
A Linear Time Algorithm for the

k Maximal Sums Problem

Gerth Stølting Brodal1, and Allan Grønlund Jørgensen1,⋆

BRICS⋆⋆, MADALGO⋆ ⋆ ⋆, Department of Computer Science,
University of Aarhus, Denmark. E-mail: {gerth,jallan}@daimi.au.dk

Abstract. Finding the sub-vector with the largest sum in a sequence
of n numbers is known as the maximum sum problem. Finding the k

sub-vectors with the largest sums is a natural extension of this, and is
known as the k maximal sums problem. In this paper we design an opti-
mal O(n+k) time algorithm for the k maximal sums problem. We use this
algorithm to obtain algorithms solving the two-dimensional k maximal
sums problem in O(m2 ·n+ k) time, where the input is an m×n matrix
with m ≤ n. We generalize this algorithm to solve the d-dimensional
problem in O(n2d−1 +k) time. The space usage of all the algorithms can
be reduced to O(nd−1 + k). This leads to the first algorithm for the k

maximal sums problem in one dimension using O(n + k) time and O(k)
space.

1 Introduction

To solve the maximum sum problem one must locate the maximal sum sub-
vector of an array A of n numbers. The maximal sub-vector of A is the sub-
vector A[i, . . . , j] maximizing

∑j

s=i A[s]. The problem originates from Ulf Grenan-
der who defined the problem in the setting of pattern recognition [1]. Solutions
to the problem also have applications in areas such as Data Mining [2] and
Bioinformatics [3].

The problem, and an optimal linear time algorithm credited to Jay Kadane,
are described by Bentley [1] and Gries [4]. The algorithm they describe is a

scanning algorithm which remembers the best solution, max1≤i≤j≤t

∑j

s=i A[s],

and the best suffix solution, max1≤i≤t

∑t

s=i A[s], in the part of the input ar-
ray, A[1, . . . , t], scanned so far. Both values are updated in O(1) time in each
step yielding a linear time algorithm using O(1) space.

The problem can be extended to any number of dimensions. In two dimen-
sions the input is an m × n matrix of numbers and the task is to find the
connected sub-matrix with the largest aggregate. The two-dimensional version

⋆ Supported in part by an Ole Roemer Scholarship from the Danish National Science
Research Council.

⋆⋆ Basic Research in Computer Science, research school.
⋆ ⋆ ⋆ Center for Massive Data Algorithmics, a Center of the Danish National Research

Foundation.



Table 1. Previous and new results for the k maximal sums problem

Paper Time complexity

Bae & Takaoka [8] O(n · k)

Bengtson & Chen [9] O(min{k + n log2 n, n
√

k})
Bae & Takaoka [10] O(n log k + k2)

Bae & Takaoka [11] O((n + k) log k)

Lie & Lin [12] O(n log n + k) expected

Cheng et al. [13] O(n + k log k)

Liu & Chao [14]1 O(n + k)

This paper O(n + k)

was the original problem, introduced as a method for maximum likelihood esti-
mations of patterns in digitized images [1].

With m ≤ n, the problem can be solved by a reduction to
(

m
2

)

+ m one-
dimensional problems resulting in an O(m2 ·n) time algorithm. The same reduc-
tion technique can be applied iteratively to solve the problem in any dimension.
But unlike the one dimensional case these algorithms are not optimal. In [5]
and [6] asymptotically faster algorithms for the two-dimensional problem are
described. In [6] Takaoka designed an O(m2n

√

log log m/ log m) time algorithm
by a reduction to (min,+) matrix multiplication [7].

A simple extension of the maximum sum problem is to compute the k largest
sub-vectors for 1 ≤ k ≤

(

n

2

)

+ n. The sub-vectors are allowed to overlap, and

the output is k triples of the form (i, j, sum) where sum =
∑j

s=i A[s]. This
extension was introduced in [8]. The solution for k = 1 described above does
not seem to be extendable in any simple manner to obtain a linear algorithm for
any k. Therefore, different solutions to this extended problem has emerged over
the past few years. These results are summarized in Table 1.

