
Computing the Quartet Distance Between

Evolutionary Trees in Time O(n log2
n)

Gerth Stølting Brodal1,⋆, Rolf Fagerberg1,⋆, and Christian N. S. Pedersen1,⋆

BRICS†, Department of Computer Science, University of Aarhus, Ny Munkegade,
DK-8000 Århus C, Denmark. E-mail: {gerth,rolf,cstorm}@brics.dk

Abstract Evolutionary trees describing the relationship for a set of
species are central in evolutionary biology, and quantifying differences
between evolutionary trees is an important task. One previously pro-
posed measure for this is the quartet distance. The quartet distance
between two unrooted evolutionary trees is the number of quartet topol-
ogy differences between the two trees, where a quartet topology is the
topological subtree induced by four species. In this paper, we present
an algorithm for computing the quartet distance between two unrooted
evolutionary trees of n species in time O(n log2 n). The previous best
algorithm runs in time O(n2).

1 Introduction

The evolutionary relationship for a set of species is commonly described by an
evolutionary tree. This is a rooted tree where the leaves correspond to the species,
and the internal nodes correspond to speciation events, i.e. the points in time
where the evolution has diverged in different directions. The direction of the
evolution is described by the location of the root, which corresponds to the most
recent common ancestor for all the species, and the rate of evolution is described
by assigning lengths to the edges. The true evolutionary tree for a set of species is
rarely known, hence estimating it from obtainable information about the species,
e.g. genomic data, is of great interest. The problem of computationally estimating
aspects of the true evolutionary tree requires a model describing how to use the
available information about the species in question. Given a model, the problem
of estimating certain aspects of the true evolutionary tree is often referred to as
constructing the evolutionary tree in that model. Many models and methods for
constructing evolutionary trees have been presented, see [10, Chap. 17] for an
overview.

An important aspect of the true evolutionary tree is the undirected tree
topology induced by ignoring the location of root and the length of the edges.
Many models and methods are concerned with estimating this tree topology,

⋆ Partially supported by the IST Programme of the EU under contract number IST-
1999-14186 (ALCOM-FT).

† Basic Research in Computer Science, www.brics.dk, funded by the Danish National
Research Foundation.

a

b c

d a

c b

d a

d b

c a

b c

d

Figure 1. The four possible quartet topologies of species a, b, c, and d

usually under the further assumption that all internal nodes have degree three.
We say that such models and methods are concerned with constructing the
unrooted evolutionary tree of degree three for a set of species. For the remainder
of this paper an evolutionary tree denotes an unrooted evolutionary tree of degree
three.

Different models and methods often yield different estimates of the evolution-
ary tree for the same set of species. The same model and method can also give
rise to different evolutionary trees for the same set of species when applied to
different information about the species, e.g. different genes. To study such differ-
ences in a systematic manner, one must be able to quantify differences between
evolutionary trees using well-defined and efficient methods.

One approach for comparing two evolutionary trees is to determine a con-
sensus tree (or forest) that reflects common traits of the two trees, e.g. the
maximum agreement subtree. Much work has been concerned with developing
efficient methods for computing the maximum agreement subtree of two or more
evolutionary trees, see e.g. [2]. Another approach for comparing two evolution-
ary trees is to define a distance measure between two trees and compare the two
trees by computing the distance. Several distance measures have been proposed,
e.g. the symmetric difference metric [12], the nearest-neighbor interchange met-
ric [16], the subtree transfer distance [1], the Robinson and Foulds metric [13],
and the quartet metric [8]. Each distance measure has different properties and
reflects different aspects of biology, e.g. the subtree transfer distance is related
to the number of recombinations between the two sets of species. The quartet
metric has several attractive properties. Bryant et al. in [5] discuss the proper-
ties of the quartet metric and conclude that it does not suffer from drawbacks
of the other distance measures. For example, measures based on transformation
operations, e.g. the subtree transfer distance, do not distinguish between trans-
formations that affect a large number of leaves and transformations that affect
a small number of leaves.

In this paper, we study the quartet metric. For an evolutionary tree, the quar-

tet topology of four species is the topological subtree induced by these species.
In general, the possible quartet topologies of four species are the four shown in
Fig. 1. Of these, the right-most cannot occur if we assume that all internal nodes
have degree three. It is well-known that the complete set of quartet topologies is
unique for a given tree and that the tree can be uniquely recovered from its set
of quartet topologies in polynomial time [6]. If the tree has degree three, then,
as observed in [11], it can be recovered from its set of quartet topologies in time
O(n log n) using methods [4,9,11] for constructing an evolutionary tree in the
experiment model in time O(n log n).

