Predecessor Queries in Dynamic Integer Sets

Gerth Stglting Brodal*

BRICS*, Department of Computer Science, University of Aarhus
Ny Munkegade, DK-8000 Arhus C, Denmark
gerth@brics.dk

Abstract. We consider the problem of maintaining a set of n integers
in the range 0..2% — 1 under the operations of insertion, deletion, pre-
decessor queries, minimum queries and maximum queries on a unit cost
RAM with word size w bits. Let f(n) be an arbitrary nondecreasing
smooth function satisfying loglogn < f(n) < 1/logn. A data structure
is presented supporting insertions and deletions in worst case O(f(n))
time, predecessor queries in worst case O((logn)/f(n)) time and mini-
mum and maximum queries in worst case constant time. The required
space is O(n2°") for an arbitrary constant e > 0. The RAM operations
used are addition, arbitrary left and right bit shifts and bit-wise boolean
operations. The data structure is the first supporting predecessor queries
in worst case O(log n/loglog n) time while having worst case O(log log n)
update time.

1 Introduction

We consider the problem of maintaining a set S of size n under the operations:

INSERT(e) inserts element e into S,

DELETE(e) deletes element e from S,

PRED(e) returns the largest element < e in S, and
FINDMIN/FINDMAX returns the minimum/maximum element in S.

In the comparison model INSERT, DELETE and PRED can be supported in
worst case O(logn) time and FINDMIN and FINDMAX in worst case constant
time by a balanced search tree, say an (a, b)-tree [8]. For the comparison model a
tradeoff between the operations has been shown by Brodal et al. [6]. The tradeoff
shown in [6] is that if INSERT and DELETE take worst case O(¢(n)) time then
FINDMIN (and FINDMAX) requires at least worst case n,/2°0(") time. Because
predecessor queries can be used to answer member queries, minimum queries
and maximum queries, PRED requires worst case max{2(logn), n/2° (™)} time.
For the sake of completeness we mention that matching upper bounds can be

* Supported by the Danish Natural Science Research Council (Grant No. 9400044).
Partially supported by the ESPRIT Long Term Research Program of the EU under
contract #20244 (ALCOM-IT).

** Basic Research in Computer Science, a Centre of the Danish National Research
Foundation.



achieved by a (2,4)-tree of depth at most ¢(n) where each leaf stores @(n/2("))
elements, provided DELETE takes a pointer to the element to be deleted.

In the following we consider the problem on a unit cost RAM with word size
w bits allowing addition, arbitrary left and right bit shifts and bit-wise boolean
operations on words in constant time. Miltersen [10] refers to this model as a
Practical RAM. We assume the elements are integers in the range 0..2% — 1.
A tradeoff similar to the one for the comparison model [6] is not known for a
Practical RAM.

A data structure of van Emde Boas el al. [15, 16] supports the operations
InsERT, DELETE, PRED, FINDMIN and FINDMAX on a Practical RAM in worst
case O(logw) time. For word size log®Y n this implies an O(loglogn) time
implementation.

Thorup [14] recently presented a priority queue supporting INSERT and EX-
TRACTMIN in worst case O(loglogn) time independently of the word size w.
Thorup notes that by tabulating the multiplicity of each of the inserted elements
the construction supports DELETE in amortized O(loglogn) time by skipping
extracted integers of multiplicity zero. The data structure of Thorup does not
support predecessor queries but Thorup mentions that an Q(logl/?’_o(l) n) lower
bound for PRED can be extracted from [9, 11]. The space requirement of Tho-
rup’s data structure is O(n2%) (if the time bounds are amortized the space
requirement is O(n + 2)).

Andersson [2] has presented a Practical RAM implementation supporting in-
sertions, deletions and predecessor queries in worst case O(y/logn) time and
minimum and maximum queries in worst case constant time. The space require-
ment of Andersson’s data structure is O(n + 2¥). Several data structures can
achieve the same time bounds as Andersson [2], but they all require constant
time multiplication [3, 7, 13].

The main result of this paper is Theorem 1 stated below. The theorem re-
quires the notion of smooth functions. Overmars [12] defines a nondecreasing

function f to be smooth if and only if f(O(n)) = O(f(n)).

