query with bounds O(min(log log n ·
log log u/ log log log u,

p
log n/ log log n)). For linear space

cost, these bounds were previously also the best known for
the queries FindAny, Report and Countε. However, for super-
linear space cost, Miltersen et al. [19] provide a data struc-
ture which achieves constant time for FindAny with space
cost O(n log u). Miltersen et al. also show that testing for
emptiness of a rectangle in two dimensions is as hard as ex-
act counting in one dimension. Hence, there is no hope of
achieving constant query time for any of the above query
variants including approximate range counting for two di-
mensions using space at most nO(1).

1.2 Approximate data structures
Several papers discuss the approach of obtaining a speed-

up of a data structure by allowing slack of precision in the
answers. In [17], Matias et al. study an approximate variant
of the dynamic predecessor problem, in which an answer to a
predecessor query is allowed to be within a multiplicative or
additive error relative to the correct universe position of the
answer. They give several applications of this data struc-
ture. In particular, its use for prototypical algorithms, in-
cluding Prim’s minimum spanning tree algorithm and Dijk-
stra’s shortest path algorithm. The papers [4] and [6] pro-
vide approximate data structures for other closely related
problems, e.g., for nearest neighbor searching, dynamic in-
dexed lists, and dynamic subset rank.

An important application of our approximate data struc-
ture is the static d-dimensional orthogonal range searching
problem. The problem is given a set of points in Ud, to
compute a query for the points lying in a d-dimensional box
R = [a1, b1] × · · · × [ad, bd]. Known data structures pro-
viding sublinear search time have space cost growing expo-
nential with the dimension d. This is known as the “curse
of dimensionality” [9]. Hence, for d of moderate size, a
query is often most efficiently computed by a linear scan
of the input. A straightforward optimization of this ap-
proach using space O(dn) is to keep the points sorted by
each of the d coordinates. Then, for a given query, we can
restrict the scan to the dimension i, where fewest points
in S have the ith coordinate within the interval [ai, bi].
This approach leads to a time cost of O(dt(n) + opt) where
opt is the number of points to be scanned and t(n) is the
time to compute a range counting query for a given dimen-
sion. Using the previous best data structures for the exact
range counting problem, this approach has a time cost of
O(d min(log log u,

p
log n/ log log n) + opt). Using our data

structure supporting Countε and FindAny, we improve the
time for this approach to optimal time O(d + (1 + ε)opt) =
O(d+opt) within the same space cost. A linear scan behaves
well in computational models, which consider a memory hi-

erarchy, see [2]. Hence, even for large values of opt, it is
likely that the computation needed to determine the dimen-
sion for the scan majorizes the overall time cost.

1.3 Organization
The paper is organized as follows: In Section 2 we define

our model of computation and the problems we consider,
and state definitions and known results needed in our data
structures. In Section 3 we describe our data structure for
the range reporting problem, and in Section 4 we describe
how to preprocess and build it. Finally, in Section 5 we
describe how to extend the range reporting data structure
to support approximate range counting queries.

2. PRELIMINARIES
A query Report(a, b) can be implemented by first querying

FindAny(a, b). If an x ∈ S ∩ [a, b] is returned, we report the
result of recursively applying Report(a, x − 1), then x, and
the result of recursively applying Report(x+1, b). Otherwise
the empty set is returned. Code for the reduction is given in
Figure 2. If k elements are returned, a straightforward in-
duction shows that there are 2k+1 recursive calls to Report,
i.e. at most 2k + 1 calls to FindAny, and we have therefore
the following lemma.

Lemma 1. If FindAny is supported in time at most t, then
Report can be supported in time O(t ·k), where k is the num-
ber of elements reported.

The model of computation, we assume throughout this
paper, is a unit cost RAM with word size w bits, where the
set of instructions includes the standard boolean operations
on words, the arbitrary shifting of words, and the multipli-
cation of two words. We assume that the model has access
to a sequence of truly random bits.

