
Data Structures for Range Median Queries

Gerth Stølting Brodal and Allan Grønlund Jørgensen

MADALGO ?, Department of Computer Science, Aarhus University, Denmark.
{gerth,jallan}@cs.au.dk

Abstract. In this paper we design data structures supporting range
median queries, i.e. report the median element in a sub-range of an array.
We consider static and dynamic data structures and batched queries. Our
data structures support range selection queries, which are more general,
and dominance queries (range rank). In the static case our data structure
uses linear space and queries are supported in O(log n/ log log n) time.
Our dynamic data structure uses O(n log n/ log log n) space and supports
queries and updates in O((log n/ log log n)2) time.

1 Introduction

The median of a set S of size n is an element in S that is larger than bn−1
2 c

other elements from S and smaller than dn−1
2 e other elements from S. In the

range median problem one must preprocess an input array A of size n into a
data structure that given indices i and j, 1 ≤ i ≤ j ≤ n, a query must return
an index i′, i ≤ i′ ≤ j, such that A[i′] is the median of the elements in the
subarray A[i, j] = [A[i], A[i+ 1], . . . , A[j]]. This problem is considered in [1–5].
In the batched case, the input is an array of size n and a set of k queries,
(i1, j1), . . . , (ik, jk), and the output is the answer to these k queries [6]. Range
median queries are naturally generalized to range selection, given indices i, j
and s, return the index of the s’th smallest element in A[i, j]. A related problem
is range dominance (or range rank) queries, given indices i, j and a value e, return
the number of elements from A[i, j] that are less than or equal to e (dominated
by e). This corresponds to 3-sided range counting queries for a set of points.
Previous Work. Previously, the best linear space data structure supported
range selection queries in O(log n) time [4, 5]. In the dynamic case the only
known data structure uses O(n log n) space and supports updates and queries
in O(log2 n) time [4]. For dominance queries, linear space data structures sup-
porting queries in O(log n/ log log n) time is known, as well as a matching lower
bound [7–9]. In the dynamic case [10] describes an O(n) space data structure
that supports dominance queries in O((log n/ log log n)2) time and updates in
O(log9/2 n/(log log n)2) time. A query lower bound of Ω((log n/ log log n)2) for
data structures with O(logO(1) n) update time is proved in [7].
Our Results. In this paper we use the RAM model of computation with word-
size Θ(log n). Our data structures use the same basic approach as in [4]. We de-
sign a static linear space data structure that supports both range selection and
?

Center for Massive Data Algorithmics, a Center of the Danish National Research Foundation.

range rank queries in O(log n/ log log n) time. This is the best known for range
median data structures using O(n logO(1) n) space, and for range dominance
queries this is optimal. Our dynamic data structure uses O(n log n/ log log n)
space and supports queries and updates in O((log n/ log log n)2) time. For dom-
inance queries this query time is optimal. We prove an Ω(log n/ log log n) time
lower bound on range median queries for data structures that can be updated in
O(logO(1) n) time using a reduction from the marked ancestor problem [11], leav-
ing a significant gap to the achieved upper bound. With our static data structure
we improve the O(n log k + k log n) time bound for the batched range median
problem achieved in [4] to O(n log k+ k log n/ log log n) time. If k >

√
n we con-

struct our static data structure in O(n log n) = O(n log k) time and perform k
queries. This takes O(n log n+ k log n/ log log n) = O(n log k+ k log n/ log log n)
time. If k <

√
n then O(n log k) time is already achieved by [6, 4].

2 Simple Range Selection Data Structure

In this section we describe the data structure of Gfeller and Sanders [4], which
uses linear space and supports queries in O(log n) time. First, we describe a data
structure that uses O(n log n) space and supports queries in O(log n) time. Then
the space is reduced to O(n) using standard techniques. The main idea is the
following. Sort the input elements and place them in the leaves of a binary search
tree. Consider a search for the s’th smallest element in A[i, j]. If the left subtree
of the root contains s or more elements from A[i, j] then it contains the s’th
smallest element from A[i, j]. If not, it is in the right subtree. We augment each
node of the tree with prefix sums such that the number of elements from A[1, j]
contained in the left subtree can be determined for any j, and we use fractional
cascading [12] to avoid a search for the needed prefix sums in each node.