A lower bound for the k maximal sums problem is Ω(n+k), since an adversary
can force any algorithm to look at each of the n input elements and the output
size is Ω(k).

1.1 Results

In this paper we close the gap between upper and lower bounds for the k maximal
sums problem. We design an algorithm computing the k sub-vectors with the
largest sums in an array of size n in O(n + k) time. We also describe algorithms
solving the problem extended to any dimension. We begin by solving the two-
dimensional problem where we obtain an O(m2·n+k) time algorithm for an m×n
input matrix with m ≤ n. This improves the previous best result [13], which was

1 The k maximal sums problem can also be solved in O(n + k) time by a reduction
to Eppstein’s solution for the k shortest paths problem [15] which also makes es-
sential use of Fredericksons heap selection algorithm. This reduction was observed
independently by Hsiao-Fei Liu and Kun-Mao Chao [14].



an O(m2 · n + k log k) time algorithm. This solution is then generalized to solve
the d dimensional problem in O(n2d−1 +k) time, assuming for simplicity that all
sides of the d-dimensional input matrix are equally long. Furthermore we describe
how to minimize the additional space usage of our algorithms. The additional
space usage of the one dimensional algorithm is reduced from O(n + k) to O(k).
The input array is considered to be read only. The additional space usage for the
algorithm solving the two-dimensional problem is reduced from O(m2 · n + k)
to O(n+k) and for the general algorithm solving the d dimensional problem the
space is reduced from O(n2(d−1) + k) to O(nd−1 + k).

The main contribution of this paper is the first algorithm solving the k max-
imal sums problem using O(n + k) time and O(k) space. The result is achieved
by generating a binary heap that implicitly contains the

(

n

2

)

+ n sums in O(n)
time. The k largest sums from the heap are then selected in O(n+k) time using
the heap selection algorithm of Frederickson [16]. The heap is build using partial
persistence [17]. The space is reduced by only processing k elements at time.
The resulting algorithm can be viewed as a natural extension of Kadane’s linear
time algorithm for solving the maximum sum problem introduced earlier.

1.2 Outline of Paper

The remainder of the paper is structured as follows. In Section 2 the overall
structure of our solution is explained. Descriptions and details regarding the
algorithms and data structures used to achieve the result are presented in Sec-
tions 3, 4 and 5. In Section 6 we combine the different algorithms and data
structures completing our algorithm. This is followed by Section 7 where we
show how to use our algorithm to solve the problem in d dimensions. Finally in
Section 8 we explain how to reduce the additional space usage of the algorithms
without penalizing the asymptotic time bounds.

2 Basic Idea and Algorithm

In this paper the term heap denotes a max-heap ordered binary tree. The basic
idea of our algorithm is to build a heap storing the sums of all

(

n

2

)

+n sub-vectors
and then use Fredericksons binary heap selection algorithm to find the k largest
elements in the heap.

In the following we describe how to construct a heap that implicitly stores
all the

(

n
2

)

+ n sums in O(n) time. The triples induced by the
(

n
2

)

+ n sums
in the input array are grouped by their end index. The suffix set of triples
corresponding to all sub-vectors ending at position j we denote Qj

suf, and this

is the set {(i, j, sum) | 1 ≤ i ≤ j ∧ sum =
∑j

s=i A[s]}. The Qj
suf sets can be

incrementally defined as follows:

Qj
suf = {(j, j, A[j])} ∪ {(i, j, s + A[j]) | (i, j − 1, s) ∈ Qj−1

suf }. (1)

As stated in equation (1) the suffix set Qj
suf consists of all suffix sums in Qj−1

suf

with the element A[j] added as well as the single element suffix sum A[j].



H
2
suf

H
3
suf

H
4
suf

H
5
suf

H
6
suf

H
7
suf

∞

∞∞

∞

H
1
suf

∞

∞

Fig. 1. Example of a complete heap H constructed on top of the H
j

suf
heaps. The input

size is 7.