In our constructions we use the following definitions and
results. Given two words x and y, we let x ⊕ y denote the
binary exclusive-or of x and y. If x is a w bit word and
i a nonnegative integer, we let x ↓ i and x ↑ i denote the
rightmost w bits of the result of shifting x i bits to the right
and i bits to the left respectively, i.e. x ↓ i = x div 2i

and x ↑ i = (x · 2i) mod 2w. For a word x, we let msb(x)
denote the most significant bit position in x that contains
a one, i.e. msb(x) = max{i | 2i ≤ x} for x 6= 0. We define
msb(0) = 0. Fredman and Willard in [13] describe how to
compute msb in constant time.

Theorem 1 (Fredman and Willard [13]).
Given a w bit word x, the index msb(x) can be computed
in constant time, provided a constant number of words is
known which only depend on the word size w.

Essential to our range reporting data structure is the effici-
ent and compact implementation of sparse arrays. We define
a sparse array to be a static array where only a limited num-
ber of entries are initialized to contain specific values. All
other entries may contain arbitrary information, and crucial
for achieving the compact representation: It is not possible
to distinguish initialized and not initialized entries. For the
implementation of sparse arrays we will adopt the following
definition and result about perfect hash functions, where [n]
denotes {0, 1, . . . , n − 1}.

Definition 1. A function h : [m] → [ℓ] is perfect for a
set S ⊆ [m] if h is 1-1 on S. A family H is an (m,n, ℓ)-
family of perfect hash functions, if for all subsets S ⊆ [m]
of size n there is a function h ∈ H : [m] → [ℓ] that is perfect
for S.

The question of representing efficiently families of perfec-
t hash functions has been throughly studied. Schmidt and
Siegel [21] described an (m,n, O(n))-family of perfect hash
functions where each hash function can be represented by
Θ(n + log log m) bits. Jacobs and van Emde Boas [16] gave
a simpler solution requiring O(n log log n+log log m) bits in
the standard unit cost RAM model augmented with mul-
tiplicative arithmetic. Jacobs and van Emde Boas result
suffices for our purposes. The construction in [16] makes re-
peated use of the data structure in [12] where some primes
are assumed to be known. By replacing the applications of
the data structures from [12] with applications of the da-
ta structure from [10], the randomized construction time in
Theorem 2 follows immediately.

Theorem 2 (Jacobs and van Emde Boas [16]).
There is an (m, n, O(n))-family of perfect hash functions H
such that any hash function h ∈ H can be represented in
Θ((n log log n)/w) words and evaluated in constant time for
m ≤ 2w. The perfect hash function can be constructed in
expected time O(n).

A sparse array A can be implemented using a perfect hash
function as follows. Assume A has size m and contains n
initialized entries each storing b bits of information. Using a
perfect hash function h for the n initialized indices of A, we
can store the n initialized entries of A in an array B of size n,
such that A[i] = B[h(i)] for each initialized entry A[i]. If A[i]
is not initialized, B[h(i)] is an arbitrary of the n initialized
entries (depending on the choice of h). From Theorem 2 we
immediately have the following corollary.

Corollary 1. A sparse array of size m with n initial-
ized entries each containing b bits of information can with
expected preprocessing time O(n) be stored using space O(n ·
b/w) words, and lookups are supported in constant time, if
log log n ≤ b ≤ w and m ≤ 2w.

For the approximate range counting data structure in Sec-
tion 5 we need the following result achieved by Fredman and
Willard for storing small sets (in [14] denoted Q-heaps; these
are actually dynamic data structures, but we only need their
static properties). For a set S and an element x we define
rank

S
(x) = |{y ∈ S | y ≤ x}|.

Theorem 3 (Fredman and Willard [14]).
Let S be a set of w bit words and an integer n, where |S| ≤
(log n)1/4 and log n ≤ w. Using time O(|S|) and space
O(|S|) words, a data structure can be constructed that sup-
ports rank

S
(x) queries in constant time, given the availabil-

ity of a table requiring space and preprocessing time O(n).

The result of Theorem 3 can be extended to sets of size
(log n)c for any constant c > 0, by constructing a (log n)1/4-
ary search tree of height 4c with the elements of S stored at
the leaves together with their rank in S, and where internal
nodes are represented by the data structures of Theorem 3.
Top-down searches then take time proportional to the height
of the tree.