2.1 Basic Structure

Let A = [y1, . . . , yn] be the input array. We sort A and build a complete bi-
nary search tree T that stores the n elements in the leaves in sorted order. We
introduce the following notation. For a node v in T , let Tv denote the subtree
rooted at v, and |Tv| the number of leaves in Tv. The x-predecessor of an index
(x-coordinate) i in Tv is the largest index i′ such that i′ ≤ i and yi′ ∈ Tv. If no
such index exists the x-predecessor of i is zero. The x-rank of an index i in Tv
is the number of elements from A[1, i] contained in Tv. An x-rank is essentially
a prefix sum. If we know the x-rank of i − 1 and j in Tv, we know the number
of elements from A[i, j] in Tv since this is the difference between the two. Notice
that in Tv, the x-rank of j and the x-rank of the x-predecessor of j are equal.

Each node v of T stores two indices for each element yi ∈ Tv in an array Av
of size |Tv|. Let yi ∈ Tv and ri be the x-rank of i in Tv. The ri’th pair of
indices stored in Av is the x-rank of i in the left subtree, and the x-rank of i
in the right subtree of v. These are fractional cascading indices, meaning that
the x-rank of i in the left (right) subtree is the position of the indices stored

for the x-predecessor of i in the left (right) subtree. The arrays are constructed
by scanning A, starting with y1, and inserting the elements, yi, in increasing i
order into T . For each element yi, the search path to yi is traversed, and in each
visited node v the pair of indices for yi are appended to Av. The data structure
can be built in O(n log n) time and uses O(n log n) words of space.
Range Selection Query. A range selection query is given two indices i and j,
and an integer s, where 1 ≤ i ≤ j ≤ n, and must return the s’th smallest element
in A[i, j]. In a node v of T the search is guided using the x-ranks stored for the
x-predecessor of i− 1 and j in Tv. In the root this is the i− 1’th and j’th pair
stored in the root’s array. By subtracting the x-ranks for the left subtree we
learn how many elements, s′, from A[i, j] the left subtree of v contains. If s ≤ s′
the search continues in the left subtree. Otherwise, we set s = s−s′ and continue
the search in the right subtree. Notice that each step learns the x-ranks of i− 1
and j in the children nodes, which are needed to lookup the indices stored for
the x-predecessors of i− 1 and j in the subsequent step. A query takes O(log n)
time since each step takes constant time. Given indices i and j in a range median
query we return the s = b j−i2 c+1’th smallest element in A[i, j]. Given indices i, j
and a value e in a range rank query, we do a predecessor search for e in T : In
each step where the search continues to the right child, the number of elements
from A[i, j] in the left subtree is computed as above, and these are added up.
When a leaf is reached this sum is the rank of e in A[i, j].

2.2 Getting Linear Space

We reduce the space usage of the data structure to O(n) by replacing the arrays
stored in each node by simple rank and select data structures [13] as follows. In
each node v, the array Av is partitioned into chunks of size log n. The last entry
of each chunk, i.e. every log n’th entry of Av, is stored as before. For the remain-
ing entries of a chunk, one bit is stored, indicating whether the corresponding
element resides in the left or right subtree. These bits are packed in order into
one word, which we denote a direction word. This reduces the space to O(n)
bits per level of T . Even though v no longer stores an x-rank for each element
in Tv, a needed x-rank is easily computed from the stored chunks in constant
time. Let rj be the x-rank of j in Tv, and let j′ = bj/ log nc. The indices stored
in the j′ − 1’th chunk yields the x-rank, rλ, in the left subtree of yλ ∈ Tv. The
first rj − j′ log n bits in the direction word from the j′’th chunk determines how
many elements from A[λ+ 1, j] that reside in the left subtree. The sum of these
is the x-rank of j in the left subtree. The latter is computed using complete
tabulation. The extra table needed for this uses O(n) additional space.

3 Improving Query Time

In this section we generalize the data structure from Section 2 and ob-
tain a linear space data structure that supports range selection queries in
O(log n/ log log n) time. First, we describe a data structure that supports queries

in O(log n/ log log n) time but uses slightly more than O(n) space. Then we re-
duce the space to O(n) by generalizing the ideas from Section 2.2.

