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Abstract

We present a parallel priority data structure that im-
proves the running time of certain algorithms for prob-
lems that lack a fast and work-cfficient parallel solu-
tion. As a main application, we give a parallel imple-
mentation of Dijkstra’s algorithm which runs in O(n)
time while performing O(mlogn) work on a CREW
PRAM. This 1s a logarithmic factor improvement for
the running time compared with previous approaches.
The main feature of our data structure is that the op-
erations needed tn each iteration of Digkstra’s algorithm
can be supported in O(1) time.

1 Introduction

Developing work-efficient parallel algorithms for
graph and network optimization problems continues to
be an important area of research in parallel computing.
Despite much effort a number of basic problems have
tenaciously resisted a very fast (i.e., NC) parallel solu-
tion that is simultaneously work-efficient. A notorious
example is the single-source shortest path problem.

The best sequential algorithm for the single-source
shortest path problem on directed graphs with non-
negative real-valued edge weights is Dijkstra’s algo-
rithm [5]. For a given digraph G = (V, E) the algo-
rithm iteratively steps through the set of vertices, in
each iteration fixing the distance of a vertex for which
a shortest path has been found, while maintaining in
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the process, for each of the remaining vertices, a tenta-
tive distance from the source. For an n-vertex, m-edge
digraph the algorithm can be implemented to run in
O(m + nlogn) operations by using efficient priority
queues like Fibonacci heaps [7] for maintaining tenta-
tive distances, or other priority queue implementations
supporting deletion of the minimum key element in
amortized or worst-case logarithmic time, and decrease
key in amortized or worst-case constant time [3, 6, 10].

The single-source shortest path problem is in NC
(by virtue of the all-pairs shortest path problem being
in NC), and thus a fast parallel algorithm exists, but
for general digraphs no work-efficient algorithm in NC
is known. (The best NC algorithm runs in O(log®n)
time and performs O(n®(loglogn/logn)'/3) work on
an EREW PRAM [9].) Moreover, work-efficient algo-
rithms which are (at least) sublinearly fast are also not
known for general digraphs.

Dijkstra’s algorithm is highly sequential, and can
probably not be used as a basis for a fast (NC) parallel
algorithm. However; 1t 1s easy to give a parallel im-
plementation of the algorithm that runs in O(nlogn)
time [11]. The idea is to perform the distance updates
within each iteration in parallel by associating a lo-
cal priority queue with each processor. The vertex
of minimum distance for the next iteration is deter-
mined (in parallel) as the minimum of the minima in
the local priority queues. For this parallelization it
is important that the priority queue operations have
worst-case running time, and therefore the original Fi-
bonacci heap cannot be used to implement the local
queues. This was first observed in [6] where a new data
structure, called relaxed heaps, was developed to over-
come this problem. Using relaxed heaps, an O(nlogn)
time and O(m + nlogn) work(-optimal) parallel im-
plementation of Dijkstra’s algorithm is obtained. This
seems to be the currently fastest work-efficient paral-



lel algorithm for the single-source shortest path prob-
lem. The parallel time spent in each iteration of the
above implementation of Dijkstra’s algorithm is de-
termined by the (processor local) priority queue op-
erations of finding a vertex of minimum distance and
deleting an arbitrary vertex, plus the time to find and
broadcast a global minimum among the local minima.
Either or both of the priority queue operations take
O(logn) time, as does the parallel minimum computa-
tion; for the latter Q(logn) time is required, even on
a CREW PRAM. Hence, the approach with processor
local priority queues does not seem to make it possible
to improve the running time beyond O(nlogn) with-
out resorting to a more powerful PRAM model. This
was considered in [11] where two faster (but not work-
efficient) implementations of Dijkstra’s algorithm were
given on a CRCW PRAM: the first (resp. second) al-
gorithm runs in O(nloglogn) (resp. O(n)) time, and
performs O(n?) (resp. O(n?+¢), V0 < ¢ < 1) work.