Theorem 1. Let f(n) be a nondecreasing smooth function satisfying loglogn <
f(n) </logn. On a Practical RAM a data structure exists supporting INSERT
and DELETE in worst case O(f(n)) time, PRED in worst case O((logn)/f(n))
time and FINDMIN and FINDMAX in worst case constant teme, where n is the
number of integers stored. The space required is O(n2) for any constant € > 0.

If f(n) = loglog n we achieve the result of Thorup but in the worst case sense,
i.e. we can support INSERT, EXTRACTMIN and DELETE in worst case O(log log n)
time. We can support PRED queries in worst case O(logn/loglogn) time. The
data structure is the first allowing predecessor queries in O(logn/ loglogn) time
while having O(log logn) update time. If f(n) = v/logn, we achieve time bounds
matching those of Andersson [2].

The basic idea of our construction is to apply the data structure of van Emde
Boas et al. [15, 16] for O(f(n)) levels and then switch to a packed search tree of
height O(logn/f(n)). This is very similar to the data structure of Andersson [2].



But where Andersson uses O(logn/f(n)) time to update his packed B-tree, we
only need O(f(n)) time. The idea we apply to achieve this speedup is to add
buffers of delayed insertions and deletions to the search tree, such that we can
work on several insertions concurrently by using the word parallelism of the
Practical RAM. The idea of adding buffers to a search tree has in the context
of designing I/O efficient data structures been applied by Arge [4].

Throughout this paper we w.l.o.g. assume DELETE only deletes integers ac-
tually contained in the set and INSERT never inserts an already inserted integer.
This can be satisfied by tabulating the multiplicity of each inserted integer.

In the description of our data structure we in the following assume n is a
constant such that the current number of integers in the set is ©(n). This can
be satisfied by using the general dynamization technique described by Over-
mars [12], which requires f(n) to be smooth. In Sect. 2 if we write log’ n < k,
we actually mean that k is a function of n, but because we assume n to be a
constant k is also assumed to be a constant.

In Sect. 2 we describe our packed search trees with buffers. In Sect. 3 we
describe how to perform queries in a packed search tree and in Sect. 4 how to
update a packed search tree. In Sect. 5 we combine the packed search trees with
a range reduction based on the data structure of van Emde Boas et al. [15, 16]
to achieve the result stated in Theorem 1. Section 6 contains some concluding
remarks and lists some open problems.

2 Packed search trees with buffers

In this and the following two sections we describe how to maintain a set of
integers of w/k bits each, for k satisfying log’ n < k < w/ logn. The bounds we
achieve are:

Lemma 2. Let k satisfy log5 n < k < w/logn. If the integers lo be stored are of
w/k bits each then on a Practical RAM INSERT and DELETE can be supporied
in worst case O(logk) time, PRED in worst case O(logk + logn/logk) time
and FINDMIN and FINDMAX @n worst case constant time. The space required
is O(n).

The basic idea is to store O(k) integers in each word and to use the word
parallelism of the Practical RAM to work on O(k) integers in parallel in constant
time. In the following we w.l.o.g. assume that we can apply Practical RAM
operations to a list of O(k) integers stored in O(1) words in worst cast constant
time. Together with each integer we store a {est bit, as in [1, 2, 14]. An integer
together with the associated test bit is denoted a field. Figure 1 illustrates the
structure of a list of maximum capacity k containing ¢ < k integers z1,..., xy.
A field containing the integer x; has a test bit equal to zero. The remaining k — /¢
empty fields store the integer zero and a test bit equal to one.

Essential to the data structure to be described is the following lemma due to
Albers and Hagerup [1].



|1|0...0| |1|0...0|0| Te | |0| T |

S—— S——— S——
field & field £+ 1 field ¢ field 1
Fig. 1. The structure of a list of maximum capacity k, containing integers z1,...,z,.

Lemma 3 Albers and Hagerup. On a Practical RAM two sorted lists each
of at most O(k) integers stored in O(1) words can be merged into a single sorted
list stored in O(1) words in O(logk) time.

Albers and Hagerup’s proof of Lemma 3 is a description of how to implement
the bitonic merging algorithm of Batcher [5] in a constant number of words on
the Practical RAM. The algorithm of Albers and Hagerup does not handle partial
full lists as defined (all test bits are assumed to be zero), but it is straightforward
to modify their algorithm to do so, by considering an integer’s test bit as the
integer’s most significant bit. A related lemma we need for our construction is
the following:

Lemmad4. Lel k satisfy k < w/logn. Let A and B be two sorted and repetition
free lists each of at most O(k) integers stored in O(1) words on a Practical RAM.
Then the sorted list A\ B can be computed and stored in O(1) words in O(logk)
time.

