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Abstract

We present static cache-oblivious dictionary structures
for strings which provide analogues of tries and suffix
trees in the cache-oblivious model. Our construction
takes as input either a set of strings to store, a single
string for which all suffixes are to be stored, a trie, a
compressed trie, or a suffix tree, and creates a cache-
oblivious data structure which performs prefix queries
in O(logB n + |P |/B) I/Os, where n is the number of
leaves in the trie, P is the query string, and B is the
block size. This query cost is optimal for unbounded
alphabets. The data structure uses linear space.

1 Introduction

Strings are one of basic data models of computer science.
They have numerous applications, e.g. for textual and
biological data, and generalize other models such as
integers and multi-dimensional data. A basic problem
in the model is to store a set of strings such that
strings in the set having a given query string P as
prefix can be found efficiently. A well-known solution
is the trie structure [16], which for an unbounded (or,
equivalently, comparison-based) alphabet supports such
prefix queries in O(log n + |P |) time, if implemented
right (see e.g. the ternary search trees of Bentley and
Sedgewick [6]). In this paper, we study the prefix search
problem in the cache-oblivious model.

1.1 Model of Computation The cache-oblivious
model is a generalization of the two-level I/O-model [1]
(also called the External Memory model or the Disk
Access model). The I/O-model was introduced to
better model the fact that actual computers contain
a hierarchy of memories, where each level acts as a
cache for the next larger, but slower level. The vast
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differences in access times for the levels makes the
time for a memory access depend heavily on what
is currently the innermost level containing the data
accessed. In algorithm analysis, the standard RAM
(or von Neumann) model is unable to capture this.
The two-level I/O-model approximates the memory
hierarchy by modeling two levels, with the inner level
having size M , the outer level having infinite size,
and transfers between the levels taking place in blocks
of B consecutive elements. The cost measure of an
algorithm is the number of memory transfers, or I/Os,
it makes.

The cache-oblivious model, introduced by Frigo
et al. [17], elegantly generalizes the I/O-model to a
multi-level memory model by a simple measure: the
algorithm is not allowed to know the value of B and M .
More precisely, a cache-oblivious algorithm is an algo-
rithm formulated in the RAM model, but analyzed in
the I/O-model, with an analysis valid for any value of
B and M . Cache replacement is assumed to take place
automatically by an optimal off-line cache replacement
strategy. Since the analysis holds for any B and M , it
holds for all levels simultaneously. See [17] for the full
details of the cache-oblivious model.

Over the last two decades, a large body of results for
the I/O-model has been produced, covering most areas
of algorithmics. The cache-oblivious model, introduced
in 1999, is younger, but already a sizable number
of results exist. One of the fundamental facts in
the I/O-model is that comparison-based sorting of N
elements takes Θ(Sort(N)) I/Os, where Sort(N) =
N
B logM/B

N
B [1]. Also in the cache-oblivious model,

sorting can be carried out in Θ(Sort(N)) I/Os, assuming
a so-called tall cache M ≥ B1+ε [8, 17]. This tall-cache
assumption has been shown to be necessary [9].

Below, we discuss existing I/O-efficient algorithms
for problems on strings. For other areas, refer to
the recent surveys [2, 22, 25, 26] for the I/O-model,
and [4, 7, 12, 22] for the cache-oblivious model.

1.2 Previous String Results Basic string problems
with well-known RAM model algorithms include string
searching and pattern matching problems, string sort-
ing, and various combinatorial string similarity prob-
lems, such as longest common subsequence and edit dis-



tance. We consider (in reverse order) to what extent
similar results are known for external memory, that is,
in the I/O-model and the cache-oblivious model.

The length of the longest common subsequence and
the edit distance between two strings of lengths N1

and N2 can be solved by dynamic programming using
two simple nested loops with running time O(N1N2)
and space usage O(min{N1, N2}). I/O-efficient versions
of these algorithms are straight-forward: computing
the N1N2 values in rectangular M × M blocks gives
an algorithm using O(N1N2/(MB)) I/Os in the I/O-
model. A cache-oblivious version with the same I/O
bound can be made by using a recursively defined
blocked computation order (similar to the recursively
defined cache-oblivious matrix algorithms in [17]).

In internal memory, sorting n strings of total
length N takes Θ(n log n + N) time when the alpha-
bet is unbounded (see e.g. [6]). In external memory, the
complexity of sorting strings has not been settled in the
I/O-model, hence even less in the cache-oblivious model.
Some results (mostly in restricted models) appear in [5].
However, a simple upper bound is O(Sort(N)) I/Os,
where N is the total length of the strings sorted, which
can be achieved in the I/O-model as well as in the cache-
oblivious model, e.g. by building the suffix array [20]
over the concatenation of the strings.

The pattern matching algorithms comes in two fla-
vors, with and without preprocessing. A representa-
tive of algorithms without preprocessing is the Knuth-
Morris-Pratt algorithm [21]. It works by scanning the
text and pattern, and accessing an array storing the
failure function in a stack-wise fashion. Hence it by
construction uses the optimal O(N/B) I/Os for search-
ing a pattern P in a string of length N . This holds in
the I/O-model as well as in the cache-oblivious model.