An alternative approach would be to use a parallel
global priority queue supporting some form of multi-
decrease key operation. Unfortunately, no known par-
allel priority queues support such an operation; they
only support a multi-delete operation which assumes
that the k elements to be deleted are the k elements
with smallest priority in the priority queue (see e.g., [2]
and the references in that paper). A different idea is
required to improve upon the running time.

We present a parallel priority data structure that
speeds up the parallel implementation of Dijkstra’s al-
gorithm, by supporting the operations required at each
iteration in O(1) time. Using this data structure we
give an alternative implementation of Dijkstra’s algo-
rithm that runs in O(n) time and performs O(mlogn)
work on a CREW PRAM. More specifically, by sort-
ing the adjacency lists (after weight) it is possible in
constant time both to determine a vertex of minimum
distance, as well as to add (in parallel) any number
of new vertices and/or update the distance of vertices
maintained by the priority data structure. It should
also be mentioned that the PRAM implementation of
the data structure requires concurrent read only for
broadcasting constant size information to all proces-
sors in constant time.

The idea of the parallel priority data structure is
to perform a pipelined merging of keys. We illustrate
the idea by first giving a simple implementation using
a linear pipeline, which requires O(n? 4+ mlogn) work
(Sec. 2). We then sketch how the pipeline can be dy-
namically restructured in a tree like fashion such that
only O(mlogn) operations are required (Sec. 3). Fur-
ther applications are discussed in Sec. 4. Due to space
limitations many details and proofs are omitted.

2 A parallel priority data structure

In this section we introduce our new parallel pri-
ority data structure, and show how to use it to give
an alternative, parallel implementation of Dijkstra’s
algorithm. TLet G = (V| E) be an n-vertex, m-edge
directed graph with edge weights ¢ : F — IR¥, rep-
resented as a collection of adjacency lists. For a
set S C V of vertices, define T'(S) to be the neigh-
bors of the vertices in 5, excluding vertices in S| i.e.,
I'S) ={weV\S3Fve S (vw) € F}. We as-
sociate with each vertex v € S a (fixed) real-valued
label A,. For a vertex w € I'(S), define the distance
from S to w as dist(S,w) = minges{Ay + c(u,w)}.
The distance has the property that dist(S U {v},w) =
min{dist(S, w), A, + ¢(v,w)}. We define the vertex
closest to S to be the vertex z € T'(S) that attains
the minimum miny er(s){dist(.S, w)} (with ties broken
arbitrarily).

Assume that a processor P, is associated with each
vertex v € V of G. Among the processors associated
with vertices in S at any given instant one will be des-
ignated as the master processor. Our data structure
supports the following four operations:

e INIT: initializes the priority data structure.

o EJECT(S): deletes the vertex v of T(S) that is
closest to S, and returns the pair (v, Dy ) to the
master processor, where D, = dist(S, v).

e EXTEND(S, v, A, Py): adds a vertex v associated
with processor P, to S, and assigns it label A.
Processor P, becomes the new master processor.

e EMPTY(S): returns true to the master processor

of Sif T(S) = 0.

Performing |T'(S)| successive EJECT-operations on a
set S ejects the vertices in T'(S) in non-decreasing or-
der of closeness, and leaves the priority data structure
empty. Fach vertex of T'(S) is ejected once. Note also
that there 1s no operation to change the labels associ-
ated with vertices in 5.

These operations suffice for an alternative, parallel
implementation of Dijkstra’s algorithm. Let s € V be
a distinguished source vertez. The algorithm computes
for each vertex v € V the length of a shortest path from
s to v, where the length of a path is the sum of the
weights of the edges on the path. Dijkstra’s algorithm
maintains a set .S of vertices for which a shortest path
have been found, in each iteration adding one more ver-
tex to S. Each vertex w € V\\S has a tentative distance
which is equal to dist(S,w) as defined above. Hence,
instead of the usual priority queue with DELETEMIN to



select the vertex closest to .S, and DECREASEKEY op-
erations to update tentative distances for the vertices
in V'\ S, we use the priority data structure above to
determine in each iteration a vertex closest to the cur-
rent set S of correct vertices. The EXTEND-operation
replaces the updating of tentative distances. Let P, be
the processor associated with vertex v.