Proof. Let C be the list consisting of A merged with B twice. By Lemma 3
the merging can be done in worst case O(logk) time. By removing all integers
appearing at least twice from C' we get A\ B. In the following we outline how to
eliminate these repetitions from C'. Tedious implementation details are omitted.
First a mask is constructed corresponding to the integers only appearing once

in C'. This can be done in worst case constant time by performing the compar-
isons between neighbor integers in C' by subtraction like the mask construction
described in [1]. The integers appearing only once in C' are compressed to form
a single list as follows. First a prefix sum computation is performed to calculate
how many fields each integer has to be shifted to the right. This can be done in
O(log k) time by using the constructed mask. Notice that each of the calculated
values is an integer in the range 0,...,|A| 4+ 2|B|, implying that each field is
required to contain at least O(logk) bits. Finally we perform O(log k) iterations
where we in the #’th iteration move all integers x;, 2 fields to the right if the
binary representation of the number of fields z; has to be shifted has the ¢’th
bit set. A similar approach has been applied in [1] to reverse a list of integers.
a

The main component of our data structure is a search tree T" where all leaves
have equal depth and all internal nodes have degree at least one and at most
A < k/log*n. Each leaf v stores a sorted list I, of between k/2 and k integers.
With each internal node v of degree d(v) we store d(v) —1 keys to guide searches.
The d(v) pointers to the children of v can be packed into a single word because



they require at most d(v)logn < w bits, provided that the number of nodes is
less than n.

This part of the data structure is quite similar to the packed B-tree described
by Andersson [2]. To achieve faster update times for INSERT and DELETE than
Andersson, we add buffers of delayed INSERT and DELETE operations to each
internal node of the tree.

With each internal node v we maintain a buffer I, containing a sorted list of
integers to be inserted into the leaves of the subtree 7, rooted at v, and a buffer
D, containing a sorted list of integers to be deleted from 7;. We maintain the
invariants that I, and D, are disjoint and repetition free, and that

max{|ly],|Dy|} < Alogn . (1)
The set S, of integers stored in a subtree T, can recursively be defined as

if v 1s a leaf,

I,
Sv = {Iv U (U a ehild of » Sw) \ D) otherwise. (2)

Finally we maintain two nonempty global buffers of integers L and R each
of size O(k) to be able to answer minimum and maximum queries in constant
time. The integers in L are less than all other integers stored, and the integers
in R are greater than all other integers stored.

Let h denote the height of 7. In Sect. 4 we show how to guarantee that
h = O(logn/logk), implying that the number of nodes is O(hn/k) = O(n).

3 Queries in packed search trees

By explicitly remembering the minimum integer in L and the maximum integer
in R it is trivial to implement FINDMIN and FINDMAX in worst case constant
time. A PRED(e) query can be answered as follows. If ¢ < max(L) then the
predecessor of e is contained in L and can be found in worst case O(logk) time
by standard techniques. If min(R) < e then the predecessor of e is contained in
R. Otherwise we have to search for the predecessor of e in T'.

We first perform a search for e in the search tree T'. The implementation
of the search for e in T is identical to how Andersson searches in a packed B-
tree [2]. We refer to [2] for details. Let A be the leaf reached and wq, ..., wh_1
be the internal nodes on the path from the root to A. Define w;, = A. Because
we have introduced buffers at each internal node of 7" the predecessor of e does
not necessarily have to be stored in I, but can also be contained in one of the
insert buffers I,,,. An integer a € I, can only be a predecessor of e if it has not
been deleted by a delayed delete operation, i.e. a ¢ D, for 1 < j < i. It seems
necessary to flush all buffers I,,, and D,,, for integers which should be inserted
in or deleted from I to be able to find the predecessor of e. If dom) denotes
the interval of integers spanned by the leaf A, the buffers I, and D,, can be



flushed for elements in domy by the following sequence of operations:

L»Uz+1 — L»Uz+1 \ (Dwz N dOHl)\) U (Iwz N dOHl)\) \ Dwz+1 )
Dwz+1 = Dwz+1 \ (Iwz m dOHl)\) U (Dwz m dOHl)\) \ L»Uz+1 )

Iy, — Iy, \ dom) |,
Dy, — Dy, \ dom,, .

