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ABSTRACT
Point location is an extremely well-studied problem both in
internal memory models and recently also in the external
memory model. In this paper, we present an I/O-efficient
dynamic data structure for point location in general planar
subdivisions. Our structure uses linear space to store a sub-
division with N segments. Insertions and deletions of seg-
ments can be performed in amortized O(logB N) I/Os and
queries can be answered in O(log2

B N) I/Os in the worst-
case. The previous best known linear space dynamic struc-
ture also answers queries in O(log2

B N) I/Os, but only sup-
ports insertions in amortized O(log2

B N) I/Os. Our structure
is also considerably simpler than previous structures.

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]:
Geometrical problems and computations
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Algorithms, Design
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1. INTRODUCTION
Planar point location is a classical problem in computa-

tional geometry: Given a planar subdivision Π with N seg-
ments (i.e., a decomposition of the plane into polygonal re-
gions induced by a straight-line planar graph), the problem
consists of preprocessing Π into a data structure so that
the face of Π containing an arbitrary query point p can
be reported quickly. This problem has applications in e.g.
graphics, spatial databases, and geographic information sys-
tems. The planar subdivisions arising in many applications
in these areas are too massive to fit in internal memory and
must reside on disk. In such instances the I/O communica-
tion, rather than the CPU running time, is the bottleneck.
Most work on planar point location, especially if we allow
the edges and vertices of Π to be changed dynamically, has
focused on minimizing the CPU running time under the as-
sumption that the subdivision fits in main memory (e.g., [3,
9, 11, 12, 17, 20, 22]). Only a few results are known for
I/O-efficient dynamic point location when the subdivision
is stored in external memory [1, 6]. In this paper, we im-
prove the update bound of the previous best known dynamic
structure.

1.1 Previous results
In internal memory, Edelsbrunner et al. [16] proposed

an optimal static data structure for point location in pla-
nar monotone subdivision, i.e., subdivisions where the in-
tersection of any face and any vertical line is a (possibly
empty) single interval. Their data structure uses O(N)
space, can be constructed in O(N) time, and answers
queries in O(log2 N) time. For arbitrary planar subdivi-
sions, linear space structures with logarithmic query time
and O(N log2 N) construction time are known; see, e.g., [20,
22]. For the dynamic version of the problem where we allow
the edges and vertices to be changed dynamically, Cheng
and Janardan [11] gave a structure that answers queries in
O(log2

2 N) time and supports updates in O(log2 N) time.
The structure given by Baumgarten et al. [9] supports
queries in O((log2 N) log2 log2 N) time worst case, insertions
in O((log2 N) log2 log2 N) time amortized, and deletions in
O(log2

2 N) time amortized. Recently, Arge et al. [3] gave a
structure that supports queries in O(log2 N) time worst case,
insertions in O(log1+ε

2 N) time amortized, and deletions in
O(log2+ε

2 N) time amortized, for some arbitrary fixed con-
stant 0 < ε < 1. All three structures use linear space. They
all basically store the edges of the subdivision in an interval



tree [15] constructed on their x-projection (as first suggested
in [17]) and use this structure to answer vertical ray-shooting
queries, that is, the problem of finding the first edge of Π
hit by a ray emanating in the (+y)-direction from a query
point p. After answering a vertical ray-shooting query the
face containing p can be easily found in O(log2 N) time [21].

In this paper, we are interested in the problem of dynam-
ically maintaining a planar subdivision on disk, such that
the number of I/O operations (or I/Os) used to perform a
query or an update is minimized. We consider the problem
in the standard two-level I/O model proposed by Aggarwal
and Vitter [2]. In this model, M is the number of elements
(vertices/edges) that fit in the internal memory and B is the
number of elements per disk block, where 2 ≤ B ≤ M/2. An
I/O is the operation of reading (or writing) a block from (or
into) external memory. Computation can only be performed
on elements in internal memory. The measures of perfor-
mance are the number of I/Os used to solve a problem and
the amount of space (disk blocks) used.

In the I/O-model, Goodrich et al. [18] designed a linear
space (O(N/B) disk blocks) static data structure to store
a planar monotone subdivision so that a query can be an-
swered in optimal O(logB N) I/Os. Arge et al. [4] designed
a structure for general subdivisions with the same bounds.
Goodrich et al. [18] also developed a structure for answer-
ing a batch of K queries in O( 1

B
(N + K) logM/B N) I/Os.

Arge et al. [7] extended the batched result to general subdi-
visions (see also [14]), and Arge et al. [5] to an off-line dy-
namic setting where a sequence of queries and updates are
given and all the queries should be answered as the sequence
of operations is performed. Vahrenhold and Hinrichs [23]
considered the problem under some practical assumptions
about the input data. Only two results are known for the
dynamic case. Agarwal et al. [1] designed a linear space
structure for planar monotone subdivisions that supports
queries in O(log2

B N) I/Os in the worst case and updates
in O(log2

B N) I/Os amortized. Arge and Vahrenhold [6]
designed the only previously known dynamic structure for
general subdivisions. The structure uses linear space and
supports queries in O(log2

B N) I/Os in the worst case, and
insertions and deletions in O(log2

B N) and O(logB N) I/Os
amortized, respectively.