Using this definition, the set of triples corresponding to all
(

n

2

)

+ n sums in

the input array is the union of the n disjoint Qj
suf sets. We represent the Qj

suf

sets as heaps and denote them Hj
suf. Assuming that for each suffix set Qj

suf, a

heap Hj
suf representing it has been build, we can construct a heap H containing

all possible triples by constructing a complete binary heap on top of these heaps.
The keys for the n − 1 top elements is set to ∞ (see Figure 1). To find the k
largest elements, we extract the n−1+k largest elements in H using the binary
heap selection algorithm of Frederickson [16] and discard the n − 1 elements
equal to ∞.

Since the suffix sets contain Θ(n2) elements the time and space required is
still Θ(n2) if they are represented explicitly. We obtain a linear time construction
of the heap by constructing an implicit representation of a heap that contains all
the sums. We make essential use of a heap data structure to represent the Qj

suf

sets that supports insertions in amortized constant time.

Priority queues represented as heap ordered binary trees supporting inser-
tions in constant time already exist. One such data structure is the self-adjusting
binary heaps of Tarjan and Sleator described in [18] called Skew Heaps. The Skew
heap is a data structure reminiscent of Leftist heaps [19, 20]. Even though the
Skew heap would suffice for our algorithm it is able to do much more than we
require. Therefore, we design a simpler heap which we will name Iheap. The es-
sential properties of the Iheap are that it is represented as a heap ordered binary
tree and that insertions are supported in amortized constant time.

We build Hj+1
suf from Hj

suf in O(1) time amortized without destroying Hj
suf

by using the partial persistence technique of [17] on the Iheap. This basically
means that the Hj

suf heaps become different versions of the same Iheap. To make
our Iheap partially persistent we use the node copying technique [17]. The cost
of applying this technique is linear in the number of changes in an update. Since
only the insertion procedure is used on the Iheap, the extra cost of using partial
persistence is the time for copying amortized O(1) nodes per insert operation.
The overhead of traversing a previous version of the data structure is O(1) per
data/pointer access.



T1

T2

T3

T4

T1

T2

T3

T4

5

4

2

9 9

7

5

4

2

Insert 7

Fig. 2. An example of an insertion in the Iheap. The element 7 is compared to 2,4 and
5 in that order, and these elements are then removed from the rightmost path.

3 Binary Heaps

The main data structure of our algorithm is a heap supporting constant time
insertions in the amortized sense. The heap is not required to support operations
like deletions of the minimum or an arbitrary element. All we do is insert elements
and traverse the structure top down during heap selection. We design a simple
binary heap data structure Iheap by reusing the idea behind the Skew heap and
perform all insertions along the rightmost path of the tree starting from the
rightmost leaf.

A new element is inserted into the Iheap by placing it in the first position
on the rightmost path where it satisfies the heap order. This is performed by
traversing the rightmost path bottom up until a larger element is found or the
root is passed. The element is then inserted as a right child of the larger element
found (or as the new root). The element it is replacing as a right child (or as
root) becomes the left child of the inserted element. An insertion in an Iheap is
illustrated in Figure 2. If O(ℓ) time is used to perform an insertion operation
because ℓ elements are traversed, the rightmost path of the heap becomes ℓ − 1
elements shorter. Using a potential function on the length of the rightmost path
of the tree we get amortized constant time insertions for the Iheap. Each element
is passed on the rightmost path only once, since it is then placed on the left-hand
side of element passing it, and never returns to the rightmost path.

Lemma 1. The Iheap supports insertion in amortized constant time.

4 Partial Persistence and H
j

suf
Construction

As mentioned in Section 2 the Hj
suf heaps are build based on equation (1) using

the partial persistence technique of [17] on an Iheap.



Data structures are usually ephemeral, meaning that an update to the data
structure destroys the old version, leaving only the new version available for use.
An update changes a pointer or a field value in a node. Persistent data structures
allow access to any version old or new. Partially persistent data structures allow
updates to the newest version, whereas fully persistent data structures allow
updates to any version. With the partial persistence technique known as node
copying, linked ephemeral data structures, with the restriction that for any node
the number of other nodes pointing to it is O(1), can be made partially persis-
tent [17]. The Iheap is a binary tree and therefore trivially satisfies the above
condition. The amortized cost of using the node copying technique is bounded
by the cost of copying and storing O(1) nodes from the ephemeral structure per
update.