Let fA denote the value of I, after ﬂushing all buffers I, and D,,, for integers
in the range domy. From (2) it follows that I can also be computed directly by
the expression

Iy = domy N (-~ ((Ix \ Dup_y ) U Luy ) -+ )\ Dy ) U T,) (3)

Based on Lemmas 3 and 4 we can compute this expression in O(h log k) time.
This is unfortunately O(logn) for the tree height h = log n/ log k. In the following
we outline how to find the predecessor of e in Iy without actually computing I
in O(logk + logn/logk) time.

Let I, be I, N'domyN]oo,¢e] for i = 1,...,h. An alternative expression to

compute the predecessor of e in Iy is
max () (Z,,\ |J Du,) . (4)
i=1,..,h j=1,...,i-1

Because |U;—) 5 Du,l < Alog?n we can w.l.o.g. assume |1, | < Alog®n

in (4) by restricting our attention to the Alog®n largest integers in I, ie.
all sets involved in (4) have size at most Alogzn. The steps we perform to

compute (4) are the following. All implementation details are omitted.

— First all buffers I,,, and D, for ¢« < h are inserted into a single word W
where the contents of W is considered as 2h — 2 independent lists each of
maximum capacity Alog®n. This can be done in O(h) = O(logn/logk)
time.

— Using the word parallelism of the Practical RAM we now for all I,,, compute
I,,. This can be done in O(logk) time if min(dom, ) is known. The integer
min(domy ) can be computed in the search phase determining the leaf A. W
now contains I, and D, for i < h.

— The value of I, is computed (satisfying |I;,, | < Alog?n) and appended to
W. This can be done in O(logk) time. The contents of W is now

T N

— Let Wy = (I},,)" '+ (I,,)""" and Wp = (Dw,_, -+ Du,)". See Fig. 2.
The number of fields required in each word is A(h—1)A log2 n<A log4 n<k.
The two words can be constructed from W in O(log k) time.



Wil I, |- ] L, 1, -] I, T,
Wo [ Do |~ | D Do, . Dan_i| | Du, Do,
Wy | Mup—1| -+ | Mrh2 | Mua Mip_a| | Mio | Mia

Fig. 2. The structure of the words Wi, Wp and Way.

— From W; and Wp we now construct h(h — 1) masks M; ; such that M, ; is

a mask for the fields of I/,  which are not contained in D,;. See Fig. 2. The
construction of a mask M; ; from the two list Liv, and D, is very similar to
the proof of Lemma 4 and can be done as follows in O(log k) time.
First I is merged with D twice (we omit the subscripts while outlining the
mask construction). Let C be the resulting list. From C' construct in con-
stant time a mask C’ that contains ones in the fields in which C' stores an
integer only appearing once in C' and zero in all other fields. By remov-
ing all fields from C having ezactly one identical neighbor we can recover
I from C'. By removing the corresponding fields from C’ we get the re-
quired mask M. As an example assume 7 = (7,5,4,3,1) and D = (6,5, 2).
Then C' = (7,6,6,5,5,5,4,3,2,2,1), ¢' = (1,0,0,0,0,0,1,1,0,0,1) and
M =(1,0,1,1,1) where underlined fields are the fields in C' having exactly
one identical neighbor.

_ VYe now conllpute masks M; = /\]':.Lmyi_1 M; ; fo? all 7. By applying M; to
L, weget I, \UJ;_; ;_; Duw;. This can be done in O(log k) time from Wiy
and Wr.

— Finally we in O(log k) time compute (4) as the maximum over all the integers
in the sets computed in the previous step. Notice that it can easily be checked
if e has a predecessor in I by checking if all the sets computed in the previous
step are empty.

We conclude that the predecessor of e in Iy can be found in O(logk + h) =
O(logk + logn/logk) time.

If e does not have a predecessor in I, there are two cases to consider. The first
is if there exists a leaf A to the left of A. Then the predecessor of e is the largest
integer in I5. Notice that I5 is nonempty because |Ujz1 w1 Doy | < I3[ IEA
is the leftmost leaf the predecessor of e is the largest integer in L. We conclude
that PRED queries can be answered in worst case O(log k + logn/logk) time on
a Practical RAM.