1.2 Our results
In this paper we describe a linear space dynamic structure

for point location in general planar subdivisions. The struc-
ture supports queries in O(log2

B N) I/Os like the previously
known structure [6] but can be updated in O(logB N) I/Os
amortized. Our structure is also considerably simpler.

Our main contribution is a structure (called a multislab
structure) for dynamically maintaining a set of segments
with endpoints on Bε, 0 < ε ≤ 1, vertical lines, such that
the segment immediately above a query point can be found
in O(logB N) I/Os and such that segments can be inserted
and deleted in O(logB N) I/Os amortized. Such a structure
was also used in the previous I/O-efficient dynamic point
location structure [6]. However, the previous structure only
supported insertions in O(log2

B N) I/Os amortized. Using
the new multislab structure our point location structure is
obtained with essentially the same method as the previous
structures [1, 6], namely by using the multislab structure as
secondary structures in an interval tree over the segments
projection on the x-axis.

The rest of the paper is organized as follows. In the next
section we outline the overall structure of our point location
data structure (similar to the previous structures [1, 6]). In
Section 3, we then describe our new multislab structure. In
these sections we assume for simplicity that the base interval
tree is static. In Section 4 we then describe how to rebalance
the base interval tree during updates (and how to handle the
resulting reorganization of the secondary structures). We
give conclusions in Section 5.

2. OVERALL STRUCTURE
In the following, we will concentrate on developing a struc-

ture for dynamic vertical ray-shooting: Maintain the seg-
ments S in Π such that the first segment hit by a ray ema-
nating from a query point in the (+y)-direction can be found
efficiently. It is easy to realize that a point location query
with p can be easily answered in an additional O(logB N)
I/Os once a vertical ray shooting query with p has been
answered [6].

We will make frequent use of (a, b)-trees [19]. In (a, b)-
trees objects are stored in the leaves. All leaves are on
the same level of the tree, and all internal nodes have be-
tween a and b children, except possibly the root which has
between 2 and b children. In this paper, all (a, b)-trees will
satisfy that a, b ∈ Θ(Bε) for some constant 0 < ε ≤ 1 and
each leaf stores Θ(B) objects. This way each node can be
stored in O(1) blocks, a tree storing N objects has height
O(logBε N) = O(logB N), and it uses linear space. We re-
fer to an (a, b)-tree with a = cBε and b = Bε, for some
0 < c ≤ 1/2 as a Bε-tree. (A normal B-tree [10, 13], or
rather B+-tree, is such a structure with ε = 1.) Since the
tree has height O(logB N) and each node is stored in O(1)
blocks, a search can be performed in O(logB N) I/Os. In-
sertions and deletions can also be performed in O(logB N)
I/Os using O(logB N) split and fuse operations on the nodes
on a root-leaf path [19].

The basic idea in our structure is the same as previously
applied by Agarwal et al. [1] and Arge and Vahrenhold [6],
and is similar to the one used in several main memory struc-
tures [9, 11, 17]. The set of edges/segments S of Π is stored
in a two-level tree structure, with the first level being an
interval tree—here an external interval tree [8]—on their x-
projection: the base (interval) tree is a Bε-tree T over the
x-coordinates of the endpoints of segments in S (a possible
value for ε is ε = 1/5); the segments in S are stored in sec-
ondary structures associated with the nodes of T , such that
each segment is stored at precisely one node of T . Each
node v of T is associated with a vertical slab sv; the root is
associated with the whole plane. For each internal node v,
the slab sv is partitioned into Bε vertical slabs s1, . . . , sBε

corresponding to the children of v, separated by vertical lines
called slab boundaries (the dashed lines in Figure 1(a)). A
segment t of S is stored in the secondary structures associ-
ated with the highest node v of T where it intersects a slab
boundary.

In the following we for simplicity assume that the end-
points of the segments in S have distinct x-coordinates, such
that each leaf stores O(B) segments. The segments associ-
ated with a leaf are simply stored in O(1) blocks. Let v
be an internal node of T and let Sv ⊆ S be the set of seg-
ments associated with v. Let t ∈ Sv be one of the segments
associated with v, and suppose that the left endpoint of t
lies in the slab sℓ and the right endpoint of t lies in the
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Figure 1: (a) A node in the base tree T . The left subsegment of t is in slab s1, the right subsegment in slab
s4, and the middle subsegment of t spans s2 and s3. (b) Answering a query.

slab sr associated with the ℓ-th and r-th children of v, re-
spectively. We call the subsegment t∩sℓ the left subsegment
of t, t∩sr the right subsegment, and the portion of t lying in
sℓ+1, . . . , sr−1 the middle subsegment. Refer to Figure 1(a).
Let M denote the set of middle subsegments of segments
in Sv. For each i, 1 ≤ i ≤ Bε, let Li (resp., Ri) denote the
set of left (resp., right) subsegments that lie in si. We store
the following secondary structures at v.

(i) A multislab structure ∆ on the set of middle segments
M.

(ii) For each i, 1 ≤ i ≤ Bε,

– a left structure on all segments of Li, and

– a right structure on all segments of Ri.