For pattern matching with preprocessing, tries are
the central data structure [16]. Tries provide a string
dictionary structure over n strings supporting prefix
searches in time O(log n + |P |) where P is the search
string/prefix, if the alphabet is unbounded. For con-
stant size alphabets, the time drops to O(|P |). For
unbounded alphabets, they can in the RAM model be
built in O(n log n + N) time by direct insertion (or by
the method in [6]), where N is the total length of the
n strings. For constant size alphabets, the construction
time is O(N). Tries also form the basis of suffix trees.
The suffix tree of a string S of length N is a compressed
trie (alias a blind trie or Patricia [23] trie), i.e. a trie with
all unary nodes omitted, which stores all suffixes of the
string S$ where $ is a special end-of-string symbol not in
the alphabet. It is a powerful data structure, support-
ing searches for a pattern P in time O(log N + |P |) for
unbounded alphabets, and O(|P |) for constant size al-

phabets. It is the basis for many combinatorial pattern
matching algorithms [18]. A classic result [27] is that
suffix trees in the RAM model can be built in O(N)
time for constant size alphabets, and O(N log N) time
for unbounded alphabets. Farach [13] extended the for-
mer result to integer alphabets by reducing suffix tree
construction to integer sorting.

Turning to external memory, the suffix tree algo-
rithm of Farach can be implemented using sorting and
scanning steps [14], and hence gives an O(Sort(N)) suf-
fix tree construction algorithm in the I/O-model, as well
as in the cache-oblivious model. This also provides the
O(Sort(N)) string sorting algorithm mentioned above.
Thus, sorting strings or suffixes of strings is feasible in
both models. However, searching in the result is non-
trivial. It can be proven that it is not possible to lay out
a trie in external memory such that the search time for
prefix searches is O(logB n + |P |/B) I/Os in the worst
case (see [11] for a lower bound argument). Using other
means, Ferragina and Grossi were able to achieve this
O(logB n+|P |/B) bound in the I/O-model by the string
B-tree string dictionary structure [15], thereby provid-
ing analogues of tries and suffix trees in the I/O-model.
The string B-tree depends rather crucially on the value
of B, and no similar result for the cache-oblivious model
is known.

Thus, besides the I/O-complexity of string sorting
(unknown also in the I/O-model), the central open
question within basic string algorithms in the cache-
oblivious model is the existence of an I/O-efficient string
dictionary structure.

1.3 Our Contribution In this paper, we prove the
existence of such an I/O-efficient string dictionary struc-
ture.

Theorem 1.1. There exists a cache-oblivious string
dictionary structure supporting string prefix queries in
O(logB n + |P |/B) I/Os, where P is the query string,
and n is the number of strings stored. It can be
constructed in O(Sort(N)) time, where N is the total
number of characters in the input. The input can be
a set of strings to store, a single string for which all
suffixes are to be stored, or a trie, compressed trie, or
suffix tree (given as a list of edges of the tree, each
annotated with a character). The structure assumes
M ≥ B2+δ.

Unlike string B-trees, our structure basically does
store a trie over the strings. The essential feature
allowing us to get around the lower bound [11] on path
traversals in tries (and indeed in general trees) laid out
in memory is redundancy. Parts of paths in the trie may
be stored multiple times, but with only a constant factor



blowup in total space. More precisely, we cover the
trie by a type of trees we denote giraffe-trees. Giraffe-
trees may be of independent interest, as they provide a
very simple linear space solution to the path traversal
problem for trees in external memory, i.e. the problem of
storing a tree (allowing redundancy) such that (a copy
of) any given path p can be traversed in O(|p|/B) I/Os.
A previous solution to a similar problem in the I/O-
model was given by Hutchinson et al. [19]. Our solution
is simpler and works in the cache-oblivious model.

1.4 Overview of Structure Besides the giraffe-
trees, the second essential feature of our structure is
a decomposition of the trie into components and sub-
components (denoted layers) based on judiciously bal-
ancing the progress in scanning the query pattern with
the progress in reducing the number of strings left as
matching candidates. Each layer is equipped with its
own search structure in the form of a blind trie, which
allows the search to choose among the giraffe-trees stor-
ing the parts of the trie contained in the layer. This
giraffe-tree is then used for advancing the search. For
the search in the blind tree, we need look-ahead in read-
ing the pattern P , i.e. we may read further in P than it
actually matches strings in the set. To avoid this ruin-
ing the I/O-efficiency, we need a tall-cache assumption
in the case |P | > M .

The main difficulty we face in using the covering
collection of giraffe trees is to determine which giraffe
tree to use. To achieve the desired complexity, it is
not enough to have a single blind trie to guide the
choice. Rather, the searches need to be interleaved.
More specifically, the purpose of the components and
layers of the construction is to support searches on tries
in which ranks do not drop too sharply from parent to
child (the permitted drop is a function of the depth of
a node). In the general case, the trie is partitioned into
components, and each component is further partitioned
into layers of doubly exponentially growing height (i.e.,

height 2 = 220

, 4 = 221

, . . . , 22i

, . . .). As said, each
layer is kept in two structures: a blind trie and a
covering collection of giraffe trees. A search traverses
a component layer by layer until it exits the component
(either entering a new component, reaching a leaf, or
failing). Within a layer, the search first uses the blind
trie and uses the node reached in the blind trie to select
the giraffe tree in which to traverse the layer.