3.1 Structure

The data structure is a balanced search tree T storing the n elements from
A = [y1, . . . , yn] in the leaves in sorted order. The fan-out of T is f = dlogε ne for
some constant 0 < ε < 1. The height of T is O(log n/ log f) = O(log n/ log log n).
Each node v ∈ T contains f · |Tv| prefix sums: For each element, yi ∈ Tv, and for
each child index, 1 ≤ ` ≤ f , v stores the number of elements from A[1, i] that
reside in the first ` subtrees of Tv. We denote by ti` such a prefix sum. These
prefix sums are stored in |Tv| bit-matrices, one matrix Mi for each yi ∈ Tv. The
`’th row of bits in Mi is the number ti`. The rows form a non-decreasing sequence
of numbers by construction. The matrices are stored consecutively in an array
Av as above, i.e. Mi is stored before Mj if i < j, and the x-rank of i in Tv defines
the position of Mi in Av. If yj /∈ Tv then v does not store a matrix Mj , but it
is still well defined and equal to the matrix Mj′ , that is stored in v, where j′

is the x-predecessor of j in Tv. Each matrix is stored in two different ways. In
the first copy each row is stored in one word. In the second copy each matrix
is divided into sections of g = blog n/fc columns. The first section contains the
first g bits of each of the f rows, and these are stored in one word. This is the g
most significant bits of each prefix sum stored in the matrix. The second section
contains the last three bits of the first section and then the following g− 3 bits,
and so on. The reason for this overlap of three bits will become clear later. We
think of each section as an f × g bit matrix. For technical reasons, we ensure
that the first column of each matrix only contain zero entries by prepending a
column of zeroes to all matrices before the division into sections.

3.2 Range Selection Query

A query is given indices i, j and s and locates the s’th smallest element in A[i, j].
In each node we consider the matrix M ′ = Mj −Mi−1 (row-wise subtraction).
The `’th row of M ′ is tj`−t

i−1
` , i.e. the number of elements from A[i, j] contained

in the first ` subtrees. We compute the smallest ` such that the `’th row in
M ′ stores a number greater than or equal to s, and this defines the subtree
containing the s’th smallest element in Tv. In the following pages we describe
how to compute ` without explicitly constructing the entire matrix M ′.

The intuitive idea to guide a query in a given node, v, is as follows. Let
K = |Tv ∩ A[i, j]| be the number of elements from A[i, j] contained in Tv. We
consider the section from M ′ containing the dlogKe’th least significant bit of
each row. All the bits stored in M ′ before this section are zero and thus not im-
portant. Using word-level parallelism we find an interval [`1, `2] ⊆ [1, f], where
the g bits of M ′ match the corresponding g bits of s and the following row.
These indices define the subtrees of Tv that can contain the s’th smallest el-
ement in Tv. We then try to determine which of these subtrees contain the

s’th smallest element. First, we consider the children of v defined by the end-
points of the interval, `1 and `2. If neither of these contain the s’th smallest
element in A[i, j], we know that the subtree of Tv containing the s’th smallest
element stores approximately a factor of 2g elements from A[i, j] fewer than Tv,
since the g most significant bits of the prefix sum of the row corresponding
to this subtree are the same as the bits in the preceding row. Stated differ-
ently, the number of elements in this subtree does not influence the g most
important bits of the prefix sum, and thus it must be small. In this case we
determine ` in O(log log n) time using a standard binary search. The point is
that this can only occur O(log n/g) times, and the total cost of these searches is
O(log n log log n/f) = O(log1−ε n log log n) = o(log n/ log log n). In the remain-
ing nodes we use constant time.

There are several technical issues that must be worked out. The most impor-
tant is that we cannot actually produce the needed section of M ′ in constant
time. Instead, we compute an approximation where the number stored in the g
bits of each row of the section is at most one too large when compared to the g
bits of that row in M ′. The details are as follows.