A segment in Sv is thus stored in at most three secondary
structures: the multislab structure, a left structure, and a
right structure. For example, the segment t in Figure 1(a) is
stored in the multislab structure ∆, the left structure of s1,
and in the right structure of s4. The secondary structures
are constructed to use linear space so that each internal
node v requires O(|Sv |/B) disk blocks. This in turn means
that overall the data structure requires O(N/B) disk blocks.

Let ρ+ be the ray emanating from a point p in the (+y)-
direction. To find the first segment of S hit by ρ+, we
search T along a path of length O(logB N) from the root
to the leaf z where sz contains p. At each internal node v
visited, we compute the first segment of Sv hit by ρ+. In
particular, in v we first search ∆ to find the first segment
of M hit by ρ+. Next, we find the vertical slab si that con-
tains p and search the left and right structures for si to find
the first segments of Li and Ri, respectively, hit by ρ+. Re-
fer to Figure 1(b). At the leaf z, the first segment of Sz hit
by ρ+ is computed by testing all segments of Sz explicitly.
The query is then answered by choosing the lowest segment
among the O(logB N) segments found this way.

Based on ideas due to Cheng and Jarnadan [11], Agar-
wal et al. [1] showed how the left and right structures can
be implemented efficiently, basically using B-trees:

Lemma 1 (Agarwal et al. [1, Lemma 3]). A set of K
non-intersecting segments all of whose right (left) endpoints
lie on a single vertical line can be stored in a linear space
data structure such that a vertical ray-shooting query can be
answered in O(logB K) I/Os. Updates can be performed in
O(logB K) I/Os. If the set is sorted by the right (left) y-
coordinates of the endpoints, then the structure can be con-
structed in O(K/B) I/Os.

In the next section, we show how the multislab structure
can be implemented efficiently:

Lemma 2. For a constant 0 < ε ≤ 1/5, a set of K non-
intersecting segments with endpoints on Bε +1 vertical lines
can be stored in a linear space data structure such that a
vertical ray-shooting query can be answered in O(logB K)
I/Os. Updates can be performed in amortized O(logB K)
I/Os.

Lemma 1 and Lemma 2 imply that our overall struc-
ture can answer queries in O(log2

B N) I/Os since we use
O(logB N) I/Os to query the secondary structures at each
of the node on a root-leaf path of T of length O(logB N).
Ignoring updates in the base tree T (insertion/deletion of
endpoints and rebalancing), updates can be performed in
O(logB N) I/Os simply by searching down a root-to-leaf
path of T to find the relevant node v and then updating the
relevant left and right structures and the multislab struc-
tures associated with v. In Section 4 we discuss how the
base tree can also be updated in amortized O(logB N) I/Os.
This way we obtain our main result.

Theorem 1. A set S of N non-intersecting segments in
the plane can be stored in a linear space data structure,
such that a vertical ray-shooting query can be answered in
O(log2

B N) I/Os, and such that updates can be performed in
amortized O(logB N) I/Os.

3. MULTISLAB STRUCTURE
Let M be a set of K non-intersecting segments in the

plane with endpoints on Bε + 1 vertical lines b1, . . . , bBε+1.
For each i, 1 ≤ i ≤ Bε, let si be the vertical slab bounded
by bi and bi+1. In this section we consider the problem of
maintaining M in a structure using O(K/B) disk blocks
that supports vertical ray shooting queries in O(logB K)
I/Os and updates in amortized O(logB K) I/Os.

Our data structure will actually consist of two different
data structures for the two cases: (i) B2ε = O(logB K), and
(ii) logB K = O(B2ε), for some constant ε, 0 < ε < 1/5.
Intuitively, in Case (i), discussed in Section 3.2, we main-
tain sorted lists of segments for every pair of slab bound-
aries. Since the number of these lists is bounded by B2ε =
O(logB K), we can support queries efficiently. Intuitively,
in Case (ii), we use the logarithmic method [6] to reduce
the problem to O(logB K) deletion-only problems, and show
how to support deletions efficiently using the fact that the
number of structures created by the logarithmic method is
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Figure 2: The search for the successor of x in Lj . Crosses indicate elements from Lj . Underbraces show the
intervals spanned by the nodes in the Bc-tree.

bounded by O(logB K) = O(B2ε). For this case, we first
describe a deletion-only structure in Section 3.3, and then
we describe how to use the logarithmic method to obtain a
fully-dynamic structure in Section 3.4. In both cases we uti-
lize a structure that supports efficient simultaneous search-
ing in O(B1−c) sorted lists of total size K, for some positive
constant 0 < c < 1, in O(logB K) I/Os. This structure is
described in Section 3.1.

In fact, we will implement all multislab structures at the
nodes of the base tree T by either the data structure of Sec-
tion 3.2 when B2ε = O(logB N), or by the data structure
of Section 3.4 when logB N = O(B2ε). Here N is the total
number of segments stored. This increases the I/O bound
for queries to a multislab structure storing K segments from
O(logB K) to O(logB N) in the first case (see Lemma 4)—all
other I/O bounds remain unchanged. In order to ensure that
we always implement the multislab structures using the cor-
rect case (Section 3.2 or Section 3.4), we rebuild all multislab
structures whenever N/2 operations have been performed to
the structure. This only adds amortized O(logB N) I/Os to
the update bounds.