0

1

2

3

4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

B 1 0 1 1

D 0 0 1 1 1 0 0 1 1

Figure 1: The binary tree T for the case w=4, S =
{3, 6, 7, 12, 14}, and H = 2. The set S induces the sets

P = {1, 2, 3, 4, 5, 7, 9, 11, 14, 15} and V = {1, 2, 7, 11}, and

the two sparse arrays B and D.

Corollary 2. Let c > 0 be fixed constant and S a set
of w bit words and an integer n, where |S| ≤ (log n)c and
log n ≤ w. Using time O(|S|) and space O(|S|) words, a
data structure can be constructed that supports predecessor
queries in time O(c), given the availability of a table requir-
ing space and preprocessing time O(n).

3. DATA STRUCTURE
In this section we describe a data structure supporting the

query FindAny(a, b) in constant time. The basic component
of the data structure is (the implicitly representation of) a
perfect binary tree T with 2w leaves, i.e. a binary tree where
all leaves have depth w (the root has depth zero). The leaves
are numbered from left-to-right {0, 1, . . . , 2w − 1}, and the
internal nodes of T are numbered 1, . . . , n − 1. The root
is the first node and the children of node v are nodes 2v
and 2v + 1, i.e. like the numbering of nodes in an implicit
binary heap [11, 25]. Figure 1 shows the numbering of the
nodes for the case w = 4. The tree T has the following
properties (see [15]):

Fact 1. The depth of an internal node v is msb(v), and
the dth ancestor of v is v ↓ d, for 0 ≤ d ≤ depth(v). The
parent of leaf a is the internal node 2w−1 + (a ↓ 1), for
0 ≤ a < 2w. For 0 ≤ a < b < 2w, the nearest common
ancestor of the leaves a and b is the 1+msb(a⊕b)th ancestor
of the leaves a and b.

For a node v in T , we let left(v) and right(v) denote the
left and right children of v, and we let Tv denote the subtree
rooted at v and Sv denote the subset of S where x ∈ Sv if,
and only if, x ∈ S, and leaf x is a descendent of v. We let
P be the subtree of T consisting of the union of the internal
nodes on the paths from the root to the leaves in S, and we
let V be the subset of P consisting of the root of T and the
nodes where both children are in P . We denote V the set of
branching nodes. Since each leaf-to-root path in T contains
w internal nodes, we have |P | ≤ n · w, and since V contains
the root and the set of nodes of degree two in the subtree
defined by P , we have |V | = n − 1, if both children of the
root are in P and otherwise |V | = n.

To answer a query FindAny(a, b), the basic idea is to com-
pute the nearest common ancestor v of the nodes a and b
in constant time. If S ∩ [a, b] 6= ∅, then either maxSleft(v)

or min Sright(v) is contained in [a, b], since [a, b] is contained

Proc Report(a, b)
x = FindAny(a, b)
if x 6=⊥ then

Report(a, x − 1)
output(x)
Report(x + 1, b)

Proc FindAny(a, b)
if a ≤ b then

H = 1 ↑ (msb(w) ↓ 1)
d = msb(a ⊕ b)
u = ((1 ↑ (w − 1)) + (a ↓ 1)) ↓ d
z = u ↓ ((w − 1 − d) ∧ (H − 1))
v = B[z] ? V [u ↓ D[u]] : V [z ↓ D[z]]
for x ∈ { v.left.m, v.left.M, v.right.m, v.right.M }

if x ∈ [a, b] then return x
return ⊥

Figure 2: Implementation of the queries Report and

FindAny.

within the interval spanned by v, and a and b are spanned
by the left and right child of v respectively. Otherwise
whatever computation we do cannot identify an integer in
S∩ [a, b]. At most nw nodes satisfy Sv 6= ∅. E.g. to compute
FindAny(8, 13), we have v = 3, max Sleft(v) = max S6 =⊥,
and min Sright(v) = min S7 = 12. By storing these nodes in
a sparse array together with minSv and max Sv, we obtain
a data structure using space O(nw) words, which supports
FindAny in constant time. In the following we describe how
to reduce the space usage of this approach to O(n) words.