In a node v ∈ T the search is guided using Mpi and Mpj where pi is the
x-predecessor of i− 1 in Tv and pj is the x-predecessor of j in Tv. For clarity we
use Mi−1 and Mj for the description. A query maintains an index c, initially one,
defining which section of the bit-matrices that is currently in use i.e. c defines
the section of M ′ containing the dlogKe’th least significant bit. We maintain
the following invariant regarding the c’th section of M ′ in the remaining subtree:
in M ′, all bits before the c’th section are zero, i.e. the important bits of M ′ are
stored in the c’th section or to the right of it. For technical reasons, we ensure
that the most important bit of the c’th section of M ′ is zero. This is true before
the query starts since the first bit in each row of each stored matrix is zero.

We compute the approximation of the c’th section of M ′ from the c’th section
of Mj and Mi. This approximation we denote wi,j and think of it as a f × g
bit-matrix. Basically, the word containing the c’th section of bits from Mi−1 is
subtracted from the corresponding word in Mj . However, subtracting the c’th
section of g bits of ti−1

` from the corresponding g bits of tj` does not encompass
a potential cascading carry from the lower order bits when comparing the result
with the matching g bits of tj` − t

i−1
` , the `’th row of M ′. This means that in

the c’th section, the `’th row of Mi−1 could be larger than `’th row of Mj . To
ensure that each pair of rows is subtracted independently in the computation of
wi,j , we prepend an extra one bit to each row of Mj and an extra zero bit to
each row of Mi to deal with cascading carries. Then we subtract the c section
of Mi−1 from the c’th section of Mj , and obtain wi,j . After the subtraction we
ignore the value of the most significant bit of each row in wi,j (it is masked out).
After this computation, each row in wi,j contain a number that either matches
the corresponding g bits of M ′, or a number that is one larger. Since the most
important bit of the c’th section of M ′ is zero, we know that the computation
does not overflow. If all bits in wi,j are zero the algorithm never needs to consider

the current section again, and it is skipped in the remaining subtree by increasing
c by one, without breaking the invariant, and wi,j is recomputed.
Searching wi,j. Let sb = s1, . . . , sg be the g bits of s defined by the c’th
section, initially the g most important bits of s. If we had actually computed the
c’th section of M ′ then only rows matching sb and the first row containing an
even larger number can define the subtree containing the s’th smallest element.
However, since the rows can contain numbers that are one to large, we also
consider all rows matching sb + 1, and the first row storing a number even
larger. Therefore, the algorithm locates the first row of wi,j storing a number
greater than or equal to sb and the first row greater than sb + 1. The indices
of these rows we denote `1 and `2, and the subtree containing the s’th smallest
element corresponds to at row between `1 and `2. Subsequently, it is checked
whether the `1’th or `2’th subtree contains the s’th smallest element in Tv using
the first copy of the matrices (where the rows are stored separately). If this is
not the case, then the index of the correct subtree is between `1 + 1 and `2 − 1,
and it is determined by a binary search. The binary search uses the first copy
of the matrices. In the c’th section of M ′, the g bits from the `1 + 1’th row
represents at number that is at least sb−1, and the `2−1’th row a number that
is at most sb + 1. Therefore, the difference between the numbers stored in row
`1−1 and `2−1 in M ′ is at most two. This means that in the remaining subtree,
the c’th section of bits from M ′ (tj`−

i−1
` for 1 ≤ ` ≤ f) is a number between

zero and two. Since the following section stores the last three bits of the current
section, the algorithm safely skips the current section in the remaining subtree,
by increasing c by one, without violating the invariant. We need two bits to
express a number between zero and two, and the third bit ensures that the most
significant bit of the c’th section of M ′ is zero. After the subtree, T`, containing
the s’th smallest element is located s is updated as before, s = s− (tj`−1− t

i−1
`−1).

Let ri−1 = ti−1
` − ti−1

`−1, be the x-rank of i−1 in T`, and rj = tj`− t
j
`−1, the x-rank

of j in T`. In the subsequent node the algorithm uses the ri−1’th and the rj ’th
stored matrix to guide the search. This corresponds to the matrix stored for the
x-predecessor of i− 1 and the x-predecessor of j in T` (fractional cascading).