Given two evolutionary trees on the same set of n species, the quartet dis-

tance between them is the number of sets of four species for which the quartet
topologies differ in the two trees. Since there are

(

n
4

)

sets of four species, the
quartet distance can be calculated in time O(n4) by examining the sets one by
one. Steel and Penny in [14] present an algorithm for computing the quartet
distance in time O(n3). Bryant et al. in [5] present an algorithm that computes
the quartet distance in time O(n2). In this paper, we present an algorithm that
computes the quartet distance in time O(n log2 n), making it possible to com-
pare much larger evolutionary trees. Our solution is based on two techniques: the
smaller-half trick, also used by methods for finding tandem repeats in strings,
see e.g. [15], and a data structure related to the data structure for dynamic
expression trees [7].

The rest of the paper is organized as follows. In Sect. 2, we introduce quar-
tets and present our algorithm for computing the quartet distance between two
unrooted evolutionary trees. In Sect. 3, we describe a hierarchical decomposition
of unrooted trees which is an essential part of the data structure used by our
algorithm. In Sect. 4, we present the details of our data structure.

2 The Algorithm

As mentioned, we in this paper by an evolutionary tree mean an unrooted tree
where all nodes are either leaves (i.e. have degree one) or have degree three, and
where the leaves are uniquely labeled by the elements of a set S of species. Let n
denote the size of S.

For an evolutionary tree T , the quartet topology of four species a, b, c, and d
is the topological subtree of T induced by these species. In general, the possible
quartet topologies for species a, b, c, d are the four shown in Fig. 1. Of these,
the right-most does not occur in our setting, due to the assumption about all
internal nodes having degree tree. Hence, the quartet topology is a pairing of
the four species into two pairs, defined by letting a and b be a pair if among the
three paths in T from a to respectively b, c, and d, the path to b is the first to
separate from the others.

Given two evolutionary trees T1 and T2 on the same set S of species, the
quartet distance between the two trees is the number of four-sets {a, b, c, d} ⊆ S,
for which the quartet topologies in T1 and T2 differ. As there are

(

n
4

)

different

four-sets in S, the quartet distance can also be calculated as
(

n
4

)

minus the
number of four-sets for which the quartet topologies in T1 and T2 are identical.
In this paper, we give an algorithm for finding this number in time O(n log2 n).

To facilitate the counting of identical quartet topologies in the two trees,
we view the quartet topology of a four-set {a, b, c, d} as two oriented quartet
topologies given by the two possible orientations of the “middle edge” of the
topology. Figure 2 shows the two oriented quartet topologies arising from one
unoriented quartet topology.

Clearly, the number of identical oriented quartet topologies between the
trees T1 and T2 is twice the number of identical unoriented quartet topologies.

a

b c

d

→

a

b c

d

- +

a

b c

d

�

Figure 2. The two orientations of a quartet topology

a

b c

d

-

v

Figure 3. A generic quartet

The goal of our algorithm is to count identical oriented quartet topologies. For
brevity, we in the rest of this paper let the word quartet denote an oriented
quartet topology of a four-set.

We associate quartets to internal nodes in T1 as follows: Consider the generic
quartet in Fig. 3, where the orientation is from the pair {a, b} to the pair {c, d}.
There is a unique node v in T1 where the paths from a and b to c (and d) meet.
We associate the quartet of Fig. 3 with the node v. This partitions the 2

(

n
4

)

quartets into n − 2 disjoint sets, as there are n − 2 internal nodes in a tree of n
leaves, when all internal nodes have degree three.

For an internal node v in T1, we by the subtrees incident to v mean the three
subtrees which arise if v and its three incident edges are removed from T1. These
are shown in Fig 4, denoted by A, B, and C. The number of quartets associated
with v is given by the expression

(

|A|

2

)

· |B| · |C| +

(

|B|

2

)

· |C| · |A| +

(

|C|

2

)

· |A| · |B| ,

where |T | denotes the number of leaves in subtree T .
The strategy of the algorithm is for each internal node v in T1 to count how

many of the quartets associated with v which also are quartets of T2. The sum
over all nodes in T1 of these counts then gives the required number of identical
quartets in T1 and T2.

To do this, the algorithm colors the elements of S using the three colors A,
B, and C. The coloring is maintained via the data structure described in Sect. 4.
When v is an internal node in T1, we say that the elements of S are colored
according to v if the labels of the leaves of one of the three subtrees incident
to v all have color A, the labels of the leaves of another of the subtrees all have
color B, and the labels of the leaves of the remaining subtree all have color C.