The difficulty is that the blind trie search may
explore too far forward in the pattern (this can occur
if the next layer is not reached). To ensure that this
does not cause too much work we need to ensure that
the number of I/Os that may be done in traversing the
pattern while searching in the blind trie for the given

ith layer is at most a constant factor greater than the
number of I/Os done in traversing the giraffe trees for
the previous layer. More precisely, an ith layer has at
most 2ε2i

leaves. Thus searching the blind trie for an ith
layer takes at most O(2ε2i

) I/Os. Traversing the giraffe

trees for the preceding layer takes that most O(22i−1

/B)
I/Os. Further, the backtracking is a problem only if
the relevant portion of the parent does not fit in main
memory; but this portion has length at most 22i

.
The components and their data structures are laid

out in memory in a manner which during searches
allow them to be accessed I/O-efficiently in the cache-
oblivious model. We do this by associating components
with some of the nodes of a binary tree of height
O(log n), and then using the van Emde Boas layout [24]
of this tree as a guide to place the structures in
memory. Hence, doubly-exponentially increasing values
are prominent in the definition of components and
their layers. To determine which nodes to associate
the components with, we convert the decomposition of
the trie into a binary tree of height O(log n) using a
construction algorithm for weighted binary trees.

Our structure needs a tall cache assumption M ≥
B1+δ for the sorting involved in the construction algo-
rithm, and M ≥ B2+δ for the I/O-efficiency of the query
algorithm in the case |P | > M .

1.5 Preliminaries Let T be any tree. For a node v
in T we denote by Tv the subtree rooted at v, and by
nv the number of leaves contained in the Tv. We define
the rank of v to be rank(v) = ⌈log nv⌉, where log x
denotes the binary logarithm. We define the depth of v,
depth(v), to be the number of edges on the path from
the root to v (except that if T is a blind trie, depth(v)
will be the string depth, i.e. the length of the string
represented by the path from the root to v, including
omitted characters).

2 The Data Structure

In this section we describe the main parts of our con-
struction. We use details described later in Sections 3
to 5 as black-boxes.

We will assume that the input to our construction is
a trie T given as the list of edges forming its Euler tour.
If the input is not of this form, but instead e.g. a set of
strings to store, a single string for which all suffixes are
to be stored, a trie, a compressed trie, or a suffix tree
(given as a list of edges of the tree, each annotated with
a character), preprocessing can convert it to an Euler
tour, as described in Section 7. We let n denote the
number of leaves in T . We note that the construction
actually applies to compressed (i.e. blind) tries also, if
depth(v) is defined as the string depth of v.



2.1 The Main Structure First we partition the in-
put trie T into a set of disjoint connected components.
A component with root v we denote Cv. Each com-
ponent is again partitioned into a sequence of layers
D0

v, D
1
v, . . ., where Di

v stores the nodes u of Cv with

22i−1

≤ depth(u) − depth(v) < 22i

. Section 3 gives
the details of the definition of the decomposition of T ,
and proves some of its properties. Figure 1 illustrates a
component consisting of four layers.

We then make a slight adjustment at the border
between layers. If a leaf l of a tree in layer Di

v has
more than one child in Di+1

v , we will break the edge
above l and insert a dummy node l′. The edge between l′

and l has string length zero, and l is the only child of l′.
We then move l to the next layer Di+1

v , and keep l′ in
layer Di

v. After this adjustment, no leaf of any layer Di
v

has more than one edge to nodes in layer Di+1
v .

For each component Cv we will have one data
structure for each of the layers Di

v. Abusing notation
slightly, we will use Di

v to denote both the layer and
its data structure. For each tree τ of the forest of
layer Di

v, the data structure Di
v has a blind trie for τ ,

and one or more giraffe trees (Section 4) forming a
covering of τ . The blind trie is the tree τ compressed by
removing all unary nodes, except the root (which can
be unary). Leaves are null-ary, hence not removed. The
data structure Di

v consists of all the blind tries followed
by all the giraffe-trees of all the coverings, laid out in
memory in that order. Each of these trees are stored as
a list of edges in BFS order.

Note that the blind tries used are for the layers
of a component - i.e. nodes in other components are
not included in the (sub)trie for which we form blind
tries (as illustrated in Figure 1 by the white nodes).
In particular, multiway nodes in the original trees may
become unary nodes in a component, and hence not
appear in a blind trie of a component.

To position all data structures Di
v, we transform the

tree T into a balanced tree T ′ with at most n leaves,
where each node in T ′ has at most two children. The
tree is formed by transforming each component Cv into
a binary tree, and then gluing together these trees in
the same way as the components were connected in T .
That is, all edges connecting components in T will exist
in T ′. We call these edges bridge edges. The remaining
edges of T are stored (possibly repeatedly) in the giraffe
trees of the final structure.

We now describe the transformation of a compo-
nent Cv, and the gluing process. For a component Cv

we consider all nodes in it with at least one child out-
side Cv, i.e. nodes with bridge edges below it. Denote
such nodes border nodes of Cv, and let u be a border
node with children z1, z2, . . . , zk outside Cv, for k ≥ 1.
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Figure 1: The black nodes show the component Cv =⋃3
i=0 Di

v, whereas white nodes are children of nodes
in Dv not being in Dv (children of white nodes are
omitted). For each node w is shown the number of leaves
nw in Tw. In the example ε = 1.