4 Updating packed search trees

In the following we describe how to perform INSERT and DELETE updates. We
first give a solution achieving the claimed time bounds in the amortized sense.
The amortized solution is then converted into a worst case solution by standard
techniques.



We first consider INSERT(e). If ¢ < max(L) we insert e into L in logk time,
remove the maximum from L such that |L| remains unchanged, and let ¢ become
the removed integer. If min(R) < e we insert e in R, remove the minimum from
R, and let e become the removed integer.

Let  denote the root of T. If e € D,., remove e from D, in worst case O(log k)
time, i.e. INSERT(e) cancels a delayed DELETE(e) operation. Otherwise insert e
mto I,..

If || < Alogn this concludes the INSERT operation. Otherwise there must
exist a child w of r such that logn integers can be moved from I, to the subtree
rooted at w. The child w and the logn integers X to be moved can be found by
a binary search using the search keys stored at » in worst case O(log k) time. We
omit the details of the binary search in I,,. We first remove the set of integers X
from I, such that |I.| < Alogn. We next remove all integers in X N D,, from
X and from Dy, in O(logk) time by Lemma 4, i.e. we let delayed deletions be
cancel out by delayed insertions. The remaining integers in X are merged into
Iy in O(log k) time. Notice that I, and D, are disjoint after the merging and
that if w is an internal node then |I,,| < (A + 1)logn.

If |I,] > Alogn and w is not a leaf we recursively apply the above to I,,.
If w is a leal and |I,| < k we are done. The only problem remaining is if w is
a leaf and k < |I,| < k +logn < 2k. In this case we split the leal w into two
leaves each containing between k/2 and k integers, and update the search keys
and child pointers stored at the parent of w. If the parent p of w now has A+ 1
children we split p into two nodes of degree > A/2 while distributing the buffers
I, and D, among the two nodes w.r.t. the new search key. The details of how to
split a node is described in [2]. If the parent of p gets degree A+ 1 we recursively
split the parent of p.

The implementation of inserting e in T takes worst case O(hlogk) time.
Because the number of leaves is O(n) and that T is similar to a B-tree if we
only consider insertions we get that the height of T is A = O(logn/logA) =
O(logn/log(k/log* n)) = O(logn/logk) because k > log® n. It follows that the
worst case insertion time in 7" is O(log n). But because we remove log n integers
from I, every time |I.| = Alogn we spend at most worst case O(logn) time
once for every logn insertion. All other insertions require worst case O(logk)
time. We conclude that the amortized insertion time is O(log k).

We now describe how to implement DELETE(e) in amortized O(log k) time.
If e is contained in . we remove e from L. If L is nonempty after having removed
e we are done. If I, becomes empty we proceed as follows. Let A be the leftmost
leaf of T'. The basic idea is to let L become I}. We do this as follows. First
we flush all buffers along the leftmost path in the tree for integers contained in
domy. Based on (3) this can be done in O(hlogk) time. We can now assume
(Iy U Dy) Ndomy = § for all nodes w on the leftmost path and that I = I.
We can now assign L the set I, and remove the leaf A. If the parent p of A gets
degree zero we recursively remove p. Notice that if p gets degree zero then I,
and D, are both empty. Because the total size of the of insertion and deletion
buffers on the leftmost path is bounded by hAlogn < /c/log2 n it follows that



logn < k/2 —k/log’ n < |L| < k + k/log?n. It follows that L cannot become
empty throughout the next logn DELETE operations. The case e € R is handled
symmetrically by letting A be the rightmost leaf.