The central feature of the data structure is that if the elements of S are
colored according to a node v in T1, then it can return in constant time the
number of quartets associated with v which also are quartets in T2. The data

A

B

C

v

Figure 4. Subtrees incident to an internal node v

structure also allows the color of an element to be changed in time O(log n),
given a pointer to the element.

The algorithm starts by rooting T1 at an arbitrary leaf. It then calculates the
size |v| of each node v in T1 during a postorder traversal starting at the root,
where |v| denotes the number of leaves below v, and stores this information in
the nodes. It also colors all elements of S by the color C.

The algorithm then calculates the desired sum of the counts for all internal
nodes of T1 in a recursive fashion, starting at the single child of the root of T1.
To achieve the claimed complexity, the algorithm at a node v will recurse first
on its smaller child, then on its larger child, and finally add the count for v to
the sum calculated so far.

In Fig. 5, the algorithm is described in pseudo-code as a recursive procedure
Count(v). A call to Count(v) returns the sum of the counts for the internal nodes
of T1 which are below v. Initially, it is called with v set to the single child of
the root of T1. The two routines Small(v) and Large(v) return the child of v
having smallest, respectively largest, size. The routine NodeCount(v) is a call to
the data structure of Sect. 4, returning the count for the node v. The routine
ColorLeaves(v,X) colors by the color X all elements in the data structure which
are labels of leaves below v in T1. This is done by a traversal of the subtree in
T1 rooted at v. By maintaining bi-directional pointers between elements of S in
the data structure and the leaves in T1 and T2 which they label, this takes time
O(|v| · log n).

Theorem 1. Let T1 and T2 be two unrooted evolutionary trees on the same

set S of species, and let all internal nodes in the trees have degree three. Then

the quartet distance between T1 and T2 can be found in time O(n log2 n).

Proof. We here assume the existence of the data structure discussed above. This
existence is proven in Sect. 4. By induction on the number of calls to Count(v),
it follows that the algorithm above maintains the invariants:

1. At the beginning of the execution of an instance of Count(v), all elements
in S are colored by the color C.

2. At the end of the execution of an instance of Count(v), all elements in S
which are labels of leaves below v in T1 are colored by the color A, and all
other elements in S are colored by the color C.

Procedure Count(v)
if v is a leaf then

color v by the color A
return 0

else

x = Count(Small(v))
ColorLeaves(Small(v), C)
y = Count(Large(v))
ColorLeaves(Small(v), B)
z = NodeCount(v)
ColorLeaves(Small(v), A)
return x + y + z

Figure 5. The algorithm

The invariants imply that when a call to NodeCount(v) takes place, labels of
leaves in the subtree of Small(v) are labeled by the color B, labels of leaves in
the subtree of Large(v) are labeled by the color A, and the remaining elements
are labeled by the color C. In other words, the elements of S are colored according
to v. Correctness of the algorithm follows.

For complexity, note that the work incurred by an instance of Count(v), not
counting recursive calls made during this instance, is O(|Small(v)| · log n). Let
this work be accounted for by charging each leaf below Small(v) in T1 (or v
itself, if it is a leaf) an amount O(log n) of work. For a given leaf, this charging
can only happen at nodes v on the path from the leaf to the root where the
path goes from Small(v) to v. As the size of v is at least twice as large as the
size of Small(v), this can only happen log n times. Hence, each leaf is at most
charged O(log2 n) work in total, and the result follows. ⊓⊔

3 Hierarchical Decomposition

An essential part of the data structure in Sect. 4 is a hierarchical decomposition

of the evolutionary tree T2. Given an unrooted tree T where all nodes have
degree at most three, we in the following describe how to obtain a hierarchical
decomposition of T with logarithmic height. Our decomposition is very similar
to the decompositions used for solving the parallel and dynamic expression tree
evaluation problems [3,7], but in our setting the underlying tree is considered to
be unrooted.

We base our hierarchical decomposition on the notion of components. We
define a component C in T to be one of the following:

(i) (ii) (iii) (iv)

Figure 6. The four possible types of compositions of components

1. A set consisting of a single node of T .

2. A connected subset of the nodes of T , such that at most two nodes in C are
connected by an edge to nodes in T \ C.

In other words, a component is either a set consisting of a single node, or
a connected subset of nodes such that the cut defined by the subset is of size
at most two. The external edges of a component C of T are the edges in T
connecting nodes in C and T \ C. The degree of a component is the number of
external edges of the component. By the second condition above, a component
with two or more nodes can have degree at most two.