We consider the tree T as partitioned into a set of layers
each consisting of H consecutive levels of T , where H =

1 ↑ (msb(w) ↓ 1), i.e. H = 2⌊ 1

2
log w⌋, or equivalently H is

the power of two, where 1
2

√
w < H ≤ √

w. For a node u,
we let π(u) denote the nearest ancestor z of u, such that
depth(z) mod H = 0. If depth(u) mod H = 0, then π(u) =
u. Since H is a power of 2, we can compute x mod H as
x ∧ (H − 1), i.e. for an internal node u, we can compute
π(u) = u ↓ (depth(u) ∧ (H − 1)). E.g. in Figure 1, H = 2
and π(9) = 9 ↓ (3 ∧ (2 − 1)) = 9 ↓ 1 = 4.

The data structure for the set S consists of three sparse
arrays B, D, and V , each being implemented according to
Corollary 1. The arrays B and D will be used to find the
nearest ancestor of a node in P that is a branching node.

B : A bit-vector that for each node z in P with π(z) = z
(or equivalently depth(z) mod H = 0), has B[z] = 1 if,
and only if, there exists a node u in V with π(u) = z.

D : A vector that for each node u in P where π(u) = u or
B[π(u)] = 1 stores the distance to the nearest ancestor
v in V of u, i.e. D[u] = depth(v) − depth(u).

V : A vector that for each branching node v in V stores
a record with the fields: left, right, m and M , where
V [v].m = min Sv and V [v].M = max Sv and left (and
right respectively) is a pointer to the record of the
nearest descendent u in V of v in the left (and right
respectively) subtree of v. If no such u exists, then
V [v].left = v (respectively V [v].right = v).

Given the above data structure FindAny(a, b) can be im-
plemented by the code in Figure 2. If a > b, the query

immediately returns ⊥. Otherwise the value H is comput-
ed, and the nearest common internal ancestor u in T of the
leaves a and b is computed together with z = π(u). Using
B, D, and V we then compute the nearest common ances-
tor branching node v in V of the leaves a and b. In the
computation of v an error may be introduced, since the ar-
rays B, D and V are only well defined for a subset of the
nodes of T . However, as we show next, this only happens
when S ∩ [a, b] = ∅. Finally we check if one of the m and
M values of v.left and v.right is in [a, b]. If one of the four
values belongs to [a, b], we return such a value. Otherwise
⊥ is returned.

As an example consider the query FindAny(8, 13) for the
set in Figure 1. Here d = 2, u = (8 + 4) ↓ 3 = 3, z =
3 ↓ ((3 − 2) ∧ 1) = 3 ↓ 1 = 1. Since B[1] = 1, we have
D[u] = 1, and v = V [u ↓ D[u]] = V [3 ↓ 1] = V [1]. The four
values tested are the m and M values of V [2] and V [7], i.e.
{3, 7, 12, 14}, and we return 12.

Theorem 4. The data structure supports FindAny in con-
stant time and Report in time O(k), where k is the number of
elements reported. The data structure requires space O(|S|)
words.

Proof. The correctness of FindAny(a, b) can be seen as
follows: If S ∩ [a, b] = ∅, then the algorithm returns ⊥,
since before returning an element there is a check to find
if the element is contained in the interval [a, b]. Otherwise
S ∩ [a, b] 6= ∅.

If a = b ∈ S, then by Fact 1 the computed u = 2w−1+a ↓ 1
is the parent of a and z = u ↓ ((w − 1) ∧ (H − 1)) = u ↓
(depth(u) mod H) = π(u). We now argue that v is the
nearest ancestor node of the leaf a that is a branching node.
If Sπ(u) = {a}, then Tπ(u) ∩ V = ∅ and B[π(u)] = 0, and v
is computed as V [π(u) ↓ D[π(u)]], which by definition of D
is the nearest ancestor of π(u) that is a branching node.
Otherwise |Sπ(u)| ≥ 2, implying Tπ(u)∩V 6= ∅ and B[π(u)] =
1. By definition D[u] is then defined such that V [u ↓ D[u]]
is the nearest ancestor of u that is a branching node. We
conclude that the computed v is the nearest ancestor of the
leaf a that is a branching node. If the leaf a is contained in
the left subtree of v, then v.left = v and v.m = a. It follows
that v.left.m = a. Similarly, if the leaf a is contained in the
right subtree of v, then v.right.M = a .