If e ¢ L UR we insert e in D, provided e & I.. If ¢ € I, we remove e from I,
in O(log k) time and are done. If |D,| > Alogn we can move logn integers X
from D, to a child w of r. If w 1s an internal node we first remove X N I, from
X and I, i.e. delayed insertions cancels delayed insertions, and then inserts the
remaining elements in X into D,,. If |D,| > Alogn we recursively move logn
integers from Dy, to a child of w. If w is a leaf A we just remove the integers
X from Iy. If |I| > k/2 we are done. Otherwise let A denote the leaf to the
right or left of A (If A does not exist the set only contains O(k) integers and the
problem is easy to handle. In the following we w.l.o.g. assume \ exists). We first
flush all buffers on the paths from the root » to A and A such that the buffers do
not contain elements from domy U domj. This can be done in O(hlogn) time as
previously described. From

k/2+k/2 —logn —2hAlogn < [LUI;| <k/24+k—1+2hAlogn

it follows that k/2 < |IyUI5| < 2k. There are two cases to consider. If [A+-)| > k
we redistribute I, and I5 such that they both have size at least k/2 and at most
k. Because all buffers on the path from A (;\) to the root intersect empty with
domy U domj we in addition only need to update the search key stored at the
nearest common ancestor of A and A in 7" which separates domy and domy. This
can be done in O(h 4 logk) time. The second case is if |A + A| < k. We then
move the integers in Iy to I5 and remove the leaf A as described previously.
The total worst case time for a deletion becomes O(hlogk) = O(logn). But
again the amortized time is O(logk) because L and R become empty for at
most every log n’th DELETE operation, and because D, becomes full for at most
every logn’th DELETE operation.

In the previous description of DELETE we assumed the height of 7" is h =
O(logn/logk). We argued that this was true if only INSERT operations were
performed because then our search tree is similar to a B-tree. It is easy to
see that if only O(n) leaves have been remove, then the height of T is still
h = O(logn/logk). One way to see this is by assuming that all removed nodes
still resist in 7. Then T has at most O(n) leaves and each internal node has degree
at least A/2) which implies the claimed height. By rebuilding T' completely such
that all internal nodes have degree @(A) for every n’th DELETE operation we
can guarantee that at most n leaves have been removed since T" was rebuild the
last time. The rebuilding of T' can easily be done in O(nlogk) time implying
that the amortized time for DELETE only increases by O(log k).

We conclude that INSERT and DELETE can be implemented in amortized
O(log k) time. The space required is O(n) because each node can be stored in
O(1) words.

To convert the amortized time bounds into worst case time bounds we ap-
ply the standard technique of incrementally performing a worst case expensive
operation over the following sequence of operations by moving the expensive



operation into a shadow process that 1s executed in a quasi-parallel fashion with
the main algorithm. The rebuilding of 7" when O(n) DELETE operations have
been performed can be handled by the general dynamization technique of Over-
mars [12] in worst case O(logk) time per operation. For details refer to [12].
What remains to be described is how to handle the cases when L or R becomes
empty and when I or D, becomes full. The basic idea is to handle these cases by
simply avoiding them. Below we outline the necessary changes to the amortized
solution.

The idea is to allow I, and D, to have size Alogn+0O(logn) and to divide the
sequence of INSERT and DELETE operations into phases of logn/4 operations.
In each phase we perform one of the transformations below to 7' incrementally
over the logn/4 operations of the phase by performing worst case O(1) work per
INSERT or DELETE operation. We cyclic choose which transformation to perform,
such that for each logn’th operation each transformation has been performed
at least once. Each of the transformations can be implemented in worst case
O(logn) time as described in the amortized solution.

— If |L| < k at the start of the phase and A denotes the leftmost leaf of T
we incrementally merge L with I, and remove the leaf A. It follows that L
always has size at least k — O(logn) > 0.

— The second transformation similarly guarantees that |R| > 0 by merging R
with I where X is rightmost leaf of T'if |R| < k.

— If |I,] > Alogn at the start of the phase we incrementally remove log n inte-
gers from I,.. Tt follows that the size of I, is bounded by Alogn+ O(logn) =
O(k).

— The last transformation similarly guarantees that the size of D, is bounded
by Alogn + O(logn) by removing logn integers from D, if |D,| > Alogn.

This finishes our description of how to achieve the bounds stated in Lemma 2.

5 Range reduction

To prove Theorem 1 we combine Lemma 2 with a range reduction based on
a data structure of van Emde Boas et al. [15, 16]. This is similar to the data
structure of Andersson [2], and for details we refer to [2]. We w.l.o.g. assume
w > 27 Jogn.