In the next paragraph we explain how to determine `1 and `2 in constant
time. Thus, if the search continues in the `1’th or `2’th subtree, the algorithm
used O(1) time in the node. Otherwise, a binary search is performed, which takes
O(log f) time, but in the remaining subtree an additional section is skipped. An
additional section may be skipped at most d1 + log n/(g − 3)e = O(f) times.
When the search is guided using the last section there will not be any problems
with cascading carries. This means that the search continues in the subtree
corresponding to the first row of wi,j where the number stored is at least as
large as sb, and a binary search is never performed in this case. We conclude
that a query takes O(log n/ log log n+ f log f) = O(log n/ log log n) time.

Given i, j and e in a rank query we use a linear space predecessor data struc-
ture (van Emde Boas tree [14]) that in O(log log n) time yields the predecessor
ep of e in the sorted order of A. Then, the path from ep to the root in T is
traversed, and during this walk the number of elements from A[i, j] in subtrees

hanging of to the left are added up using the first copy of the bit matrices. The
data structures uses O(nf log n/ log log n) = O(n log1+ε n/ log log n) space.
Determining `1 and `2. The remaining issue is compute `1 and `2. A query
maintains a search word, sw, that contains f independent blocks of the g bits
from s that corresponds to the c’th section. Initially, this is the g most important
bits of s. To compute sw we store a table that maps each g-bit number to a word
that contains f copies of these g bits. After updating s we update sw using a
bit-mask and a table look-up. A query knows wi,j = v1

1 , . . . , v
1
g , . . . , v

d
1 , . . . , v

d
g

and sw which is sb = s1, . . . , sg concatenated f times. The g-bit block v`1, . . . , v
`
g

from wi,j we denote wi,j` and the `’th block of s1, . . . , sg from sw we denote s`w.
We only describe how to find `1, `2 can be found similarly. Remember that `1 is
the index of the first row in wi,j that stores a number greater than or equal to sb.
We make room for an extra bit in each block and make it the most significant.
We set the extra bit of each wi,j` to one and the extra bit of each s`w to zero. This
ensures that wi,j` is larger than s`w, for all `, when both are considered g + 1 bit
numbers. sw is subtracted from wi,j and because of the extra bit, this operation
subtracts s`w from wi,j` , for 1 ≤ ` ≤ f , independently of the other blocks. Then,
all but the most significant (fake) bit of each block are masked out. The first
one-bit in this word reveals the index ` of the first block where wi,j` is at least
as large as s`w. This bit is found using complete tabulation.

3.3 Getting Linear Space

In this section we reduce the space usage of our data structure to O(n) words.
The previous data structure stores a matrix for each element on each level of
the tree, and every matrix uses O(f log n) bits of space. Instead we only store a
matrix for every t = df log ne’th element. In each node, the sequence of matrices
is divided into chunks of size t and only the last matrix of each chunk is explicitly
stored. For each of the remaining elements in a chunk, dlog fe bits are used to
describe in which subtree it resides. The description for d = blog n/dlog fec
elements are stored in one word, which we denote a direction word. Prefix sums
are stored after each direction word summing up all previous directions words
in the chunk, i.e. storing how many elements that was inserted in the first `
subtrees for ` = 1, . . . , f . Since each chunk stores the direction of t elements, at
most df log t/ log ne = O(1) words are needed to store these f prefix sums. We
denote it a prefix word. The data structure uses O(n) words of space.
Range Selection Query. The query works similarly to above. The main differ-
ence is that we do not use the matrices Mi−1 and Mj to compute wi,j since they
are not necessarily stored. Instead, we use two matrices that are stored which
are close to Mi−1 and Mj . The direction and update words enables us to exactly
compute any row of Mj and Mi−1 in constant time. Therefore, the main differ-
ence compared to the previous data structure, is that the potential difference
between wi,j , that we compute, and the c’th section of M ′ is marginally larger,
and for this reason the overlap between blocks is increased to four.

In a node v ∈ T a query is guided as follows. Let ri be the x-rank of i−1 and
rj the x-rank of j in Tv. Let i′ = bri/tc and j′ = brj/tc. The matrices stored

in the i′’th and j′’th chunk respectively are used to guide the search. These
matrices we denote Ma and Mb. Since v stores every t’th matrix from above,
tj` − tb` ≤ t for any 1 ≤ ` ≤ f . If we ignore a potential cascading carry, then
adding tj` − tb` to tb` only affects the last log t = (1 + ε) log log n bits of tb`. This
means that, unless the search is using the last section, each row in the currently
considered section of Mb represents a number that is at most one smaller than
if we had used the corresponding section from Mj . The same is true for Ma.