For the case where S ∩ [a, b] 6= ∅ and a < b, we have
by Fact 1 that the computed node u is the nearest com-
mon ancestor of the leaves a and b, where depth(u) = w −
(d + 1), and that z = u ↓ ((w − 1 − d) ∧ (H − 1)) = u ↓
(depth(u) mod H) = π(u). Similarly to the case a = b, we
have that the computed node v is the nearest ancestor of
the node u that is a branching node. If v = u, i.e. v is
the nearest common ancestor of the leaves a and b, then
Sleft(v) ∩ [a, b] 6= ∅ or Sright(v) ∩ [a, b] 6= ∅. If |Sleft(v)| ≥ 2
and Sleft(v) ∩ [a, b] 6= ∅, then v.left 6= v and v.left.M ∈ [a, b].
If |Sleft(v)| = 1 and Sleft(v) ∩ [a, b] 6= ∅, then v.left = v and
v.left.m ∈ [a, b]. Similarly if Sright(v) ∩ [a, b] 6= ∅, then ei-
ther v.right.m ∈ [a, b] or v.right.M ∈ [a, b]. Finally we
consider the case where v 6= u, i.e. either u ∈ Tleft(v) or
u ∈ Tright(v). If u ∈ Tleft(v) and |Sleft(v)| = 1, then v.left =
v and Sleft(v) = {v.m} = {v.left.m} ⊆ [a, b]. Similarly
if u ∈ Tright(v) and |Sright(v)| = 1, then v.right = v and
Sright(v) = {v.M} = {v.right.M} ⊆ [a, b]. If u ∈ Tleft(v)

and |Sleft(v)| ≥ 2, then Tv.left is either a subtree of Tleft(u) or

Tright(u), implying that v.left.M ∈ [a, b] or v.left.m ∈ [a, b]
respectively. Similarly if u ∈ Tright(v) and |Sright(v)| ≥ 2, then
either v.right.M ∈ [a, b] or v.right.m ∈ [a, b].

We conclude that if S ∩ [a, b] 6= ∅, then FindAny returns
an element in S ∩ [a, b].

The fact that FindAny takes constant time follows from
Theorem 1 and Corollary 1, since only a constant number of
boolean operations and arithmetic operations is performed
plus two calls to msb and three sparse array lookups. The
correctness of Report and the time O(k) bound follows from
Lemma 1.

The space required by the data structure depends on the
size required for the three sparse arrays B, D, and V . The
number of internal levels of T with depth mod H = 0 is
⌈w/H⌉, and therefore the number of initialized entries in B
is at most n⌈w/H⌉ = O(n

√
w). Similarly, the number of

initialized entries in D due to π(u) = u is at most n⌈w/H⌉.
For the number of initialized entries in D due to B[π(u)] =
1, we observe that the subtree τz of height H rooted at
z = π(u) by definition contains at least one node from V .
If |τz ∩ V | = s, then τz has at most s + 1 leaves which are
nodes in P , and we have |τz ∩ P | ≤ (s + 1)H ≤ 2Hs. Since
τz contributes to B with at most 2H |τz ∩ V | entries and
|V | ≤ n, the total number of initialized entries contributed
to B due to B[π(u)] = 1 is bounded by 2Hn. The number
of initialized entries in B is therefore bounded by 2Hn +
n⌈w/H⌉ = O(n

√
w). Finally, by definition, V contains at

most n initialized entries.
Each entry of B, D, and V requires space: 1, ⌈log w⌉,

and O(w) bits respectively, and B, D, and V have O(n
√

w),
O(n

√
w), and at most n initialized entries respectively. The

total number of words for storing the three sparse arrays by
Corollary 1 is therefore O((log w · n√w + w · n)/w) = O(n)
words. It follows that the total space required for storing
the data structure is O(n) words.

4. CONSTRUCTION
In this section we describe how to construct the data

structure of the previous section in expected time O(n
√

w).