The basic idea of applying node copying to the Iheap is the following (see [17]
for further details). Each persistent node contains one version of each information
field in an original node, but it is able to contain several versions of each pointer
(link to other node) differentiated by time stamps (version numbers). However,
there are only a constant number of versions of any pointer, why each partially
persistent Iheap node only uses constant space. Accessing relatives of a node in a
given version is performed by finding the pointer associated with the correct time
stamp. This is performed in constant time making the access time in the partially
persistent Iheap asymptotically equal to the access time in an ephemeral Iheap.

According to equation (1), the set Qj+1
suf can be constructed from Qj

suf by

adding A[i + 1] to all elements in Qj
suf and then inserting an element represent-

ing A[i + 1]. To avoid adding A[i + 1] to each element in Qj
suf, we represent

each Qj
suf set as a pair 〈δj , H

j
suf〉, where Hj

suf is a version of a partial persistent

Iheap containing all sums of Qj
suf and δj is an element that must be added to

all elements. With this representation a constant can be added to all elements
in a heap implicitly by setting the corresponding δ. Similar to the way the Qj

suf

sets were defined by equation (1) we get the following incremental construction
of the pair 〈δj+1, H

j+1
suf 〉:

〈δ0, H
0
suf〉 = 〈0, ∅〉 , (2)

〈δj+1, H
j+1
suf 〉 = 〈δj + A[i + 1], Hj

suf ∪ {−δj}〉 . (3)

Let 〈δj , H
j
suf〉 be the latest pair built. To construct 〈δj+1, H

j+1
suf 〉 from this

pair, an element with −δj as key is inserted into Hj
suf. We insert this value,

since δj has not been added to any element in Hj
suf explicitly, and because the

sum A[i+1] that the new element are to represent must be added to all elements
in Hj

suf to obtain Hj+1
suf . Since we apply partial persistence on the heap, Hj

suf

is still intact after the insertion, and a new version of the Iheap with the in-
serted element included has been constructed. Hj+1

suf is this new version and δj+1

is set to δj + A[i + 1]. Therefore, the newly inserted element represents the
sum −δj + δj + A[i + 1] = A[i + 1]. This ends the construction of the new

pair 〈δj+1, H
j+1
suf 〉. Since all sums from Hj

suf gets A[i + 1] added because of the
increase of δj+1 compared to δj and the new element represents A[i + 1] we



conclude that 〈δj+1, H
j+1
suf 〉 represents the set Qj+1

suf . The time needed for con-

structing Hj+1
suf is the time for inserting an element into a partial persistent

Iheap. Since the size of an Iheap node is O(1), by Lemma 1 and the node copy-
ing technique, this is amortized constant time

Lemma 2. The time for constructing the n pairs 〈δj , H
j
suf〉 is O(n).

5 Fredericksons Heap Selection Algorithm

The last algorithm used by our algorithm is the heap selection algorithm of
Frederickson, which extracts the k largest2 elements in a heap in O(k) time.
Input to this algorithm is an infinite heap ordered binary tree. The infinite part is
used to remove special cases concerning the leafs of the tree, and is implemented
by implicitly appending nodes with keys of −∞ to the leafs of a finite tree. The
algorithm starts at the root, and otherwise only explores a node if the parent
already has been explored.

The main part of the algorithm is a method for locating an element, e,
with k ≤ rank(e) ≤ ck for some constant c3. After this element is found the
input heap is traversed and all elements larger than e are extracted. Standard se-
lection [21] is then used to obtain the k largest elements from the O(k) extracted
elements. To find e, elements in the heap are organized into appropriately sized
groups named clans. Clans are represented by their smallest element, and these
are managed in classic binary heaps [22].

By fixing the size of clans to log k one can obtain an O(k log log k) time algo-
rithm as follows. Construct the first clan by locating the ⌊log k⌋ largest elements
and initialize a clan-heap with the representative of this clan. The children of
the elements in this clan are associated with it and denoted its offspring.