Algorithm New-Parallel-Dijkstra
/* Initialization */
INIT; d(s) — 0; S — 0;
EXTEND(S, s, d(s), Ps);
/* Main loop */
while —EMPTY(S) do
(v, Dv) — EIECT(S); /* instead of DELETEMIN */
d(v) — D.;
EXTEND(S, v, d(v), Py);
/* replaces the update step */
od

Our main result in this section is that the New-
Parallel-Dijkstra algorithm runs in linear time in par-

allel.

Theorem 1 Dijkstra’s algorithm can be implemented
to run in O(n) time and O(n? + mlogn) work using

O(n +m) space on ¢« CREW PRAM.

The proof of Theorem 1 is based on the following.

Lemma 1 Operation INIT takes O(mlogn) work and
O(logn) time. After initialization, each EJECT(S)-
operation lakes constanl {ime using |S| processors,
and each EXTEND(S, v, A, Py)-operation takes constant
time using |S| + deg;, (v) processors, where deg;, (v) is
the in-degree of v. The EMPTY(S)-operation takes con-
stant time per processor. The space required per pro-
cessor is O(n).

The remainder of this section will be devoted to pro-
vide a sketch of a proof for Lemma 1.

In the INIT-operation the adjacency lists of G are
sorted in non-decreasing order after edge weight, i.e.,
on the adjacency list of v vertex w; appears before
wy if e(v,wy) < e(v, wq) (with ties broken arbitrarily).
The adjacency lists are assumed to be implemented
as doubly linked lists, such that any vertex w on v’s
adjacency list can be removed in constant time. For
each vertex v we also associate an array of vertices u; to
which v is adjacent, i.e., vertices u; for which (u;,v) €
FE. In the array of v we store for each such u; a pointer
to the position of v in the adjacency list of w;. This
enables us to delete all occurrences of v in adjacency
lists of such vertices u; € S =V \ S in constant time.
Sorting of the adjacency lists takes O(logn) time and
O(mlogn) work [4]. Constructing links and building

the required arrays can then be done in constant time
using O(m) operations. This completes the description
of the INIT operation.

The processors associated with vertices in .S at any
given instant are organized in a linear pipeline. Let v;
be the ith vertex added to S, let 5; denote S after the
ith EXTEND(S, v;, A;, P;)-operation where A; is the la-
bel to be associated with v;, and let P; be the processor
assigned to v; (in the implementation of Dijkstra’s al-
gorithm the label A; to be associated with vertex v;
was d(v)). Let finally L; be the sorted, doubly linked
adjacency list of v;. Processor P; which was assigned
at the ith EXTEND-operation receives input from P;_1,
and, after the (i + 1)th EXTEND-operation, will send
output to Piy1. The last processor assigned to S will
be the master processor, and the output from this pro-
cessor will be the result of the next EJECcT-operation,
i.e., the vertex closest to S. The pipeline for ¢ = 4 is
shown below. The input queue @ of processor P is
empty and not shown.
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Assume now that EJECT(S;_1) can be performed
in constant time by the processors assigned to the
vertices in 5;_1, and returns to the master proces-
sor of S;_1 the vertex in T'(S;_1) that is closest to
Si—1. We show how to maintain this property af-
ter an EXTEND-operation; more specifically, that the
vertex v ejected by EJECT(S;), immediately after
EXTEND(S;_1,v;, A4, P;), is produced in constant time,
is indeed the vertex closest to S;, and that each vertex
in T'(.S;) is ejected exactly once.