Each node of T (including leaves) constitutes a component of type 1. Com-
ponents of type 2 are formed as the union of two adjacent components C′ and
C′′, where C′ and C′′ are said to be adjacent if there exist an edge (u, v) in T
such that u ∈ C′ and v ∈ C′′. We call such a union a composition. We only
allow the four compositions depicted in Fig. 6. Nodes represent contracted com-
ponents and ovals represent component compositions. Types (i), (iii), and (iv)
are the cases where a component with degree one is composed with a component
of degree three, two, and one respectively. Type (ii) is the case where two com-
ponents with degree two are composed into a new component with degree two.
Note that each composition of two components corresponds to a unique edge in
the tree T , namely the edge connecting the two components.

A hierarchical decomposition of an unrooted tree T is a rooted binary tree,
in the following denoted H(T). Each node of H(T) represents a component
in T . Leaves of H(T) represent components of type 1, and there is a one-to-one
mapping between these components and the leaves of H(T). An internal node v
of H(T) represent a component of type 2 formed by the composition of the two
components represented by the children of v.

Lemma 1. For every unrooted tree with n nodes and all nodes having degree at

most three, there exists a hierarchical decomposition tree with height O(log n).
The decomposition can be computed in time O(n).

Proof. Given a tree with n nodes, we construct a hierarchical decomposition
bottom-up in O(log n) steps. Initially we start with each node being a component

by itself. In each step we greedily select an arbitrary maximal set of independent
compositions, using time linear in the number of remaining components.

Let n denote the number of components at the beginning of a step. A com-
position of type (iv) will occur if and only if n = 2. If n ≥ 3, let n1, n2, and n3

denote the number of components of degree one, two and three respectively. We
have n = n1+n2+n3 and n3 = n1−2. Since n ≥ 3, there are n1 possible compo-
sitions of types (i) and (iii). We observe that the only edges not corresponding
to legal compositions are edges connecting a component of degree three with
a component of degree two or three. Since there are at most 3n3 such edges,
the number of possible compositions is at least n − 1 − 3n3 = n − 3n1 + 5. If
n1 < n/4, then this bound is at least n/4. It follows that there are always at least
n/4 possible compositions. Since each possible composition can conflict with at
most two other compositions, any maximal set of non-conflicting compositions
has size at least n/12.

After k steps, at most n(11/12)k components will remain. In particular, at
most one component will remain after at most ⌈log12/11 n⌉ steps, so the height
of the hierarchical decomposition tree is bounded by ⌈log

12/11
n⌉. Since the

number of components decreases geometrically for each step, the total time be-
comes O(n). ⊓⊔

4 Counting Quartets in Components

Given a coloring of the elements in S with the colors A, B, and C, and given a
quartet oriented as in Fig. 3 from the pair {a, b} to the pair {c, d}, we say that
the quartet is compatible with the coloring if a and b have different colors, and
c and d both have the remaining color. Let T be an evolutionary tree for S, and
let H(T) be the hierarchical decomposition tree for T , as defined in Sect. 3.

Lemma 2. When S is colored according to a choice of v in T , then the set of

quartets compatible with the coloring is exactly the quartets associated with v.

Proof. Follows from the definitions of quartets being compatible with a coloring
and quartets being associated with a node. ⊓⊔

We now describe how to decorate the nodes of H(T) with information such
that the number of quartets of T which are compatible with a given coloring
of S can be returned in constant time. Furthermore, for a given coloring, the
information can be generated in O(n) time, and if one element of S changes
color, the information can be updated in time O(log n).

For each node of H(T), we store a tuple (a, b, c) of integers and a function F .
Recall that a node in H(T) represents a component in T . The integers a, b, and c
of the tuple are the number of elements at the leaves contained in this component
which are colored A, B, and C, respectively. A component has k external edges
for k between zero and three (the case of zero external edges occurs only at the
root of H(T)). The function F has three variables for each of the external edges
of the component. For a component with at least one external edge, we number

these edges arbitrarily from 1 to k and denote the three variables corresponding
to edge i by ai, bi, and ci. If an external edge were removed from T , two subtrees
of T would arise, of which one does not contain the component in question. We
call this subtree the subtree induced by the external edge. The variables ai,
bi, and ci denote the number of elements in leaves from the subtree induced
by edge i which are colored A, B, and C, respectively. Finally, F states, as a
function of the variables ai, bi, and ci for 1 ≤ i ≤ k, the number of the quartets
which are both associated (in the sense defined in Sect. 2) with nodes in the
component and are compatible with the given coloring. It will turn out that F
is actually a polynomial of total degree at most four.