Theorem 5. Given an unordered set of n distinct inte-
gers each of w bits, the range reporting data structure in
Section 3 can be constructed in expected time O(n

√
w).

Proof. Initially S can be sorted in space O(n) with the
algorithm of Thorup [23] in time O(n(log log n)2) = O(n

√
w)

or with the randomized algorithm of Andersson et al. [5] in
expected time O(n log log n) = O(n

√
w). Therefore without

loss of generality we can assume S = {a1, . . . , an} where
ai < ai+1 for 1 ≤ i < n.

We observe that v ∈ V if, and only if, v is the root or v,
is the nearest common ancestor of ai and ai+1 for some i,
where 1 ≤ i < n. Similarly as for the FindAny query, we can
by Fact 1 find the nearest common ancestor vi ∈ V induced
by ai and ai+1 in constant time by the expression

vi = ((1 ↑ (w − 1)) + (ai ↓ 1)) ↓ msb(ai ⊕ ai+1) .

The nodes v ∈ V form by the pointers v.left and v.right
a binary tree TV . The defined sequence v1, . . . , vn−1 forms
an inorder traversal of TV . Furthermore the nodes satisfy
heap order with respect to their depths in T . Recall that
depth(vi) = msb(vi) can be computed in constant time.

The inorder together with the heap order on the depth of
the vi nodes uniquely defines TV since these are exactly the
constraints determining the shape of the treaps introduced
by Seidel and Aragon [22]. By applying an time O(n) treap
construction algorithm [22] to v1, . . . , vn−1 we get the re-
quired left and right pointers for V . The m and M fields for
the nodes in V can be constructed in a bottom-up traversal
of TV in time O(n).

The information to be stored in the arrays B and D can by
another traversal of TV be constructed in time linear in the
number of nodes to be initialized. Consider an edge (u, v)
in TV , where v is the parent of u in TV , i.e. v is the nearest
ancestor node of u in T that is a branching node or v is the
root. Let u = u0, u1, . . . , ud = v be the nodes on the path
from u to v in T such that depth(ui) − depth(ui+1) = 1.
While processing the edge (u, v) we will compute the in-
formation to be stored in the sparse arrays for the nodes
u0, u1, . . . , ud−1, i.e. the nodes on the path from u to v exclu-
sive v. From the definition of B and D we get the following:
For the array B we store B[π(u)] = 1, if depth(π(u)) >
depth(v), and B[ui] = 0 for all i = 0, . . . , d − 1, where
depth(ui) < depth(π(u)) and depth(ui) mod H = 0. For
the array D we store D[ui] = depth(v) − depth(ui) for all
i = 0, . . . , d− 1 where depth(ui) mod H = 0 or depth(ui) <
H⌈depth(v)/H⌉ or depth(ui) ≥ depth(π(u)). Finally, we
store for the root B[1] = 1 and D[1] = 0.

Constructing the three sparse arrays, after having iden-
tified the O(n

√
w) entries to be initialized, by Corollary 1

takes expected time O(n
√

w).

5. APPROXIMATE RANGE COUNTING
In this section we provide a data structure for approximate

range counting. Let S ⊆ U denote the input set, and let n
denote the size of S. The data structure uses space O(n)
words and supports Countε queries in constant time, for any
constant ε > 0.

We assume S has been preprocessed such that in constant
time we can compute FindAny(a, b) for all a, b ∈ U . Next we
have a sparse array such that we for each element x ∈ S can
compute rankS(x) in constant time and can find the succes-
sor of x in S in constant time. Both these data structures
use space O(n).

Define count(a, b) = |S ∩ [a, b]|. We need to build a data
structure which for any a, b ∈ U enables the computation of
an integer k such that count(a, b) ≤ k ≤ (1 + ε)count(a, b).

In the following we will use the observation that for a, b ∈
S, a ≤ b, it is easy to compute the exact value of count(a, b).
This value can be expressed as rankS(b)− rankS(a) + 1 and
thus the computation amounts to two lookups in the sparse
array storing the ranks.