A new clan is constructed from a set of log k nodes in O(log k log log k) time
using a heap. However, not all the elements in an offspring set are necessarily
put into such a new clan. The leftover elements are then associated to the newly
created clan and are denoted the poor relatives of the clan.

Now repeatedly delete the maximum clan from the clan heap, construct
two new clans from the offspring and poor relatives, and insert their repre-
sentatives into the clan-heap. After ⌈k/⌊log k⌋⌉ iterations an element of rank at
least k is found, since the representative of the last clan deleted, is the smallest
of ⌈k/⌊log k⌋⌉ representatives. Since 2⌈k/⌊log k⌋⌉ + 1 clans are created at most,
each using time O(log k log log k), the total time becomes O(k log log k).

By applying this idea recursively and then bootstrapping it Frederickson
obtains a linear time algorithm.

Theorem 1 ([16]). The k largest elements in a heap can be found in O(k) time.

2 Actually Frederickson [16] considers min-heaps.
3 The largest element has rank one.



6 Combining the Ideas

The heap constructed by our algorithm is actually a graph because the Hj
suf

heaps are different versions of the same partially persistent Iheap. Also, the
roots of the Hj

suf heaps include additive constants δj to be added to all of their
descendants. However, if we focus on any one version, it will form an Iheap. This
Iheap we can construct explicitly in a top down traversal starting from the root
of this version, by incrementally expanding it as the partial persistent nodes are
encountered during the traversal. Since the size of a partially persistent Iheap
node is O(1), the explicit representation of an Iheap node in a given version can
be constructed in constant time.

However, the entire partially persistent Iheap does not need to be expanded
into explicit heaps, only the parts actually visited by the selection algorithm.
Therefore, we adjust the heap selection algorithm to build the visited parts
of the heap explicitly during the traversal. This means that before any node
in a Hj

suf heap is visited by the selection algorithm, it is build explicitly, and
the newly built node is visited instead. We remark that the two children of an
explicitly constructed Iheap node, can be nodes from the partially persistent
Iheap.

The additive constants associated with the roots of the Hj
suf are also moved

to the expanding heaps, and they are propagated downwards whenever they are
encountered. An additive constant is pushed downwards from node v by adding
the value to the sum stored in v, removing it from v, and instead inserting
it into the children of v. Since nodes are visited top down by Fredericksons
selection algorithm, it is possible to propagate the additive constants downwards
in this manner while building the visited parts of the partially persistent Iheap.
Therefore, when a node is visited by Fredericksons algorithm the key it contains
is equal to the actual sum it represents.

Lemma 3. Explicitly constructing t connected nodes in any fixed version of a

partially persistent Iheap while propagating additive values downwards can be

done in O(t) time.

Theorem 2. The algorithm described in Section 2 is an O(n+k) time algorithm

for the k maximal sums problem.

Proof. Constructing the pairs 〈δj , H
j
suf〉 for i = 1, . . . , n takes O(n) time by

Lemma 2. Building a complete heap on top of these n pairs, see Figure 1,
takes O(n) time. By Lemma 3 and Theorem 1 the result follows.

7 Extension to Higher Dimensions

In this section we use the optimal algorithm for the one-dimensional k maximum
sums problem to design algorithms solving the problem in d dimensions for any
natural number d. We start by designing an algorithm for the k maximal sums
problem in two dimensions, which is then extended to an algorithm solving the
problem in d dimensions for any d.



Theorem 3. There exists an algorithm for the two-dimensional k maximal sums

problem, where the input is an m×n matrix, using O(m2 ·n+k) time and space

with m ≤ n.

Proof. Without loss of generality assume that m is the number of rows and n the
number of columns. This algorithm uses the reduction to the one-dimensional
case mentioned in Section 1 by constructing

(

m
2

)

+m one-dimensional problems.
For all i, j with 1 ≤ i ≤ j ≤ m we take the sub-matrix consisting of the rows
from i to j and sum each column into a single entrance of an array. The array
containing the rows from i to j can be constructed in O(n) time from the array
containing the rows from i to j−1. Therefore, we for each i = 1, . . . , m construct
the arrays containing rows from i to j for j = i, . . . , m in this order.