3.1 Searching in multiple sorted lists
In this section we describe a structure supporting efficient

simultaneous searching in m sorted lists L1, L2, . . . , Lm of
total size K, assuming m = O(B1−c) for some constant c,
0 < c < 1. We assume that the elements in the lists come
from a total order and the aim is to maintain the lists under
insertions and deletions such that searching in all the lists
simultaneously is supported in O(logB K) I/Os. The struc-
ture is based on an idea utilized in [6] to search in a single
deletion-only multislab structure.

Consider the sorted list L = ∪1≤j≤mLj stored in O(K/B)
blocks, where each element is augmented with information
about which list Lj it belongs to. Our structure consists of
a Bc-tree over the list L. For an internal node u of the Bc-
tree, let minj,u and maxj,u be the minimum and maximum
elements that belong to the list Lj and are stored in the
subtree rooted at u; if the subtree does not contain any
element from Lj we let minj,u = ∞ and maxj,u = −∞.
For each node v in the Bc-tree, we store for each child u
of v, and for each list Lj , the elements minj,u and maxj,u.
Since Bc · m · 2 = O(B) these elements can be stored in
O(1) blocks associated with v, i.e., the tree can be stored in
O(K/B) blocks.

Now to find for each list Lj , 1 ≤ j ≤ m, the successor
in Lj of a query element x, we search for x along a path
v1, v2, . . . vh from the root to a leaf of the augmented Bc-
tree on L. If x > maxj,v1

, we know that x > max Lj and we
return ∞ for the list Lj . Otherwise, we find the successor of
x in Lj in the node vi where maxj,vi+1

< x ≤ maxj,vi
simply

by returning the successor of x among all minj,u stored at vi

(where u ranges over the children of vi). Refer to Figure 2.

If no such node exists, i.e., we reach the leaf vh without
having answered the query in Lj , we have x ≤ maxj,vh

, and
we simply return the successor of x among the elements from
Lj stored in vh. It is easy to verify that this correctly finds
the successor of x in Lj . Since the successors of x in all the
lists Lj , 1 ≤ j ≤ m, can be found in one traversal of the
root-to-leaf path the query is answered in O(logB K) I/Os.

Updates are performed in a straightforward manner sim-
ilar to a B-tree. To insert/delete an element x into/from a
list Lj , we first search for x in the Bc-tree over L to find
the leaf block containing x and perform the update. Then
we traverse the path back to the root while updating the
minj,v and maxj,v values. This takes O(logB K) I/Os since
minj,v and maxj,v can be updated in O(1) I/Os in a node v.
Finally, we rebalance the tree as in the case of a standard
B-tree update, i.e., we split and fuse nodes on the root-leaf
path as required. As the minj,v and maxj,v values can also
easily be maintained in O(1) I/Os during a split or fuse, the
rebalancing is performed in O(logB K) I/Os.

Our data structure can be constructed from a set of sorted
lists L1, L2, . . . , Lm by first forming the list L = ∪1≤j≤mLj

by pairwise merging the Lj lists in a binary tree fash-
ion using O((K/B) log2 m) I/Os, and then constructing the
Bc-tree over L bottom-up using O(K/B) I/Os. In to-
tal the construction requires O((K/B) log2 B) I/Os, since
m = O(B1−c).

Lemma 3. Let L1, L2, . . . , Lm be m = O(B1−c) sorted
lists, for some constant 0 < c < 1, of total size K whose
elements come from a total order. There exists a linear
space data structure that supports the simultaneous search
for the successor of a query element x in each of the m lists
in O(logB K) I/Os, and supports the insertion and deletion
of an element from a list Lj in O(logB K) I/Os. The data
structure cane be constructed in O((K/B) log2 B) I/Os, pro-
vided each Li is already sorted.

3.2 Case (i) B2ε = O(logB K)

In this section we describe a structure for maintaining
a set M of K non-intersecting segments in the plane with
endpoints on Bε+1 vertical lines, for a constant 0 < ε < 1/2,
such that vertical ray-shooting queries can be answered I/O-
efficiently when B2ε = O(logB K). We will assume without
loss of generality that Bε ≤ B/4.

We first partition the segments in M into O(B2ε) multi-
slab lists Lℓ,r, for 1 ≤ ℓ < r ≤ Bε+1, such that Lℓ,r contains
all the segments of M whose left and right endpoints are on
the vertical lines bℓ and br, respectively. All the segments in
each multislab list Lℓ,r are sorted in increasing order with
respect to their left endpoint and stored in order (in a B-
tree) on disk. We will maintain the blocks of each Lℓ,r such
that they contain between B/4 and B segments. We call a
block full if it contains B segments and sparse if it contains
B/4 segments.
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Figure 3: The multislab list L2,5. The dashed lines show the partition of the segments into blocks. The
sampled segments for the slabs s2, s3 and s5 are emphasized with thick lines.