Performing an EJECT(S;_1) returns the vertex u
closest to S;_; with value D, = dist(S;_1,u). Either
this vertex, or the vertex closest to v; is the vertex to be
ejected from S;. Let w be the first vertex on the sorted
adjacency list L;. If A; + e(v;, w) < Dy, then the re-
sult of EJECT(S;) is w with value Dy, = A; + ¢(v;, w);
otherwise, the result is w with value D,. In the first
case, w 1s ejected and simply removed from L;, but the
ejected vertex of S;_; must be saved for a later EJECT-
operation. For this purpose we associate an input queue
(); with each P; which stores the vertices ejected from
S;_1 by processor P;_;. The EJECT-operation of F;
thus consists in selecting the smaller value from either



the input queue @Q; or the adjacency list L; of v;. In
other words, P; performs one merging step of the two
ordered lists ); and L;. In case P; exhausts its own
adjacency list L;, it always ejects from ;. It can be
shown that ); never gets empty, unless all vertices of
T'(S;—1) have been ejected, in which case processor P;
may terminate. The EMPTY(S;) thus has to return
true when both adjacency list L; and input queue Q;
of the master processor are empty.

In order to ensure that a vertex output by P; 1s
never output at a later EJECT-operation (i.e., inserted
into @;41 with different priorities), we associate a set
F; of forbidden vertices with each P;. Each F; set 1s
implemented as a Boolean array (i.e., Fi[w] = true
iff w has been ejected from ;). When a vertex w is
removed from L; and ejected, w is put into F; and
removed from @; (if it is there). A vertex ejected from
Si—1 1s only put into the input queue Q; of P; if it is
not 1n the forbidden set F; of P;. In the case where
a vertex u at the head of @; (previously ejected from
Si—1) “wins” at P; and is ejected, it is removed from
L; (in case u is adjacent to v;), and is made forbidden
for P; by putting it into F;. In order to be able to
remove vertices from (); in constant time, each P; has
an array of pointers into @);, which is updated whenever
P;_1 outputs a vertex into ();. The complete EJECT-
operation looks as follows:

Function EsEcT(S)
for all v; € S do in parallel
/* processor P; is associated with vertex v; */
(v', D) — HEAD(Q:);
v" — HEAD(L:); D" «— c(vi,v") + Ay
if D" < D' then (v, D) — (v", D") i
remove v’ from L; and Q; if present;
insert o’ into Fj;
if v' ¢ Fit1 then append (v, D) to Qi41 fi
od;
if P; is the master processor return HEAD(Qiy1)

An EXTEND(S;_1, v, A, P;)-operation must first
perform an EJECT(S;_1) in order to get an element
into the input queue @; of P;. Since we must pre-
vent that a vertex already in S is ever ejected (as T'(.5)
excludes S), once a vertex is appended to S it must
be removed from the adjacency lists of all vertices in
S. This can be done in parallel in constant time using
the array of pointers constructed by the INIT-operation
(since v occurs at most once in any adjacency list), if
concurrent read is allowed: a pointer to the list of ver-
tices u; to which v is adjacent must be made available
to all processors. In parallel they remove v from the
adjacency lists of the u;’s, which takes constant time
using deg;,(v) processors, deg;,(v) being the in-degree
of v. The required concurrent read is of the restricted
sort of broadcasting the same constant size informa-
tion to all processors. The EXTEND-operation looks as
follows.

Function EXTEND(S, v, A, P)

connect the master processor of S to P;
make P the (new) master processor;

(u, D"y — EsgcT(S);

append (u, D) to the input queue @ of P;
Ay — A; S — Su{v);

remove v from S using pointers constructed by INIT

The O(n?) space due to the forbidden sets and the
arrays of pointers into the input queues can be reduced
to O(n + m). Instead of maintaining the forbidden
sets F; explicitly, we let each occurrence of each vertex
in the priority data structure carry information about
whether it has been forbidden and if so, by which pro-
cessor. Maintaining for each vertex v € V a doubly
linked list of its occurrences in the data structure makes
it possible for processor P; to determine in constant
time whether a given vertex v has been forbidden for
processor P;41, and to remove v in constant time from
(); whenever 1t is ejected from L;.

This concludes the sketch of the proof of Lemma 1,
Theorem 1 and the basic implementation of the priority
data structure.