The root of H(T) represents a component which comprises the entire tree T ,
i.e. the component has no external nodes, so the function F stored there is
actually a constant. Hence, the number of quartets of T which are compatible
with a given coloring of S is part of the information stored at the root.

Lemma 3. The tree H(T) can be decorated with the information described above

in time O(n).

Proof. The information is computed in a bottom up fashion during a traversal
of H(T). We first describe how the information for leaves in H(T) is generated,
i.e. for nodes representing single node components. Recall that a node in T is
either a leaf and has degree one, or is an internal node and has degree three.

For a component consisting of a single leaf with an element colored A, B,
or C, the tuple is (1, 0, 0), (0, 1, 0), and (0, 0, 1), respectively. The function F is
identically zero, as quartets are only associated with internal nodes of T , not
with leaves of T .

For a component consisting of a single degree three node u, the tuple is
(0, 0, 0), as no leaves of T are contained in the component. The function F should
count the number of quartets which are both compatible with the coloring and
associated with u in T . A quartet oriented from the pair {a, b} to the pair {c, d}
fulfills this requirement precisely when c and d are contained in one of the three
subtrees induced by the external edges of the component, and they have the
same color, and a and b each are in one of the remaining two induced subtrees
and each have one of the remaining two colors. For the case that c and d are
in the subtree induced by edge number one and have color A, the number of
quartets fulfilling this is

(

a1

2

)

· (b2c3 + b3c2) .

Summing over all 3 · 3 = 9 choices of the induced subtree and color for c
and d, we get:

F (a1, b1, c1, a2, b2, c2, a3, b3, c3)

=
(

a1

2

)

· (b2c3 + b3c2) +
(

a2

2

)

· (b1c3 + b3c1) +
(

a3

2

)

· (b2c1 + b1c2)

+
(

b1

2

)

· (a2c3 + a3c2) +
(

b2

2

)

· (a1c3 + a3c1) +
(

b3

2

)

· (a2c1 + a1c2)

+
(

c1

2

)

· (b2a3 + b3a2) +
(

c2

2

)

· (b1a3 + b3a1) +
(

c3

2

)

· (b2a1 + b1a2)

We now turn to the generation of the information stored in the internal
nodes of H(T). Consider the composition of two components C′ and C′′. Let
(a′, b′, c′) and F ′, and (a′′, b′′, c′′) and F ′′ be the information stored at the nodes
representing the components C′ and C′′. The information stored at the node
representing the composition C of C′ and C′′ is (a′ + a′′, b′ + b′′, c′ + c′′) and F ,
where F depends on the type of composition. If the component composition
is of type (ii), we consider the case where the numbering of external edges
of components is such that the first external edge of C′ and C′′ is the edge
connecting C′ and C′′, and the second external edge of C′ is the first external
edge of C, and the second external edge of C′′ is the second external edge of C.
The remaining cases of numbering of external edges are obtained by appropriate
changes of the arguments to F ′ and F ′′.

F (a1, b1, c1, a2, b2, c2)

= F ′(a2 + a′′, b2 + b′′, c2 + c′′, a1, b1, c1)

+ F ′′(a1 + a′, b1 + b′, c1 + c′, a2, b2, c2)

Component compositions of type (iii) and (iv) are identical to type (ii),
except that the definition of F is simpler. For type (iii) we have (assuming
that C′′ is the component of degree one)

F (a1, b1, c1) = F ′(a′′, b′′, c′′, a1, b1, c1) + F ′′(a1 + a′, b1 + b′, c1 + c′) ,

and for type (iv) we have

F = F ′(a′′, b′′, c′′) + F ′′(a′, b′, c′) .

Note that for type (iv) compositions, F is a constant.
Finally, we for type (i) compositions get the following expression for F , as-

suming C′ has degree one and the first and second external edges of C are the
second and third external edges of C′′, respectively.

F (a1, b1, c1, a2, b2, c2)

= F ′(a1 + a2 + a′′, b1 + b2 + b′′, c1 + c2 + c′′)

+ F ′′(a′, b′, c′, a1, b1, c1, a2, b2, c2)

By structural induction on the definition of the F functions stored at com-
ponents, it follows that F is always a polynomial of total degree at most four.