For each slab sk and pair of vertical lines bℓ and br, where
1 ≤ ℓ ≤ k < r ≤ Bε + 1, let Lk

ℓ,r be the list obtained by
picking one (arbitrary) segment from each block of Lℓ,r. We
call Lk

ℓ,r the sampling list of Lℓ,r for slab sk. If |Lℓ,r| < B,

we define Lk
ℓ,r to be empty. We maintain pointers between

the same segments in the multislab and sampling lists, and
will maintain the sampling lists Lk

ℓ,r to be disjoint under in-
sertions and deletions of segments in the multislab list Lℓ,r,
i.e., a segment in Lℓ,r can be sampled for at most one of
the slabs sℓ, . . . , sr−1. Refer to Figure 3. To do so we la-
bel a segment in Lℓ,r with k if it is sampled in sk; since
each multislab list Lℓ,r can at most span Bε ≤ B/4 slabs
and each block of Lℓ,r contains at least B/4 segments, there
will always be at least one unmarked segment in each block.
Finally, we for each slab sk construct a structure for simulta-
neously searching in the O(B2ε) sampling lists Lk

ℓ,r; since we

have a total order on the segments in the Lk
ℓ,r lists (the order

of the intersections between the segments and bℓ), and by
choosing c = 1−2ε, we can utilize the linear space structure
of Lemma 3 for this.

Now to answer a vertical ray-shooting query we first find
the slab sk containing the query point p. Since there are
Bε slabs, we can easily do so in O(Bε) I/Os. Next we use
the structure of Lemma 3 to answer the query in each of the
sample lists Lk

ℓ,r in O(logB K) I/Os. Finally, we for each

of the O(B2ε) multislab lists Lℓ,r, 1 ≤ ℓ < r ≤ Bε + 1,
in turn use the result x of the query in Lk

ℓ,r to answer the
query in Lℓ,r. We can do so in O(1) I/Os since the answer is
either in the block of Lℓ,r containing x or in its predecessor
block; in the case where |Lℓ,r| < B (such that Lk

ℓ,r is empty)
we simply search directly in Lℓ,r using O(1) I/Os. Refer
to Figure 3. Overall we answer the ray-shooting query in
O(B2ε + logB K) I/Os.

To insert a segment t spanning slabs sℓ through sr, we first
insert t is the multislab list Lℓ,r using O(logB K) I/Os. If
the block containing t is now full we split it into two blocks,
each containing roughly half the segments from the origi-
nal block. This creates the need for updating the pointers
between at most Bε existing samples and the sampling of
at most Bε new segments to be inserted in the Lk

ℓ,r sample
lists, ℓ ≤ k < r, and thus in the corresponding Lemma 3

structures. Since each insertion (an update of pointers be-
tween the same segments in multislab and sample lists) takes
O(logB K) I/Os, the total cost of the split is O(Bε· logB K)
I/Os. Amortizing this cost over the Θ(B) insertions in the
full block since its creation, the split is handled in amortized
O(logB K) I/Os. Deletions are handled in a similar way, by
fusing sparse blocks with an adjacent block (and splitting
again if necessary), as in the case of standard B-tree opera-
tions (to guarantee that the resulting blocks contain between
3
8
B and 3

4
B segments). Furthermore, when a sampled seg-

ment for slab sk is deleted from Lℓ,r, we replace it with
another unsampled segment in the same block of Lℓ,r. This
requires a deletion and an insertion on a Lemma 3 structure.
In total deletes are also handled in amortized O(logB K)
I/Os.

Our structure can be constructed from a set of sorted mul-
tislab lists Lℓ,r, 1 ≤ ℓ < r ≤ Bε +1, as follows: We first scan
the O(B2ε) multislab lists and construct the corresponding
sorted sampling lists Lk

ℓ,r using O(K/B) I/Os. These lists
contain a total of O((K/B)Bε) samples. We then apply the
construction algorithm of Lemma 3 for the O(Bε) simulta-
neous searching structures (one for each slab) using a total
of O( 1

B
(K/B)Bε log2 B) = O(K/B) I/Os. In total the con-

struction of the data structure requires O(K/B) I/Os.

Lemma 4. For a constant 0 < ε < 1/2, a set of K non-
intersecting segments with endpoints on Bε +1 vertical lines
can be stored in a linear space data structure such that a ver-
tical ray-shooting query can be answered in O(B2ε +logB K)
I/Os. Updates can be performed in amortized O(logB K)
I/Os. The data structure can be constructed in O(K/B)
I/Os, provided the K segments are given in O(B2ε) sorted
multislab lists.

Note that when B2ε = O(logB K) the query bound in
Lemma 4 is O(logB K) I/Os.

3.3 Deletion-only structure
In this section we describe a structure that supports I/O-

efficient ray-shooting queries and deletions on a set M of
K segments in the plane with endpoints on Bε + 1 vertical
lines, where 0 < ε ≤ 1. In Section 3.4 we will use this
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Figure 4: Deletion-only structure. The numbers next to the segments are the ranks of the segments in the
sorted list L. The shaded areas show the blocking of L into 3 blocks. The thick lines are samples for the
slabs. Note that segment 7 is sampled twice.

structure to develop a fully-dynamic structure for the case
where logB K = O(B2ε).