For each one-dimensional instance we construct the n heaps Hj
suf. These heaps

are then merged into one big heap by adding nodes with ∞ keys, by the same
construction used in the one-dimensional algorithm, and use the heap selection
algorithm to extract the result. This gives (

(

m

2

)

+ m) · (n − 1) +
(

m

2

)

+ m − 1
extra values equal to ∞.

It takes O(n) time to build the Hj
suf heaps for each of the

(

m
2

)

+ m one-
dimensional instances and O(m2 · n + k) time to do the final selection. ⊓⊔

The above algorithm is naturally extended to an algorithm for the d-dimensional k
maximum sums problem, for any constant d. The input is a d-dimensional vec-
tor A of size n1 × n2 × · · · × nd.

Theorem 4. There exists an algorithm solving the d-dimensional k maximal

sums problem using O(n1 ·
∏d

i=2 ni
2) time and space.

Proof. The dimension reduction works for any dimension d, i.e. we can reduce
an d-dimensional instance to

(

nd

2

)

+nd instances of dimension d−1. We iteratively
use this dimension reduction, reducing the problem to one-dimensional instances.
Let Ai,j be the d − 1-dimensional matrix, with size n1 × n2 × · · · × nd−1 and
Ai,j [i1] · · · [id−1] =

∑j

s=i A[i1] · · · [id−1][s].
We obtain the following incremental construction of a d − 1-dimensional in-

stance in the dimension reduction, Ai,j = Ai,j−1 +Aj,j . Therefore, we can build
each of the

(

nd

2

)

+ nd instances of dimension d− 1 by adding
∏d−1

i=1 ni values to
the previous instance. The time for constructing all these instances is bounded
by:

T (1) = 1

T (d) =

((

nd

2

)

+ nd

)

·

(

T (d − 1) +

d−1
∏

i=1

ni

)

,

which solves to O(n1 ·
∏d

i=2 ni
2) for ni ≥ 2 and i = 1, . . . , d. This adds up

to
∏d

i=2(
(

ni

2

)

+ ni) = O(
∏d

i=2 ni
2) one-dimensional instances in total. For each

one-dimensional instance the n1 heaps, Hj
suf, are constructed. All heaps are as-

sembled into one complete heap using n1 ·
∏d

i=2

((

ni

2

)

+ ni

)

−1 infinity keys (∞)
and heap selection is used to find the k largest sums. ⊓⊔



8 Space Reduction

In this section we explain how to reduce the space usage of our linear time
algorithm from O(n + k) to O(k). This bound is optimal in the sense that at
least k values must be stored as output.

Theorem 5. There exists an algorithm solving the k maximal sums problem

using O(n + k) time and O(k) space.

Proof. The original algorithm uses O(n + k) space. Therefore, we only need to
consider the case where k ≤ n. Instead of building all n heaps at once, only k
heaps are built at a time. We start by building the k first heaps, H1

suf , . . . ,Hk
suf,

and find the k largest sums from these heaps using heap selection as in the
original algorithm. These elements are then inserted into an applicant set. Then
all the heaps except the last one are deleted. This is because the last heap
is needed to build the next k heaps. Remember the incremental construction
of Hj+1

suf from Hj
suf defined in equation (3) based on a partial persistent Iheap.

We then build the next k heaps and find the k largest elements as before.
These elements are merged with the applicant set and the k smallest are deleted
using selection [21]. This is repeated until all Hj

suf heaps have been processed.
The space usage of the last heap grows by O(k) in each iteration, ruining the
space bound if it is reused. To remedy this, we after each iteration find the k
largest elements in the last heap and build a new Iheap with these elements using
repeated insertion. The old heap is then discarded. Only the k largest elements
in the last heap can be of interest for the suffix sums not yet constructed, thus
the algorithm remains correct.