We can obtain the value of any row in Mj as follows. From the direction and
prefix words from the j′’th chunk we compute for each `, 1 ≤ ` ≤ f , how many
of the first rj − j′t elements represented in the chunk that reside in the first
` children. These are the elements considered in M j but not in M b. Formally,
the p = b(rj − j′t)/dc’th prefix word stores how many of the first pd elements
from the chunk that reside in the first ` children for 1 ≤ ` ≤ f . Using complete
tabulation on the following direction word, we obtain a word storing how many
of the following rj − j′t − pd elements from the chunk that reside in the first `
children for all 1 ≤ ` ≤ f . Adding this to the p’th prefix word, gives for each
1 ≤ ` ≤ f , the difference between the `’th row of Mj and Mb. The difference
between Ma and Mi−1 can be computed similarly. Thus, any row of Mj and
Mi−1, and the last section of Mj and Mi−1 can be computed in constant time.

If the last section is used it is computed exactly in constant time and the
search is guided as above. Otherwise, we compute the difference between each
row in the c’th section of Ma and Mb, yielding wa,b. Since the `’th row, for
1 ≤ ` ≤ f , in the current section of Mb might be one to small compared to
`’th row in the current section of Mj , the `’th row in wa,b may be one to small
compared to the corresponding g bits of M ′. Similarly, each row in wa,b might
also one to the large since the current section of bits from Ma may be one smaller
than in the current section of Mi−1. As above, the computation of wa,b does not
consider cascading carries from lower order bits and for this reason the `’th row
of wa,b may additionally be one to large when compared to the same bits in M ′.
Therefore, the first row of wa,b that is at least sb − 1 and the first row greater
than sb + 2 are located as above. As above, the subtree we are searching for is
defined by a row between these two, and if it is not one of these, a binary search
is used to determine it. In this case, by the same arguments as earlier, each row
in the c’th section of M ′ in the remaining subtree, represents at number between
zero and six. Since we have an overlap of four bits between sections, we safely
move to the next section after every binary search.

Dominance queries are supported similarly to above.

4 Dynamic Range Selection

In this section we briefly sketch how our data structure can be made dynamic.
Our dynamic data structure uses O(n log n/ log log n) space and supports queries
and updates in O((log n/ log log n)2) time, worst case and amortized respectively.
Details will appear in the full paper.

Our data structure maintains a set of points, S = {(xi, yi)}, under insertions
and deletions. A query is given values xl, xr and an integer s and returns the
point with the s’th smallest y value among the points in S with x-value between
xl and xr. We store the points from S in a weight-balanced search tree [15, 16],
ordered by y-coordinate. In each node of the tree we maintain the bit-matrices,
defined in the static structure, dynamically using a weight-balanced search tree
over the points in the subtree, ordered by x-coordinate. The main issue is efficient
generation of the needed sections of the bit-matrices used by queries. The quality
of the approximation is worse than in the static data structure, and we increase
the overlap between sections to O(log log n). Otherwise, a search works as in the
static data structure.

5 Lower Bound for Dynamic Data Structures

In this section we describe a reduction from the marked ancestor problem to
a dynamic range median data structure. In the marked ancestor problem the
input is a complete tree of degree b and height h. An update marks or unmarks
a node of the tree, initially all nodes are unmarked. A query is provided a leaf v
of the tree and must return whether there exist a marked ancestor of v. Let
tq and tu be the query and update time for a marked ancestor data structure.
Alstrup et al. proved the following lower bound trade-off for the problem, tq =
Ω(logn

log(tuw logn)) [11], where w is the word size.
Reduction. Let T denote a marked ancestor tree of height h and degree b. For
each node v in T we associate two pairs of elements, which we denote start-mark
and end-mark. We translate T into an array of size 4|T | by a recursive traversal
of T , where we for each node v outputs its start-mark, then recursively visit each
of v’s children, and then output v’s end-mark. Start-marks are used to mark a
node, and end-marks ensure that markings only influences the answer for queries
in the marked subtree. When a node v is unmarked, start-mark=end-mark=(0,1)
and when v is marked, start-mark is set to (1,1) and end-mark to (0,0).