Our structure utilizes a partial order on non-intersecting
segments in the plane [6].

Definition 1. A segment x in the plane is above a seg-
ment y in the plane, y ≺ x, if there exists a vertical line λ
intersecting both x and y such that the intersection between
λ and x is above the intersection between λ and y.

Two segments are incomparable if they cannot be inter-
sected by the same vertical line. The segment sorting prob-
lem is the problem of extending the partial order ≺ to a to-
tal order. Arge et al. [7, Lemma 3] showed how to solve the
segment sorting problem on K segments in O(K

B
logM/B

K
B

)
I/Os.

Let L be the sorted list of segments in M stored in a list
of blocks. The sorted order remains valid under deletions
of segments from M. In fact, we will let the blocking of
L remain unchanged during deletions of segments, that is,
segments are simply deleted from the blocks storing L. For
each slab sk we also generate a list Lk ⊆ L of segments
crossing slab sk, by sampling exactly one segment crossing
slab sk from each block b of L (if existing). If at most Bε

segments in b cross the slab sk we pick the sample arbitrarily.
Note that this way a segment can be sampled for several
slabs (as segment 7 in Figure 4). If more than Bε segments
in b cross the slab sk, we make sure to pick a sample that
is not used as a sample for any other slab. Each Lk list
is represented by a B-tree and we store pointers between
the same segments in Lk and L. Our structure uses linear
space, since the total size of the Lk lists is O(K

B
Bε). Using

the I/O-efficient segment sorting algorithm [7] it is easy to
construct the structure in O(K

B
logM/B

K
B

) I/Os.
To perform a vertical ray-shooting query we first find the

slab sk containing the query point p using O(logB K) I/Os.
Next we use the B-tree on Lk to find the answer x to the
query with respect to the segments in Lk in O(logB K) I/Os.
Finally, we answer the query with respect to the segments
in L in an additional O(1) I/Os simply by inspecting the
segments in the blocks of L containing x and the predecessor
of x in Lk. Refer to Figure 4. In total we answer the query
in O(logB K) I/Os.

To delete a segment x in block b of L we simply delete x
from b and from each list Lk where x appears as a sample,
while replacing x in Lk with a new sample segment from b
crossing sk (if existing). If at most Bε segments in b cross
sk we pick the sample arbitrarily; otherwise we make sure
to pick a segment that is not used as a sample for any other
slab.

We now analyze the cost of performing d deletions on our
structure. To bound the total number of updates to the Lk

lists during the deletions we need the following two obser-
vations: 1) a sampled segment in a list Lk remains sampled
until the segment is deleted from the structure; 2) if a seg-
ment x in a block b is used as a sample for several slabs, at
most one slab sk can have more than Bε segments in b that
span slab sk. The latter follows from the fact that we never
sample a segment for a slab if the segment is already a sam-
ple for another slab and there are more than Bε alternative
segments to sample from. A sampled segment x from block
b for slab sk is now denoted a sparse sample if at most Bε

segments in block b span slab sk. By the second observation
above, a sequence of d deletions can at most delete d sam-
ples that are not sparse samples. Furthermore, during the
sequence of deletions each of the O(K/B) blocks can at most
have Bε distinct sparse samples for each of the Bε slabs. It
follows that the total number of samples that need to be
updated during a sequence of d deletes is O(d + K

B
BεBε).

Since each update to an Lk list requires an update to the
corresponding B-tree using O(logB K) I/Os, the d deletions
require a total of O((d + K

B
B2ε) logB K) I/Os

Lemma 5. For a constant 0 < ε ≤ 1, a set of K non-
intersecting segments with endpoints on at most Bε + 1
vertical lines can be maintained in a linear space data
structure under deletion of segments, such that vertical
ray-shooting queries can be answered in O(logB K) I/Os.
The construction of the structure and d deletions take
O(K

B
logM/B(K/B) + (d + K

B
B2ε) logB K) I/Os in total.

3.4 Case (ii) logB K = O(B2ε)

In this section we describe a structure for maintaining a
set M of K non-intersecting segments in the plane with
endpoints on Bε +1 vertical lines, for logB K = O(B2ε) and



0 < ε ≤ 1/5, such that vertical ray-shooting queries can be
answered I/O-efficiently.

Our structure uses the deletion-only structure described in
Section 3.3. For the case logB K = O(B2ε) and 0 < ε ≤ 1/5
we can restate the I/O bounds of Lemma 5 as follows:

Lemma 6. For a constant 0 < ε ≤ 1/5 and logB K =
O(B2ε), a set of K non-intersecting segments with endpoints
on at most Bε+1 vertical lines can be maintained in a linear
space data structure, such that vertical ray-shooting queries
can be answered in O(logB K) I/Os and such that deletions
can be performed in amortized O(logB K) I/Os. The struc-
ture can be constructed in amortized O(K/Bε) I/Os.