We reduce the task of computing Countε(a, b) to the case
where either a or b are in S. First, it is easy to check if
S ∩ [a, b] is empty, i.e., FindAny(a, b) returns ⊥, in which
case we simply return 0 for the query. Hence, we can as-
sume S ∩ [a, b] is non-empty and let c be any element in
this set and let d be the successor of c in S. Then for
any integers ka and kb such that count(a, c) ≤ ka ≤ (1 +
ε)count(a, c) and count(d, b) ≤ kb ≤ (1 + ε)count(d, b), it
holds that count(a, b) = count(a, c) + count(d, b) ≤ ka +
kb ≤ (1+ ε)count(a, b). Hence, we can return Countε(a, c) +
Countε(d, b) as the answer for Countε(a, b), where c ∈ S ∩
[a, b] is an integer returned by FindAny(a, b). Clearly, both
calls to Countε satisfy that one of the endpoints is in S, i.e.,

JumpR(10)

LN(10)

1 2 20 30 40 6027 47 616250 630 103 34

1 1010101010 27272727 27 3434343434 4747474747 61616161 6261

Figure 3: Extension of the data structure to support Countε queries. w = 8, n = |S| = 27, and p = ⌈log n⌉ = 5.

the integers c and d. In the following we can thus with-
out loss of generality limit ourselves to the case for a query
Countε(a, b) with a ∈ S. The case b ∈ S is treated symmet-
rically.

We start by describing the additional data structures
needed, and then how to compute the approximate range
counting query using these. Define p = ⌈log n⌉, and

J = {x ∈ S | (rankS(x) − 1) mod p = 0} ∪ max S .

We construct the following additional data structures (see
Figure 3 for an example).

JnodeR : For each element s ∈ S we store the integer
JnodeR(s) being the successor of s in J .

JumpR : For each element j ∈ J we store the set
JumpR(j) = {y ∈ S | count(j, y) = 2i ∧ i ∈ [0, p]}.

LN : For each element j ∈ J we store the set LN(j) = {i ∈
S | j = JnodeR(i)}.

Each of the sets JumpR and LN have size bounded by
p ≤ log |U |, and hence using the Q-heaps from Corollary 2,
we can compute predecessors for these sets in constant time.
The Q-heaps have space cost linear in the set sizes. Since the
total number of elements in the structures JumpR and LN

is O(|S|), the total space cost for these structures is O(|S|).
Furthermore, for the elements in S given in sorted order, the
total construction of these data structures is also O(|S|).

To determine Countε(a, b), where a ∈ S, we iterate the fol-
lowing computation until the desired precision of the answer
is obtained. Initially let k = 0. Let j = JnodeR(a). If j ≥ b,
return k + count(a, PredLN(j)(b)). Otherwise, j < b, and we
increase k by count(a, j) − 1. Let y = PredJumpR(j)(b) and

i = rankJumpR(j)(y)−1. Now count(j, y) = 2i ≤ count(j, b) <

2i+1. We increase k by 2i. Now k = count(a, y) and
count(y, b) < 2i. If y = b we return k. If 2i/k < ε, we
are also satisfied and return k + 2i. Otherwise we iterate to
determine Countε(y

′, b), where y′ is the successor of y in S.

Theorem 6. The data structure uses space O(|S|) words
and supports Countε in time O(log(1/ε)) for any ε > 0.

Proof. From the observations above we conclude that
the structure uses space O(n) and expected preprocessing
time O(n). Each iteration takes constant time, and next
we show that the number of iterations is at most ℓ ≤ 1 +
⌈log(1/ε)⌉. Let k = 2I + f , f < 2I , after the first iteration.

In the ℓth iteration we either return count(a, b) or k + 2i >
count(a, b), where i ≤ I − ℓ + 1. In the latter case we have
k < count(a, b) < k + 2i. That k + 2i ≤ (1 + ε)count(a, b)
follows from k < count(a, b) and 2i/k < ε. Since 2i < kε,
i ≤ I − ℓ + 1 and k ≥ 2I , the bound on ℓ follows from
2I−ℓ+1 < 2Iε.

6. REFERENCES

[1] P. K. Agarwal. Range searching. In Handbook of
Discrete and Computational Geometry, CRC Press.
1997.