Let the weight wu of u be
∑k

i=1 nzi
, i.e. the number

of leaves in T below z1, z2, . . . , zk. We use the list of
weights of border nodes as input to the algorithm of
Lemma 5.1 (using dummy keys), producing a weighted
binary tree with one leaf for each of the border nodes.
Then for each border node u with children z1, z2, . . . , zk

outside Cv we make a list of k elements, where element i
is the character on the edge in T above zi, and has the
associated weight nzi

. We then use this list as input
to the algorithm of Lemma 5.1, producing a weighted
binary tree for each border node. The exception is if
k = 1, where we simply make at tree with a single unary
root and one leaf (the algorithm would return a single
leaf only). Each bridge edge in T is now the edge above
a leaf in a tree produced from a border node.

This collection of trees is then glued together into
a single tree T ′ in the natural fashion: Each leaf of
a tree generated from a component corresponds to a
border node, and is identified with the root of the
tree generated from that border node. Each leaf of
a tree generated from a border node corresponds to a
bridge edge, and is identified with the root of the tree
corresponding to the component to which the lower end
of the bridge edge belongs.

We now bound the height of T ′. A root-to-leaf



path in T corresponds to a root-to-leaf path in T ′.
By Corollary 3.1 in Section 3, the path in T will
go through at most ⌈log2 n⌉ components, hence the
path in T ′ will pass at most O(log n) trees constructed
by the algorithm of Lemma 5.1. By the telescoping
property log x/y+log y/z = log x/y, and by the way the
weights used in the trees fit together, from the bound
of Lemma 5.1 we get that the length of the path in T ′

is O(log n + log n/1) = O(log n). It follows that T ′ has
height O(log n).

2.2 Memory Layout To decide where to store the
data structures Di

v in memory, we first associate the
data structure Di

v with the root in T ′ of the (sub)tree
generated from the component Cv. Note that the node
will be associated with Di

v for all i, and that only some
nodes in T ′ will have associated structures. We then
consider the van Emde Boas layout [24] of T ′. The van
Emde Boas layout of a binary tree of height h lays out
the nodes in a linear order by cutting the tree in the
middle, producing a toptree of height ⌈h/2⌉ and many
bottom trees of height at most ⌊h/2⌋. The nodes of
the top tree is laid out first, and the bottom trees then
follows in left to right order. Inside each top or bottom
tree, the location of the nodes are determined by using
the method recursively. The recursion in the van Emde
Boas layout has log log n levels, and at each level, we
consider trees of at most 22i

nodes for some i. Each
node is part of exactly one tree on each level.

We now use this layout to determine a position for
the data structures: For a structure Di

v associated with
the node u in T ′, we place Di

v at the position in the
order corresponding to the end of the tree which, on
the i’th lowest level of the van Emde Boas recursion,
contains u.

The resulting data structure is a van Emde Boas
layout of T ′, where the Di

v structures are interspersed
between nodes in the manner described above.

2.3 Searching We now describe the prefix search
algorithm, given a search string P . Conceptually, the
search will progress along a root-to-leaf path in T ′.
However, only the edges in the subtrees of T ′ generated
by border nodes will actually be followed directly.

Traversal of the subtrees of T ′ generated by a
component Cv is done by searching in the blind trie
for the single tree τ in layer D0

v (for i = 0, the forest
of layer Di

v is a single tree). This will locate a leaf
in τ which represents a path in τ whose common prefix
with P is maximum among the paths in τ . The leaf will
point to the root of the particular giraffe tree covering
this path in the tree. This giraffe tree is then traversed
to match against the edges removed when the blind trie

was generated from τ . The match ends either at the
leaf or at an internal node.

Consider the first case. If the leaf is a leaf of the
original trie T , the prefix search is completed. If the leaf
has a child in layer D1

v (of which there can be at most
one by the border adjustment above), it points to the
blind trie in the data structure D1

v which contains this
child (the layer Di

v for i ≥ 1 may be a forest, hence have
many blind tries in its data structure). If the match
can continue along the edge to this child, the search
continues in the data structure D1

v, using the same
procedure. If the search cannot continue along this edge,
but the leaf in T ′ has children in other components, it
is a border node, and we find the structure for the next
component below it by searching in the subtree of T ′

that was generated by the border node. This search is a
plain search in this binary search tree. This search will
locate the next component to continue the search with
(or the prefix search is found to be completed).

Consider the second case of the giraffe-tree match-
ing ending at an internal node. Again, either the pre-
fix search is complete, or the node is a border node,
in which case the search continues in the subtree of T ′

generated by this node.

3 Tree Decomposition

In this section we describe our partitioning of an ar-
bitrary rooted tree T into a set of disjoint connected
components. The component rooted at a node v is de-
noted Cv. In the following we let ε ∈ (0, 1] a constant.
The parameter ε influence the size of the components
defined, such that a larger value ε causes larger compo-
nents to be constructed.