3 A dynamic tree pipeline

We now briefly describe how to decrease the amount
of work required by the algorithm in Sec. 2. Before do-
ing so, we first make an observation about the merging
part of the algorithm. The work done by processor P;
is intuitively to output vertices by incrementally merg-
ing its adjacency list L; with the incoming stream @Q; of
vertices output by processor P;_i. Processor P; termi-
nates when it has nothing left to merge. An alternative
bound on the real work done by this algorithm is then
the sum of the distance each vertex v from an adja-
cency list L; travels, where the distance is the num-
ber of processors that output v. Because each vertex
v from L; can at most be output by a prefix of the
processors P;, Piy1,..., Py, the distance v travels is at
most n — i+ 1. This gives a total bound on the work
done by the processors of O(mn). That the real work
can actually be bounded by O(n?) is due to the fact
that vertices get annihilated by forbidden sets.

Using this view of the work done by the algorithm
during merging, we sketch now a variation of the data
structure that basically bounds the distance a ver-
tex can travel by O(logn), i.e., bounds the work by
O(mlogn). The main idea is to replace the sequen-
tial pipeline of processors by a binary tree pipeline of
processors of height O(logn). Each processor P; still
maintains an adjacency list L; and a set of forbidden
vertices F;. The output of processor F; is still inserted



into an input queue of a processor F;, but F; can now
receive input from two processors instead of one.

The basic organization of the processor connections
are perfect binary trees. FEach node corresponds to
a processor and the unique outgoing edge of a node
corresponds to the output queue of the node (and an
input queue to the successor node). The rank of a node
is the height of the node in the perfect binary tree and
the rank of a tree is the rank of the root. The nodes
are connected such that the incoming edges of a node
v come from the left child of v and the sibling of v.

The processors are organized in a sequence of trees
of rank r;,ry_1 ..., 71, where the ¢th root is connected
to the ¢ + 1st root. We maintain the invariant that

T < rp_1 < Tp_o < - - < e < Ty (1)

When performing an EXTEND-operation a new proces-
sor 1s initialized. If r; < rp_; the new processor is
inserted as a new rank one tree at the front of the list
of trees (as in the sequential pipeline case). That (1)
is satisfied follows from 1 < rp < rp_1 < -+ < ry. If
ry = rp_1 we link the kth and k£ — 1st tree with the new
node to form a tree of rank 1+ rp_y. That (1) is sat-
isfied follows from 1 + rp_1 < rp_s < rp_z < --- < 7rq.

For the tree pipeline we can show that all non-
terminated processors have the next vertex to be out-
put in one of its input queues. What remains is to di-
vide the work among the available processors. Assum-
ing that O(%‘%ﬂ) processors are available, the idea is
to simulate the tree structured pipeline for O(logn)
time steps, after which we stop the simulation and
in O(logn) time eliminate the (simulated) terminated
processors, and reschedule. By this scheme a termi-
nated processor is kept alive for only O(logn) time
steps, and hence no superfluous work is done. In total
the simulation takes linear time. Thus, we have:

Theorem 2 Dijkstra’s algorithm can be implemented
to run in O(n) time and O(mlogn) work on a CREW
PRAM.

4 Further applications

The improved single-source shortest path algorithm
immediately gives rise to corresponding improvements
in algorithms in which the single-source shortest path
problem occurs as a subproblem. We mention here the
assignment problem, the minimum cost flow problem,
(for definitions see [1]), and the single-source short-
est path problem in planar digraphs. For example,
the minimum cost flow problem (which is P-complete
[8]) can be solved by O(mlogn) calls to Dijkstra’s

algorithm (see e.g. [1, Sec. 10.7]). Using our imple-
mentation, we obtain a parallel algorithm that runs
in O(nmlogn) time and performs O(m? log” n) work.
Our bounds are strongly polynomial and speed up the
best previous ones [6] by a logarithmic factor. (Similar
improvements hold for the assignment problem.)
Greater parallelism for the single-source shortest
path problem in the case of planar digraphs can be
achieved by plugging our implementation of Dijkstra’s
algorithm into the algorithm of [12] resulting in an al-
gorithm which runs O(n?¢ + n!'~¢) time and performs
O(n'*¢) work on a CREW PRAM. With respect to
work, this gives the best (deterministic) parallel algo-
rithm known for the single-source shortest path prob-
lem in planar digraphs that runs in sublinear time.
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