The (preprocessing) bound of Lemma 6 follows from the
following derivation:

O

„

K

B
logM/B(K/B) +

K

B
B2ε logB K

«

= O

„

K

B
logB K · log2 B +

K

B
B4ε

«

= O

„

K

B
B2ε · Bε +

K

B1−4ε

«

= O

„

K

B1−4ε

«

= O

„

K

Bε

«

.

To obtain our structure we use the external version of
the logarithmic method described [6]. More precisely, we
partition M into O(logB K) sets S0, S1, S2, . . ., such that
|Si| ≤ B1+iε, and store each set Si in the deletion-only
structure of Section 3.3. We will ensure that the number of
deletion-only structures is always O(logB K). However, in
order to be able to efficiently answer the same ray-shooting
query on all the deletion-only structures (i.e., on the sets Si)
simultaneously, we slightly modify the deletion-only struc-
tures. More precisely, for each slab sk we replace the B-trees
on the Lk lists of all O(logB K) deletion-only structures with
the linear space structure of Lemma 3 (Section 3.1) for si-
multaneously searching in the O(logB K) = O(B2ε) Lk lists;
we can do so since we have a total order on the segments in
the Lk lists (the order of the intersections between the seg-
ments and bℓ) and by choosing c = 1−2ε. The overall space
use of our structure is linear, since each of the deletion-only
structures (Lemma 5) and simultaneous searching structures
(Lemma 3) use linear space.

To answer a vertical ray-shooting query we first find the
slab sk containing the query point p using O(logB K) I/Os.
Next we use the simultaneous searching structure for slab sk

to answer the query in the Lk list of each of the deletion-
only structures using O(logB K) I/Os. Finally, we answer
the query on each of the delete-only structures (using O(1)
I/Os on each of the O(logB K) structures) as described in
Section 3.3. Overall we answer a query in O(logB K) I/Os.

In order to insert a new segment x we first determine the
smallest i such that

Pi
j=0 |Si| < B1+iε. If i = 0 we simply

insert x in S0 by rebuilding it completely. This takes O(1)
I/Os since |S0| ≤ B. Otherwise, we discard the structures
S0, S1, S2, . . . , Si−1 and construct a new deletion-only struc-
ture of size I = 1 +

Pi
j=0 |Sj | ≤ B1+iε for the (new Si) set

{x}∪
S

j≤i Sj . The construction of a new deletion-only struc-
ture for Si also requires updating the simultaneous search

structure on the Lk lists. More precisely, we need to delete
the O( I

B
Bε) segments in the old Lk lists and insert O( I

B
Bε)

new segments in the new lists. Each such update requires
O(logB K) I/Os (Lemma 3). By Lemma 6 we then have
that in total the insertion of segment x requires amortized

O

„

I

Bε
+

I

B
Bε logB K

«

= O

„

I

Bε

«

I/Os (since logB K = O(B2ε) and 0 < ε ≤ 1/5). We charge
this cost to the segments in the sets S0, S1, . . . , Si−1, which
are moved to Si. Since there are at least B1+(i−1)ε ≥ I/Bε

such segments, it is sufficient to charge O(1) I/Os to each of
the 1

2
I/Bε most recently inserted segments in S0, . . . , Si−1.

This way a segment x is only charged when it moves from a
set Sj to a set Si, with j < i, when the number of segments
in M when x was inserted is Kx ≥ 1

2
B1+(i−1)ε. If follows

that x can at most be charged O(logB Kx) times. Thus an
insertion requires amortized O(logB K) I/Os.

To delete a segment we first perform a query to locate
the deletion-only structure storing the segment. Then we
simply delete the segment from the relevant deletion-only
structure as described in Section 3.3. This may result in
many (sampled) segments being deleted from or inserted
into Lk lists. For each such update we also update the cor-
responding simultaneous search structure using O(logB K)
I/Os (Lemma 3). Since we in the analysis of the deletion-
only structure in Section 3.3 already charged O(logB K)
I/Os to each update to a Lk list, it follows that we have
already accounted for the cost of updating the simultane-
ous search structures. Thus a deletion requires amortized
O(logB K) I/Os.

To construct our structure on an initial set M of K seg-
ments we simply create a single additional deletion-only
structure S−1 on M using O(K/Bε) I/Os (Lemma 6). The
structure for S−1 is never merged with the other deletion-
only structures and is queried and updated separately.

Finally, to limit the number of deletion-only structures to
O(logB K) we periodically rebuild the structure when half of
the inserted segments have been deleted. The rebuilding cost
of O(K/Bε) I/Os is charged to the Θ(K) deleted segments.

Lemma 7. For a constant 0 < ε ≤ 1/5 and logB K =
O(B2ε), a set of K non-intersecting segments with endpoints
on Bε + 1 vertical lines can be stored in a linear space data
structure such that a vertical ray-shooting query can be an-
swered in O(logB K) I/Os. Updates can be performed in
amortized O(logB K) I/Os. The structure can be constructed
in amortized O(K/Bε) I/Os.