The components are identified top-down. First
the component Cr containing the root r is identified.
Recursively the components are then identified for each
subtree Tu rooted at a node u /∈ Cr where the parent of
u is in Cr.

For a subtree Tv of T we define the component Cv

as follows. For a node v recall that nv denotes the
number of leaves contained in the subtree Tv and
rank(v) = ⌈log nv⌉. For i = 1, 2, . . ., let strata i with

respect to v be the nodes u in Tv for which 22i−1

≤
depth(u) − depth(v) < 22i

, and let strata 0 be those

for which depth(u) − depth(v) < 220

. Call a node u in
strata i a candidate node if rank(v)−rank(u) < ε2i. The
component Cv is the connected component containing v
in the subgraph of Tv induced by the candidate nodes.
We call the part of Cv contained in strata i (if any) for
layer i of Cv, and denote it by Di

v. The component Cv

and its layers can be identified in a top-down traversal
of Tv. Formally, we define Cv and Di

v as follows.



Definition 3.1.

D0
v = {u ∈ Tv | rank(u) = rank(v)(3.1)

∧depth(u)− depth(v) < 220

}

Di
v = {u ∈ Tv | rank(v)− rank(u) < ε2i(3.2)

∧ 22i−1

≤ depth(u)− depth(v) < 22i

∧ (∃w ∈ Di−1
v : depth(w) − depth(v) = 22i

− 1

∧u ∈ Tw)}

Cv =

∞⋃

i=0

Di
v(3.3)

Figure 1 illustrates a component consisting of four
layers. The lemma below lists the properties of the
decomposition essential for our data structure.

Lemma 3.1.

1. If a node u ∈ Cv has a child w with rank(w) =
rank(u), then u and w are in the same component.

2. If a node u ∈ T has only one child w, then u and
w are in the same component.

3. Di
v is a forest with at most 2ε2i+1 leaves.

4. Di
v contains at most (22i

− 22i−1

)2ε2i+1 nodes.

5. For a node u ∈ Di
v, u 6= v, with a child w /∈ Cv,

then rank(v) − rank(w) ≥ ε2i.

Proof. 1) follows directly from Definition 3.1. If u has
only one child w, then nw = nu and rank(w) = rank(u),
i.e. by 1) w and u are in the same component and 2) is
true.

To prove 3), let w1, . . . , wk be the leaves of the
forest Di

v (i.e. internal nodes or leaves in T , where no
child is in Di

v). Since Tw1
, . . . , Twk

are disjoint subtrees
of Tv, we have nw1

+ · · · + nwk
≤ nv. From rank(v) −

rank(wj) ≤ ε2i we get 2⌈log nwj⌉ ≥ 2⌈log nv⌉/2ε2i

, and

it follows that nwj
≥ nv/(2 · 2ε2i

). We conclude

that Di
v contains at most 2ε2i+1 leaves, and 3) follows.

Since each leaf in Di
v has at most 22i

− 22i−1

ancestors
within Di

v (including the leaf), we from 3) conclude

that Di
v contains at most (22i

− 22i−1

)2ε2i+1 nodes and
4) follows.

To prove 5) consider u ∈ Di
v, u 6= v, where u has

a child w /∈ Cv. If i = 0 then rank(v) − rank(w) ≥
1 and the lemma follows trivially. If i ≥ 1 then
rank(v)− rank(w) ≥ ε2i. 2

From Lemma 3.1(1) it follows that the ranks of the
roots of the components on a root-to-leaf path is strictly
decreasing.

Corollary 3.1. On a root-to-leaf path in a tree T with
n leaves there are at most 1 + ⌈log n⌉ components.

It should be noted that if the tree T is a blind trie,
then the depth used in Definition 3.1 should refer to
the string depth of the nodes, i.e. depth(v) denotes the
sum of the lengths of the edges from the root to v. The
properties listed in and the proof of Lemma 3.1 also hold
for the case where T is a blind trie. We also need one
more modification: If an edge in T crosses from strata i
to strata i+1, without the upper endpoint being on the
lowest level of strata i, we break the edge by inserting
a unary node on it at this lowest level.

4 Covering a Tree by Giraffe-Trees

Let T be a rooted tree with n leaves and N nodes in
total. This section considers the problem of storing T
such that the traversal of a prefix of length p of
any predetermined root-to-leaf path can be done using
O(p/B) I/Os.

A straightforward solution requiring O(nN) space
is to store each of the n root-to-leaf paths in a separate
array. A prefix of length p of any predetermined root-
to-leaf path can then be traversed using O(p/B) I/Os.
Note that the n paths form a cover of all nodes of T .
In this section we develope a space efficient solution for
this problem. Theorem 4.1 summarizes the result of this
section.

Theorem 4.1. Given a tree T with N nodes, there ex-
ists a cache-oblivious covering of T by subtrees (giraffe-
trees) where the total space requirement of the covering
is O(N), each root-to-leaf path is present in one subtree,
and the prefix of length p of a predetermined root-to-leaf
path can be traversed in O(p/B) I/Os. Given the Euler
tour of T , the covering can be constructed using O(N/B)
I/Os.

A tree is denoted a giraffe-tree if at least N/2 nodes
are ancestors of all leaves, i.e. the tree consists of a long
path (neck) of length at least N/2 with the remaining
nodes are attached as subtrees below the lowest node on
the path. Note that a single path is always a giraffe-tree
by itself.