A marked ancestor query for a leaf v is answered by returning yes if and only
if the range median from the subarray ranging from the beginning of the array
to the start-mark element associated with v is one. If zero nodes are marked,
the array is on the form [0, 1, . . . , 0, 1]. Since the median in any range that can
be considered by a query is zero, any marked ancestor query returns no. If v or
one of its ancestors is marked there will be more ones than zeros in the range
for v, and the query answers yes. A node u that is not an ancestor of v has its
start-mark and end-mark placed either before v’s marks or after v’s marks, and
independently of whether u is marked or not, it contributes and equal number
of zeroes and ones to v’s query range. Since the reduction requires an overhead
of O(1) for both queries and updates we get the following lower bound.

Theorem 1. Any data structure that supports updates in O(logO(1) n) time uses
Ω(log n/ log log n) time to support a range median query.

6 Main Open Problems

There are two main open problems. First, what is the lower bound on the query
time for range selection queries in static O(n logO(1) n) space data structures? We
can prove that any O(n logO(1) n) space data structure needs Θ(log n/ log log n)
time for three-sided range median queries by a reduction from two dimensional
rectangle-stabbing [8]. Furthermore, there is a gap between the upper and lower
bounds for batched range median problem for k = Ω(n1+ε), and the lower
bound [6] is only valid in the comparison model.

References

1. Krizanc, D., Morin, P., Smid, M.H.M.: Range mode and range median queries on
lists and trees. Nord. J. Comput. 12(1) (2005) 1–17

2. Petersen, H.: Improved bounds for range mode and range median queries. In: Proc.
34th Conference on Current Trends in Theory and Practice of Computer Science.
(2008) 418–423

3. Petersen, H., Grabowski, S.: Range mode and range median queries in constant
time and sub-quadratic space. Inf. Process. Lett. 109(4) (2009) 225–228

4. Gfeller, B., Sanders, P.: Towards optimal range medians. In: Proc. 36th Interna-
tional Colloquium on Automata, Languages and Programming. (2009) 475–486

5. Gagie, T., Puglisi, S.J., Turpin, A.: Range quantile queries: Another virtue of
wavelet trees. In: Proc. 16th String Processing and Information Retrieval Sympo-
sium. (2009) 1–6

6. Har-Peled, S., Muthukrishnan, S.: Range medians. In: Proc. 16th Annual European
Symposium on Algorithms. (2008) 503–514

7. Pǎtraşcu, M.: Lower bounds for 2-dimensional range counting. In: Proc. 39th
ACM Symposium on Theory of Computing. (2007) 40–46

8. Pǎtraşcu, M.: (Data) STRUCTURES. In: Proc. 49th Annual IEEE Symposium
on Foundations of Computer Science. (2008) 434–443

9. JáJá, J., Mortensen, C.W., Shi, Q.: Space-efficient and fast algorithms for mul-
tidimensional dominance reporting and counting. In: Proc. 15th International
Symposium on Algorithms and Computation. (2004) 558–568

10. Nekrich, Y.: Orthogonal range searching in linear and almost-linear space. In:
Proc. 10th International Workshop on Algorithms and Data Structures. (2007)
15–26

11. Alstrup, S., Husfeldt, T., Rauhe, T.: Marked ancestor problems. In: Proc. 39th
Annual Symposium on Foundations of Computer Science, Washington, DC, USA,
IEEE Computer Society (1998) 534–543

12. Chazelle, B., Guibas, L.J.: Fractional cascading: I. A data structuring technique.
Algorithmica 1(2) (1986) 133–162

13. Jacobson, G.J.: Succinct static data structures. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA, USA (1988)

14. van Emde Boas, P., Kaas, R., Zijlstra, E.: Design and implementation of an efficient
priority queue. Mathematical Systems Theory 10 (1977) 99–127

15. Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. In: Proc.
4th Annual ACM symposium on Theory of computing. (1972) 137–142

16. Arge, L., Vitter, J.S.: Optimal external memory interval management. SIAM
Journal on Computing 32(6) (2003) 1488–1508