4. REBALANCING THE BASE TREE
In this section we briefly discuss how to handle updates in

the base interval tree. To do so efficiently, we use a weight
balanced Bε-tree [8] as the Bε-tree used for the base interval
tree T . In such a tree a node v at height h has K = Θ(Bhε)
leaves in its subtree, and if rebalancing (split or fuse) of v (or
rather the reorganization of its secondary structures) can be
performed in O(K) I/Os one obtain an amortized O(logB N)
update bound [8]. Below we discuss how to perform rebal-
ancing of a node v when it splits as a result of insertion of
new segments. Deletions are handled in a standard way by
a periodical global rebuilding of the entire structure.

Consider node v at height h with K = Θ(Bhε) leaves
in its subtree that has to be split into two nodes v1 and
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Figure 5: Splitting a node v along b into two nodes
v1 and v2. The boundary b becomes a new bound-
ary in the parent u.

Figure 6: All solid intervals need to move. Inter-
vals in v containing b move to the parent u and
some intervals move within the parent u.

v2, and let u be the parent of v; the number of segments
stored in the secondary structures of v and u is O(K) and
O(KBε), respectively. Figure 5 illustrates how the slabs
associated with v are affected by the split: All the slabs
on one side of a slab boundary b get associated with v1,
the slab on the other side of b get associated with v2, and b
becomes a new slab boundary in u. As a result, all segments
in the secondary structures of v containing b need to be
inserted into the secondary structures of u. The rest of the
segments need to be stored in the secondary structures of v1

and v2. Furthermore, as a result of the addition of the new
boundary b, some of the intervals in u containing b also need
to be moved to new secondary structures. Refer to Figure 6.

We first consider the segments in the secondary struc-
tures of v and the construction of the secondary structures
for v1 and v2. Since each segment is stored in a left and
a right structure, we can collect all segments containing b
(to be moved to u) from v’s left and right structures. We
first use O(K/B) I/Os to scan through the left structure of
each slab sk in turn, while constructing a list of segments
that should stay in the left structure of sk in v1 or v2 and
a list of segments that should be inserted in the left struc-
ture of the slab in u with right boundary b; the segments
in each list are automatically sorted by the y-coordinate of
their intersection with the right boundary of sk [1]. Note
that the O(Bε) lists of segments that should be inserted in
the new left structure in u are also automatically sorted by
the y-coordinate of the intersection with b. We can there-
fore merge these lists into one list of segments sorted by
y-coordinate of their intersection with b in a binary tree
fashion using O((K/B) log2 Bε) = O(K) I/Os. Similarly, in
O(K) I/Os we can construct a sorted list of segments that
should stay in right structures of each slab sk in v1 or v2, as
well as a sorted list of segments to be inserted in the right
structure of the slab in u with left boundary b. Next we con-
struct the left and right structures for v1 and v2 from the
O(Bε) sorted lists of segments that should not move to u;
we can easily do so in O(K/B) I/Os in total (Lemma 1). To
construct the multislab structures for v1 and v2 we distin-

guish between two cases. In the case when B2ε = O(logB N)
we simply construct the multislab structures from the rele-
vant (already sorted) multislab lists from v in O(K/B) I/Os
(Lemma 4); note that all multislab lists containing b are just
deleted. In the case when logB N = O(B2ε) we simply di-
rectly construct the multislab structures for v1 and v2 from
the relevant segments in v using O(N/Bε) I/Os (Lemma 7).
Overall, we have constructed all the secondary structure of
v1 and v2 in O(K) I/Os as required.

Next consider the segments in u. Some of the O(K) seg-
ments stored in the left structure of the slab in u containing b
(segments with left endpoint in the slab containing b) need
to be moved to a new left structure for the new slab to the
left of b. We therefore scan through the K segments in the
left structure using O(K/B) I/Os and construct a list of
segments that should stay in the old left structure and a list
of segments for the new left slab structure, both sorted by
the y-coordinate of the intersection with the relevant slab
boundary. We merge the first list with the segments col-
lected in v using O(K/B) I/Os, and then we construct the
two left structures in another O(K/B) I/Os (Lemma 1).
Similarly, we can construct the two relevant right structures
from the segments in the right structure of the slab contain-
ing b in u and the segments collected in v in O(K/B) I/Os.
Finally, since u gets a new slab the multislab structure of
u also needs to be reconstructed. Again we distinguish be-
tween two cases. In the case when B2ε = O(logB N) we sim-
ply scan through each of the multislab lists for u and com-
pute the new (sorted) multislab lists in O(KBε/B) = O(K)
I/Os. Then we construct the new multislab structure for u
in O(KBε/B) = O(K) I/Os (Lemma 4). In the case when
logB N = O(B2ε) we directly construct the new multislab
structures from the segments in the old multislab structure
of u using O(KBε/Bε) = O(K) I/Os (Lemma 7). Over-
all, we have constructed all the secondary structures of u in
O(K) I/Os as required.



5. CONCLUSION
We have presented an I/O-efficient dynamic point loca-

tion data structure that stores a planar subdivision of size N
using linear space (O(N/B) disk blocks), and supports in-
sertions and deletions in amortized O(logB N) I/Os and
queries in O(log2

B N) I/Os in the worst-case. This improves
the insertion bound of the earlier best known structure [6].
Our structure is also considerably simpler than previous
structures. It remains open to improve the query time to
O(logB N) I/Os.
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