Lemma 4.1. Let T be a giraffe-tree with N nodes stored
in BFS layout. Traversing a path of length p starting at
the root of T requires O(p/B) I/Os.

Proof. If p ≤ N/2, then only the topmost node of the
tree is accessed which all have degree one. Since in a
BFS layout these nodes are stored consecutively left-to-
right it follows that accessing the path requires O(p/B)
I/Os.



Figure 2: Covering a tree by the four giraffe-trees T 1:1,
T 2:4, T 5:5, and T 6:8.

i← 1
while i ≤ n do

j ← i
while j < n and T i:j+1 is a giraffe-tree do

j ← j + 1
output T i:j

i← j + 1

Figure 3: Greedy algorithm for constructing a cover of T
by giraffe-trees.

For the case p > N/2, we observe that in a BFS
layout the nodes on a path appear in left-to-right order
in memory. Following a root-to-leaf path is therefore
bounded by the cost of scanning the array storing all
nodes in the tree, i.e. O(N/B) = O(p/B) I/Os. 2

It should be noted that Lemma 4.1 also holds if a
DFS layout or a van Ende Boas layout is used, since
both these layouts also ensure that the parent of a node
is to the left of the node in the layout.

Let ℓ1, . . . , ℓn be the leaves of T in left-to-right
order. For 1 ≤ i ≤ j ≤ n let T i:j denote the subtree
consisting of the nodes on the path from the root to the
leaves ℓi, ℓi+1 . . . , ℓj . The greedy algorithm in Figure 3
constructs a covering of T by a sequence of subtress T i:j ,
where the leaves of T are processed from left-to-right
and the next leaf is included in the current subtree until
the next leaf forces the subtree under construction not
to be a giraffe-tree. The generated subtrees are clearly
giraffe-trees and form a covering of T . In Figure 2 is
shown the cover generated by the greedy algorithm for
a tree with eight leaves.

Lemma 4.2. The algorithm in Figure 3 constructs a
covering of T with giraffe-trees of total size O(N), where
N is the number of nodes in T .

Proof. Let T i:j and T j+1:k be two consecutive giraffe-
trees constructed by the greedy algorithm. Observe that
from T i:j only nodes on the path to the leaf ℓj+1 can
appear in any of the succeeding subtrees constructed
after T i:j.

ℓi

ℓj

ℓj+1

Bi:j

Ai:j

ℓi

ℓj+1

ℓj

Ai:j Bi:j

Figure 4: Two cases illustrating how the construction
of T i:j is charged to the nodes in Ai:j and Bi:j .

We will charge the construction of T i:j to two sets
of nodes Ai:j and Bi:j : Ai:j are the nodes in T i:j that
are not on the path to ℓj+1, and Bi:j are the nodes
in T on the path to ℓj+1 but not on the path to ℓi.
See Figure 4. By construction T i:j+1 is not a giraffe-
tree implying |Ai:j | + |Bi:j | > |T i:j+1|/2. It follows
that |T i:j | < |T i:j+1| < 2(|Ai:j | + |Bi:j |). Each node
is charged as an Ai:j node only once, namely in the last
giraffe-tree containing the node. Similarly, each node is
charged as a Bi:j node at most once, namely in the tree
constructed prior to the tree where the node appears
as a node on the leftmost path for the first time. For
the last tree T i:j constructed, the leaf ℓj+1 does not
exist and Ai:j = T i:j. It follows that

∑
T i:j |T i:j | <∑

T i:j 2(|Ai:j |+ |Bi:j |) ≤ 4N . 2

Given an Euler tour of T the algorithm in Figure 3
can be implemented to use O(N/B) I/Os, by performing
an Euler tour traversal of T and maintaining the path
from the root to the current node on a stack. The output
is the Euler tours for each of the trees T i:j .

5 Weight Balanced Trees

Lemma 5.1. Let x1 ≤ x2 ≤ · · · ≤ xn be a list of
n keys in sorted order, and let each key xi have an
associated weight wi ∈ R+. Let W =

∑n
i=1 wi. A binary

search tree in which each key xi is contained in a leaf
of depth at most 2 + 2⌈logW/wi⌉ can be constructed
cache-obliviously in O(n) time and O(n/B) I/Os.

Proof. Let the rank rank(T ) of a tree T be ⌈log w⌉,
where w is the sum of the weights of its leaves. Let
a link operation on two trees T1 and T2 create a node
which has T1 as its left subtree, T2 as its right subtree,
and the maximum key in T1 as its search key. For
r = max{rank(T1), rank(T2)}, the rank of the new tree
is either r or r + 1.

The algorithm keeps a stack of search trees. It
maintains the invariants that the ranks of trees are



strictly decreasing from bottom to top in the stack, and
that all keys in a tree are larger than all keys in the trees
below it. The algorithm proceeds in n steps, where in
step i, a single-leaf tree containing xi is incorporated
into the stack.

We now describe a single step. Let a link operation
on the stack denote the operation of popping two trees
from the stack, linking these and pushing the resulting
tree onto the stack.