At any time during this algorithm we store an applicant set with k elements
and k heaps which in total contains O(k) elements. The time bound remains the
same since there are O(n

k
) iterations each performed in O(k) time. ⊓⊔

In the case where k = 1, it is worth noticing the resemblance between the
algorithm just described and the optimal algorithm of Jay Kadane described
in the introduction. At all times we remember the best sub-vector seen so far.
This is the single element residing in the applicant set. In each iteration we scan
one entrance more of the input array and find the best suffix of the currently
scanned part of the input array. Because of the rebuilding only two suffixes are
constructed in each iteration and only the best suffix is kept for the next iteration.
We then update the best sub-vector seen so far by updating the applicant set.
In these terms with k = 1 our algorithm and the algorithm of Kadane are the
same and for k > 1 our algorithm can be seen as a natural extension of it.

The original algorithm solving the two-dimensional version of the problem
requires O(m2 · n + k) space. Using the same ideas as above, we design an
algorithm for the two-dimensional k maximal sums problem using O(m2 ·n + k)
time and O(n + k) space.

Theorem 6. There exists an algorithm for the k maximal sums problem in two

dimensions using O(m2 ·n+k) time where m ≤ n and O(n+k) additional space.



Proof. Using O(n) space for a single array we iterate through all
(

m

2

)

+ m one-
dimensional instances in the standard reduction creating each new instance from
the last one in O(n) time. We only store in memory

⌈

k
n

⌉

instances at a time.

We start by finding the k largest sub-vectors from the first
⌈

k
n

⌉

instances
by concatenating them into a single one-dimensional instance separated by −∞
values and use our one-dimensional algorithm. No returned sum will contain
values from different instances because that would imply that the sum also in-
cluded a −∞ value. The k largest sums are saved in the applicant set. We then
repeatedly find the k largest from the next

⌈

k
n

⌉

instances in the same way and
update the applicant set in O(k) time using selection. When all instances have
been processed the applicant set is returned.

If k ≤ n we only consider one instance in each iteration. The k largest
sums from this instance is found and the applicant set is updated. This can
all be done in O(n + k) = O(n) time using the linear algorithm for the one-
dimensional problem and standard selection. There are

(

m
2

)

+ m iterations re-
sulting in an O(m2 · n) = O(m2 · n + k) time algorithm.

If k > n each iteration considers
⌈

k
n

⌉

≥ 2 instances. These instances are

concatenated using
⌈

k
n

⌉

− 1 extra space for the ∞ values. The k largest sums
from these instances are found from the concatenated instance using the linear
one-dimensional algorithm in O((

⌈

k
n

⌉

· n) + k) = O(k) time. The number of

iterations is (
(

m

2

)

+ m)/
⌈

k
n

⌉

≤ (
(

m

2

)

+ m) · n
k
, leading to an O(m2 · n + k) time

algorithm.
For both cases the additional space usage is at most O(n + k) at any point

during the iteration since only the applicant set,
⌈

k
n

⌉

instances, and
⌈

k
n

⌉

− 1
dummy values are stored in memory at any one time. ⊓⊔

The above algorithm is extended naturally to solve the problem for d dimensional
inputs of size n1 × n2 × · · · × nd.

Theorem 7. There exists an algorithm solving the d-dimensional k maximal

sums problem using O(n1 ·
∏d

i=2 ni
2) time and O(

∏d−1
i=1 ni + k) additional space.

Proof. As in Theorem 4, we apply the dimension reduction repeatedly, using d−1
vectors of dimension 1, 2, . . . , d − 1 respectively, to iteratively construct each
of the

∏d

i=2(
(

ni

2

)

+ ni) = O(
∏d

i=2 ni
2) one-dimensional instances. Every time

a d − 1-dimensional instance is created we recursively solve it. Again only ⌈ k
n1

⌉
one-dimensional instances and the applicant set is kept in memory at any one
time and the algorithm proceeds as in the two-dimensional case. The space
required for the arrays is

∑d−1
i=1

∏i

j=1 nj = O(
∏d−1

i=1 ni) with ni ≥ 2 for all i. ⊓⊔

References

1. Bentley, J.: Programming pearls: algorithm design techniques. Commun. ACM
27(9) (1984) 865–873

2. Fukuda, T., Morimoto, Y., Morishita, S., Tokuyama, T.: Data mining with opti-
mized two-dimensional association rules. ACM Trans. Database Syst. 26(2) (2001)
179–213