[2] A. Aggarwal and J. S. Vitter. The input/output
complexity of sorting and related problems.
Communications of the ACM, 31(9):1116–1127, 1988.

[3] M. Ajtai. A lower bound for finding predecessors in
Yao’s cell probe model. Combinatorica, (8):235–247,
1988.

[4] A. Amir, A. Efrat, P. Indyk, and H. Samet. Efficient
regular data structures and algorithms for location
and proximity problems. In Proc. 40th IEEE
Symposium on Foundations of Computer Science
(FOCS), pages 160–170, 1999.

[5] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman.
Sorting in linear time? Journal of Computer and
System Sciences, 57(1):74–93, 1998.

[6] A. Andersson and O. Petersson. Approximate indexed
lists. Journal of Algorithms, 29(2):256–276, 1998.

[7] A. Andersson and M. Thorup. Tight(er) worst-case
bounds on dynamic searching and priority queues. In
Proc. 32nd ACM Symposium on Theory of Computing
(STOC), pages 335–342, 2000.

[8] P. Beame and F. Fich. Optimal bounds for the
predecessor problem. In Proc. 31st ACM Symposium
on Theory of Computing (STOC), pages 295–304,
1999.

[9] K. L. Clarkson. An algorithm for approximate
closest-point queries. In Proc. 10th Annual Symposium
on Computational Geometry, pages 160–164, Stony
Brook, NY, USA, 1994. ACM Press.

[10] M. Dietzfelbinger. Universal hashing and k-wise
independent random variables via integer arithmetic
without primes. In 13th Annual Symposium on
Theoretical Aspects of Computer Science, volume 1046
of Lecture Notes in Computer Science, pages 569–580.
Springer Verlag, Berlin, 1996.

[11] R. W. Floyd. Algorithm 245: Treesort3.
Communications of the ACM, 7(12):701, 1964.

[12] M. L. Fredman, J. Komlós, and E. Szemerédi. Storing
a sparse table with O(1) worst case access time.
Journal of the ACM, 31(3):538–544, 1984.

[13] M. L. Fredman and D. E. Willard. Surpassing the
information theoretic bound with fusion trees. Journal
of Computer and System Sciences, 47:424–436, 1993.

[14] M. L. Fredman and D. E. Willard. Trans-dichotomous
algorithms for minimum spanning trees and shortest
paths. Journal of Computer and System Sciences,
48:533–551, 1994.

[15] D. Harel and R. Tarjan. Fast algorithms for finding
nearest common ancestors. SIAM Journal of
Computing, 13(2):338–355, 1984.

[16] C. T. M. Jacobs and P. van Emde Boas. Two results
on tables. Information Processing Letters, 22(1):43–48,
1986.

[17] Y. Matias, J. S. Vitter, and N. E. Young.
Approximate data structures with applications. In
Proc. 5th ACM-SIAM Symp. Discrete Algorithms
(SODA), pages 187–194, 1994.

[18] K. Mehlhorn. Data Structures and Algorithms: 3.
Multidimensional Searching and Computational
Geometry. Springer, 1984.

[19] P. B. Miltersen, N. Nisan, S. Safra, and A. Wigderson.
On data structures and asymmetric communication
complexity. Journal of Computer and System
Sciences, 57(1):37–49, 1998.

[20] F. P. Preparata and M. Shamos. Computational
Geometry. Springer-Verlag, New York, 1985.

[21] J. P. Schmidt and A. Siegel. The spatial complexity of
oblivious k-probe hash functions. SIAM Journal of
Computing, 19(5):775–786, 1990.

[22] R. Seidel and C. R. Aragon. Randomized search trees.
Algorithmica, 16(4/5):464–497, 1996.

[23] M. Thorup. Faster deterministic sorting and priority
queues in linear space. In Proc. 9th ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages
550–555, 1998.

[24] D. E. Willard. Log-logarithmic worst-case range
queries are possible in space Θ(N). Information
Processing Letters, 17(2):81–84, 1983.

[25] J. W. J. Williams. Algorithm 232: Heapsort.
Communications of the ACM, 7(6):347–348, 1964.