Let T ′ be the tree containing only xi. If the topmost
tree has rank larger than rank(T ′), or the stack is empty,
we simply push T ′ onto the stack and the step is done.
The invariants are clearly maintained.

Otherwise, let U be the lowest tree on the stack
for which rank(U) ≤ rank(T ′). If U is not the tree at
the top of the stack, we repeatedly do link operations
on the stack until a link involving U is performed. By
the invariants, the tree at the top of the stack is now
a search tree of rank at most rank(T ′) + 1. Call this
rank r. The step finishes with one of three cases: Case i)
is r = rank(T ′)+1, where we perform zero or more link
operations on the stack until the two topmost trees have
different ranks or the stack contains a single tree. We
then push T ′ onto the stack. Case ii) is r = rank(T ′),
where we push T ′ onto the stack and perform one or
more link operations on the stack until the two topmost
trees have different ranks or the stack contains a single
tree. Case iii) is r < rank(T ′), where we push T ′ onto
the stack and perform one link operation on the stack.
We then perform zero or more link operations on the
stack until the two topmost trees have different ranks
or the stack contains a single tree. In all three cases,
the invariants are clearly maintained.

After the last of the n steps, we perform link
operations on the stack until a single tree remains.

As each link reduces the number of trees by one,
exactly n − 1 links are done in total, each of which
does O(1) stack operations. Besides the linking, each
of the n steps perform O(1) stack operations and one
scan step of the input list. The algorithm can therefore
be implemented cache-obliviously to run in O(n) time
and O(n/B) I/Os.

We now bound the depth of leaves. Let the rank of
a node be the rank of the tree it roots. Denote an edge
efficient if the rank of its upper endpoint is larger than
the rank of its lower endpoint. Call an inefficient edge
covered if it has an efficient edge immediately above it
in the tree. It can be verified that in the final tree,
all inefficient edges are covered except possibly those
incident on a leaf or on the root. From this the depth
bound follows: If there are k efficient edges on the
path from the leaf containing xi to the root, we have
⌈log wi⌉+k ≤ ⌈log W ⌉, hence log wi+k < 1+logW and

k < 1+log W/wi. Since k is an integer, k ≤ ⌈log W/wi⌉
follows. By the claim, there can be at most 2+2k edges
on the path.

6 Analysis

Lemma 6.1. Storing Di
v uses O(|Di

v|) space, which is

O(22i+1

).

Proof. The space required for the blind trie of Di
v is

O(2ε2i

), since by Lemma 3.1 (3) the number of leaves

in the blind trie is 2ε2i+1 and therefore the total number
of nodes in the blind trie is O(22i+1

). The size of the
blind trie is by definition O(|Di

v|).
By Theorem 4.1 the total space required for the

giraffe cover of Di
v is O(|Di

v|). By Lemma 3.1 (4)

this is bounded by O((22i

− 22i−1

)2ε2i+1). It follows

that the total space usage is O(|Di
v|) which is O(22i+1

),
since ε ≤ 1. 2

Theorem 6.1. A subtree X of T ′ of height 2i in the
van Emde Boas layout of T ′ requires space O((22i

)3).

Proof. The recursive layout of X stores the nodes of T ′

within X and the Dj
v structures for all v ∈ X and j ≤ i.

Since |X | = O(22i

), we have by Lemma 6.1 that the

space required for storing X is O(22i

·
∑i

j=0 22j+1

) =

O((22i

)3). 2

Theorem 6.2. Prefix queries for a query string P in a
string dictionary storing n strings use O(logB n+|P |/B)
I/Os.

Proof. The number of I/Os for a prefix search are
caused by either accessing the pattern P or accessing
the string dictionary data structure.

We first analyse the number of I/Os performed for
accessing the query string. If P was scanned left-to-
right, the I/Os for accessing P was clearly ⌈|P |/B⌉.
Unfortunately, the lookahead in P while searching blind
tries cause random I/Os to P . We can without loss
of generality assume that we keep the next Θ(M)
unmatched characters of the pattern in memory, i.e.
only lookahead of Ω(M) characters can cause random
I/O. Consider the case where the access to a Di

v causes
a lookahead of Ω(M) during the blind trie search

for Di
v, i.e. 22i

= Ω(M). The search in Di−1
v matched

Ω(22i−1

) characters in P , and the blind trie for Di
v has

size O(2ε2i

). To charge the random I/Os caused by the
blind trie search for Di

v to the part of the query string
matched for Di−1

v , we only need

B · 2ε2i

= O(22i−1

)(6.4)



to be satisfied. Assuming the tall cache assumption
M ≥ B2+δ for some constant δ > 0, we from 22i

=
Ω(M) get B = O((22i

)1/(2+δ)). The equality (6.4) is

implied by (22i

)1/(2+δ) · 2ε2i

= O(22i−1

), which again
follows from 1/(2 + δ) ≤ 1/2 − ε, which is satisfied for
sufficiently small ε.

To count the number of I/Os while accessing T ′

we consider a search path in T ′. By Theorem 6.1
each subtree in the recursive van Emde Boas layout of
height 2t fits into O(1) blocks for t = ⌊log log B1/3⌋.
Assuming we always keep in memory the currently
traversed height 2t subtree from the van Emde Boas
layout. The number of I/Os following the path becomes
O((log N)/2t) = O(logB N), not counting the I/Os
used for accessing the Di

v data structures not stored
in the cached height 2t tree, i.e. the Di

v data structures
with i > t.