The idea is to use the topmost f(n) levels of the data structure of van Emde
Boas et al. and then switch to our packed search trees. If f(n) > bloglogn the
integers we need to store are of w/2f(") < w/log® n bits each and Lemma 2
applies for k = 2/0*). By explicitly remembering the minimum and maximum
integer stored FINDMIN and FINDMAX are trivial to support in worst case con-
stant time. The remaining time bounds follow from Lemma 2. The space bound
of O(n2%) follows from storing the arrays at each of the O(n) nodes in the data
structure of van Emde Boas et al. as a trie of degree 2.



6 Conclusion

We have presented the first data structure for a Practical RAM allowing the
update operations INSERT and DELETE in worst case O(loglogn) time while
answering PRED queries in worst case O(logn/loglogn) time. An interesting
open problem is if it is possible to support INSERT and DELETE in worst case
O(loglogn) time and PRED in worst case O(y/logn) time. The general open
problem is to find a tradeoff between the update time and the time for prede-
cessor queries on a Practical RAM.

Acknowledgments

The author thanks Theis Rauhe, Thore Husfeldt and Peter Bro Miltersen for
encouraging discussions, and the referees for comments.

References

1. Susanne Albers and Torben Hagerup. Improved parallel integer sorting without
concurrent writing. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms
(SODA ), pages 463-472, 1992.

2. Arne Andersson. Sublogarithmic searching without multiplications. In Proc. 36th
Ann. Symp. on Foundations of Computer Science (FOCS), pages 655-663, 1995.

3. Arne Andersson. Faster deterministic sorting and searching in linear space. In
Proc. 87th Ann. Symp. on Foundations of Computer Science (FOCS), pages 135—
141, 1996.

4. Lars Arge. The buffer tree: A new technique for optimal I/O-algorithms. In Proc.
4th Workshop on Algorithms and Data Structures (WADS), volume 955 of Lecture
Notes in Computer Science, pages 334-345. Springer Verlag, Berlin, 1995.

5. Kenneth E. Batcher. Sorting networks and their applications. In Proc. AFIPS
Spring Joint Computer Conference, 32, pages 307-314, 1968.

6. Gerth Stglting Brodal, Shiva Chaudhuri, and Jaikumar Radhakrishnan. The ran-
domized complexity of maintaining the minimum. In Proc. 5th Scandinavian
Workshop on Algorithm Theory (SWAT), volume 1097 of Lecture Notes in Com-
puter Science, pages 4-15. Springer Verlag, Berlin, 1996.

7. Michael L. Fredman and Dan E. Willard. Surpassing the information theoretic
bound with fusion trees. Journal of Computer and System Sciences, 47:424-436,
1993.

8. Scott Huddleston and Kurt Mehlhorn. A new data structure for representing sorted
lists. Acta Informatica, 17:157-184, 1982.

9. Peter Bro Miltersen. Lower bounds for Union-Split-Find related problems on ran-
dom access machines. In Proc. 26th Ann. ACM Symp. on Theory of Computing
(STOC), pages 625-634, 1994.

10. Peter Bro Miltersen. Lower bounds for static dictionaries on RAMs with bit op-
erations but no multiplications. In Proc. 23rd Int. Colloquium on Automata, Lan-
guages and Programming (ICALP), volume 1099 of Lecture Notes in Computer
Science, pages 442—-453. Springer Verlag, Berlin, 1996.



11.

12.

13.

14.

15.

16.

Peter Bro Miltersen, Noam Nisan, Shmuel Safra, and Avi Wigderson. On data
structures and asymmetric communication complexity. In Proc. 27th Ann. ACM
Symp. on Theory of Computing (STOC), pages 103-111, 1995.

Mark H. Overmars. The Design of Dynamic Data Structures, volume 156 of Lecture
Notes in Computer Science. Springer Verlag, Berlin, 1983.

Rajeev Raman. Priority queues: Small, monotone and trans-dichotomous. In ESA
’96, Algorithms, volume 1136 of Lecture Notes in Computer Science, pages 121-137.
Springer Verlag, Berlin, 1996.

Mikkel Thorup. On RAM priority queues. In Proc. 7th ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 59-67, 1996.

Peter van Emde Boas. Preserving order in a forest in less than logarithmic time
and linear space. Information Processing Letters, 6:80-82, 1977.

Peter van Emde Boas, R. Kaas, and E. Zijlstra. Design and implementation of an
efficient priority queue. Mathematical Systems Theory, 10:99-127, 1977.

This article was processed using the IATpX macro package with LLNCS style