Polynomials with total degree at most four and at most nine variables can be
stored in constant space by storing the coefficients of the polynomials, and they
can be manipulated in constant time, e.g. when adding or composing two poly-
nomials. We conclude that for a component C which is the composition of two
components C′ and C′′, the information to be stored at C can be computed in
constant time, provided that the information stored at C′ and C′′ is known. It
follows that H(T) can be decorated in time O(n). ⊓⊔

Lemma 4. The decoration of H(T) can be updated in O(log n) time when the

color of an element in S changes.

Proof. From the proof of Lemma 3 we know that the decoration of a node
in H(T) only depends on the decoration of the children of the node in H(T),
i.e. the only decorations that need to be updated in H(T) while changing the
color of an element in S are the ancestors of the leaf in H(T) corresponding to
the element. Since H(T) has height O(log n) and the decoration of a node takes
constant time to compute knowing the decoration of the children, it follows that
the decoration of H(T) can be updated in time O(log n). ⊓⊔

Lemma 5. When S is colored according to a choice of v in T1, then the set of

quartets compatible with the coloring is exactly the quartets associated with v.

Proof. Follows from the definitions of the colors and compatible quartets. ⊓⊔

Corollary 1. If the above construction is done with T2 for T , and the coloring

of S is according to a choice of v in T1, then the quartets in T2 compatible with

the coloring are exactly the quartets which are in both T1 and T2. Furthermore,

the number of such quartets is exactly the value of the constant function F stored

at the root of H(T2).

References

1. B. L. Allen and M. Steel. Subtree transfer operations and their induced metrics
on evolutionary trees. Annals of Combinatorics, 5:1–13, 2001.

2. A. Amir and D. Keselman. Maximum agreement subtree in a set of evolutionary
trees: Metrics and efficient algorithms. SIAM Journal on Computing, 26(6):1656–
1669, 1997.

3. R. P. Brent. The parallel evaluation of general arithmetic expressions. Journal of
the ACM, 21(2):201–206, Apr. 1974.

4. G. S. Brodal, R. Fagerberg, C. N. S. Pedersen, and A. Östlin. The complexity
of constructing evolutionary trees using experiments. In Proc. 28th International
Colloquium on Automata, Languages, and Programming, volume 2076 of Lecture
Notes in Computer Science, pages 140–151. Springer-Verlag, 2001.

5. D. Bryant, J. Tsang, P. E. Kearney, and M. Li. Computing the quartet distance
between evolutionary trees. In Proceedings of the Eleventh Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 285–286, N.Y., Jan. 9–11 2000. ACM
Press.

6. P. Buneman. The recovery of trees from measures of dissimilairty. Mathematics
in Archeological and Historial Sciences, pages 387–395, 1971.

7. R. F. Cohen and R. Tamassia. Dynamic expression trees. Algorithmica, 13(3):245–
265, 1995.

8. G. Estabrook, F. McMorris, and C. Meacham. Comparison of undirected phyloge-
netic trees based on subtrees of four evolutionary units. Syst. Zool., 34(2):193–200,
1985.

9. M. Farach, S. Kannan, and T. J. Warnow. A robust model for finding optimal
evolutionary trees. Algorithmica, 13(1/2):155–179, 1995.

10. D. Gusfield. Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

11. A. Lingas, H. Olsson, and A. Östlin. Efficient merging, construction, and mainte-
nance of evolutionary trees. In Proc. 26th Int. Colloquium on Automata, Languages
and Programming, volume 1644 of Lecture Notes in Computer Science, pages 544–
553. Springer-Verlag, 1999.

12. D. F. Robinson and L. R. Foulds. Comparison of weighted labelled trees. In
Combinatorial mathematics, VI (Proc. Sixth Austral. Conf., Univ. New England,
Armidale, 1978), Lecture Notes in Mathematics, pages 119–126. Springer, Berlin,
1979.

13. D. F. Robinson and L. R. Foulds. Comparison of phylogenetic trees. Math. Biosci.,
53(1-2):131–147, 1981.

14. M. Steel and D. Penny. Distribution of tree comparison metrics–some new results
syst. Syst. Biol., 42(2):126–141, 1993.

15. J. Stoye and D. Gusfield. Simple and flexible detection of contiguous repeats using
a suffix tree. In Proc. 9th Annual Symposium on Combinatorial Pattern Match-
ing, volume 1448 of Lecture Notes in Computer Science, pages 140–152. Springer-
Verlag, 1998.

16. M. S. Waterman and T. F. Smith. On the similarity of dendrograms. Journal of
Theoretical Biology, 73:789–800, 1978.