To count the I/Os for accessing the D0
v, D

1
v, . . . , D

s
v

for a component Cv, we now only have to count the
number of I/Os for accessing Dt+1

v , Dt+2
v , . . . , Ds

v where
s ≥ t. Without loss of generality we assume that each
of these Di

v will need to be read into memory. By
Lemma 3.1 (3) and Theorem 4.1 each of these requires

O(1 + 2ε2i

/B + pi/B) I/Os where pi is the length
of the path matched in Di

v. For ε ≤ 1/2 we have

2ε2i

≤ 22i−1

, and the scanning of the blind trie for layer i
is dominated by the matched part of the query string for
layer i− 1. We have O(2ε2i

/B) = O(pi−1/B), and the
total number of I/Os is therefore O(

∑s
i=t+1(1+pi/B)).

Since (22t+1

)3 = Ω(B) we get 22t+3

= Ω(B). Since

pi = Θ(22i

) for i < s, we in the sum only for i = t + 1,
i = t + 2 and i = s can have that pi/B = o(1). For the
remaining terms pi/B = Ω(1) and the “+1” in the sum
can be charged to pi/B.

Since (22t+1

)3 = Ω(B), we from Lemma 3.1 (5)
have that the rank decreases by at least ε2k = Ω(log B)
when the search terminates at Dk

v , for k > t. It follows
that at most O(logB N) times we have to charge O(1)
additional I/Os. The remaining I/Os are charged to the
scanning of P . 2

7 Construction Algorithm

Theorem 7.1. Given an edge list representation of the
Euler tour of a trie or blind trie T with N nodes, the
cache-oblivious trie data structure can be constructed in
O(Sort(N)) time.

Proof. Due to space restrictions, we only give a sketch
of the steps involved. The full number of steps is large,
and their description tedious, but only standard tools
in the area are used.

To find the decomposition into components and lay-

ers, we need to distribute various information upwards
and downwards between nodes in (the edge list repre-
sentation of) T . This can be done by first annotating
the nodes with their BFS level [3], then propagating
the information upwards and downwards using a pri-
ority queue [3] of edges. The information distributed
is depth, nv, and membership of components and lay-
ers. The Euler tour of T can then be cut up into Euler
tours for the various layers (separating the components
using sorting). These Euler tours can then be used for
generating the blind tries and giraffe trees.

The many inputs to the algorithm of Lemma 5.1
can be collected using sorting steps. The result can be
distributed and glued together using sorting steps.

To compute the memory layout of the structure, we
first find the order of the memory positions of the nodes
of T ′ in the van Emde Boas layout. By the implicit
navigation formula for van Emde Boas trees [10], and
the observation [10] that an in-order traversal of a van
Emde Boas layout has scanning cost, the information
can be found by simultaneous inorder traversals of the
(implicit) van Emde Boas layout and T ′.

The nodes in T ′ to have associated Di
v structures

can be marked with the maximal i of these structures
by a sorting step. The height of a node determines
how many trees in the van Emde Boas recursion it
is a root of. This information can be stored in an
O(log n) size array, and used during a backwards DFS
traversal of the van Emde Boas laid out T ′. Using the
pre-calculated sizes of subtrees of the van Emde Boas
recursion (again O(log n) information), we can during
the DFS traversal maintain a current list of pointers
to the correct locations. These locations are then
output when a marked node in T ′ is met. The location
information is distributed to the data structures by a
sorting step. Finally, everything is moved into correct
position by a sorting step, and all relevant pointers in
the structures are updated using sorting steps. 2

We note that if the input is not on the Euler tour
form above, but instead e.g. a set of strings to store,
a single string for which all suffixes are to be stored,
or a trie, compressed trie, or suffix tree (given as a list
of edges of the tree, each annotated with a character),
preprocessing can convert it to an Euler tour. For the
last three input types, this can be done by directly
constructing the Euler tour [3]. For the second type
of input, we build the suffix array and associated LCP
array [14, 20] cache-obliviously in O(Sort(N)) I/Os.
Scanning these arrays, we can construct the edges of
the compressed trie of the suffixes, by keeping a stack
of the right-most path in the trie built so far. This
takes O(N/B) I/Os. For the first type of input, we
first concatenate the input strings, then build the suffix



array and LCP array, which are then pruned for non-
relevant entries (distributing the relevancy information
using sorting). We then find the edges of the compressed
trie as above. If the full trie is wanted, the edges can be
expanded, with character information distributed using
sorting. Finally, the Euler tour of the tree is calculated.

8 Conclusion

We have given a cache-oblivious dictionary structure for
strings performing prefix queries in O(logB n + |P |/B)
I/Os, where n is the number of leaves in the trie, P
is the query string, and B is the block size. This is
an optimal I/O-bound for unbounded alphabets. The
structure provides analogues of tries and suffix trees in
the cache-oblivious model.

It remains an open problem whether a tall cache
assumption is required for performing prefix searches in
O(logB n + |P |/B) I/Os in the cache-oblivious model.
In the I/O-model it is not, as demonstrated by string
B-trees [15].
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