3. Allison, L.: Longest biased interval and longest non-negative sum interval. Bioin-
formatics 19(10) (2003) 1294–1295

4. Gries, D.: A note on a standard strategy for developing loop invariants and loops.
Sci. Comput. Program. 2(3) (1982) 207–214

5. Tamaki, H., Tokuyama, T.: Algorithms for the maximum subarray problem based
on matrix multiplication. In: Proceedings of the ninth annual ACM-SIAM sym-
posium on Discrete algorithms, Philadelphia, PA, USA, Society for Industrial and
Applied Mathematics (1998) 446–452

6. Takaoka, T.: Efficient algorithms for the maximum subarray problem by distance
matrix multiplication. Electr. Notes Theor. Comput. Sci. 61 (2002)

7. Takaoka, T.: A new upper bound on the complexity of the all pairs shortest path
problem. Inf. Process. Lett. 43(4) (1992) 195–199

8. Bae, S.E., Takaoka, T.: Algorithms for the problem of k maximum sums and a vlsi
algorithm for the k maximum subarrays problem. In: 7th International Symposium
on Parallel Architectures, Algorithms, and Networks (I-SPAN 2004), 10-12 May
2004, Hong Kong, SAR, China, IEEE Computer Society (2004) 247–253

9. Bengtsson, F., Chen, J.: Efficient algorithms for k maximum sums. In Fleischer, R.,
Trippen, G., eds.: Algorithms and Computation, 15th International Symposium,
ISAAC 2004, Hong Kong, China, December 20-22, 2004, Proceedings. Volume 3341
of Lecture Notes in Computer Science., Springer (2004) 137–148

10. Bae, S.E., Takaoka, T.: Improved algorithms for the k-maximum subarray prob-
lem for small k . In Wang, L., ed.: Computing and Combinatorics, 11th Annual
International Conference, COCOON 2005, Kunming, China, August 16-29, 2005,
Proceedings. Volume 3595 of Lecture Notes in Computer Science., Springer (2005)
621–631

11. Bae, S.E., Takaoka, T.: Improved algorithms for the k-maximum subarray problem.
Comput. J. 49(3) (2006) 358–374

12. Lin, T.C., Lee, D.T.: Randomized algorithm for the sum selection problem. In
Deng, X., Du, D.Z., eds.: Algorithms and Computation, 16th International Sym-
posium, ISAAC 2005, Sanya, Hainan, China, December 19-21, 2005, Proceedings.
Volume 3827 of Lecture Notes in Computer Science., Springer (2005) 515–523

13. Cheng, C.H., Chen, K.Y., Tien, W.C., Chao, K.M.: Improved algorithms for the k

maximum-sums problems. Theoretical Computer Science 362(1-3) (2006) 162–170
14. Chao, K.M., Liu, H.F.: Personal communication (2007)
15. Eppstein, D.: Finding the k shortest paths. SIAM J. Comput. 28(2) (1999) 652–673
16. Frederickson, G.N.: An optimal algorithm for selection in a min-heap. Inf. Comput.

104(2) (1993) 197–214
17. Driscoll, J.R., Sarnak, N., Sleator, D.D., Tarjan, R.E.: Making data structures

persistent. Journal of Computer and System Sciences 38(1) (1989) 86–124
18. Sleator, D.D., Tarjan, R.E.: Self adjusting heaps. SIAM J. Comput. 15(1) (1986)

52–69
19. Crane, C.A.: Linear lists and priority queues as balanced binary trees. Technical

Report STAN-CS-72-259, Dept. of Computer Science, Stanford University (1972)
20. Knuth, D.E.: The art of computer programming, volume 3: (2nd ed.) sorting and

searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA (1998)

21. Blum, M., Floyd, R.W., Pratt, V.R., Rivest, R.L., Tarjan, R.E.: Time bounds for
selection. J. Comput. Syst. Sci. 7(4) (1973) 448–461

22. Williams, J.W.J.: Algorithm 232: Heapsort. Communications of the ACM 7(6)
(1964) 347–348


