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Abstract. Two new adaptive sorting algorithms are introduced which
perform an optimal number of comparisons with respect to the number of
inversions in the input. The first algorithm is based on a new linear time
reduction to (non-adaptive) sorting. The second algorithm is based on
a new division protocol for the GenericSort algorithm by Estivill-Castro
and Wood. From both algorithms we derive I/O-optimal cache-aware
and cache-oblivious adaptive sorting algorithms. These are the first I/O-
optimal adaptive sorting algorithms.

1 Introduction

1.1 Adaptive sorting

A well known fact concerning sorting is that optimal sorting algorithms perform
Θ(n log n) comparisons [9, Section 9.1]. However, in practice there are many
cases where the input sequences are already nearly sorted, i.e. have low disorder
according to some measure [16, 19]. In such cases one can hope for a sorting
algorithm to be faster.

In order to quantify the disorder of input sequences, several measures of pre-
sortedness have been proposed, e.g. see [11, 16, 18]. One of the most commonly
considered measures is Inv , the number of inversions in the input, defined by
Inv(X) = |{(i, j) | i < j ∧ xi > xj}| for a sequence X = (x1, . . . , xN ). Other
examples of measures include: Runs, the number of boundaries between ascend-
ing subsequences; Max , the largest difference between the ranks of an element
in the input and the sorted sequence; Dis , the largest distance determined by
an inversion. A sorting algorithm is denoted adaptive if the time complexity is
a function dependent on the size as well as the presortedness of the input se-
quence [19]. For an overview concerning adaptive sorting, see e.g. the survey by
Estivill-Castro and Wood [13].
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Manilla [18] introduced the concept of optimality of an adaptive sorting al-
gorithm in the comparison model. An adaptive sorting algorithm S is optimal
with respect to some measure of presortedness D, if for some constant c > 0 and
for all inputs X , the time complexity TA(X) satisfies

TA(X) ≤ c · max(N, log |below(X,D)|) ,

where below(X,D) is the number of permutations of the input sequence Y for
which D(Y ) ≤ D(X) and log x denotes log2 x. By the usual information theoretic
lower bound, this is asymptotically the best possible. In particular, an adaptive
sorting algorithm that is optimal with respect to the measure Inv performs
Θ(N(1 + log(1 + Inv/N))) comparisons [15].

1.2 The I/O model and the cache-oblivious model

Traditionally, the RAM model has been used in the design and analysis of algo-
rithms. It consists of a CPU and an infinite memory, where all memory accesses
are assumed to take equal time. However, this model is not always adequate
in practice, due to the memory hierarchy found on modern computers. Modern
computers have several memory levels, each level having smaller size and access
time than the next one. Typically, a desktop computer contains CPU registers,
L1, L2, and L3 caches, main memory and hard-disk. The access time increases
from one cycle for registers and level 1 cache to around 10, 100 and 10,000,000
cycles for level 2 cache, main memory and disk, respectively. Therefore, the I/Os
of the disk often become a bottleneck with respect to the running time of a given
algorithm, and the number of I/Os, not CPU cycles, should be minimized.

Several models have been proposed to capture the effect of memory hierar-
chies. The most successful of these is the I/O model, introduced by Aggarwal
and Vitter [1]. It models a simple two-level memory hierarchy consisting of a fast
memory of size M and a slow infinite memory. The data transfers between the
slow and fast memory are performed in blocks of size B of consecutive data. The
I/O complexity of an algorithm is the number of transfers it performs between
the slow and the fast memories. A comprehensive list of I/O efficient algorithms
for different problems have been proposed, e.g. see the surveys by Vitter [21]
and Arge [2]. Among the fundamental results concerning the I/O model is that
sorting a sequence of size N requires Θ(N

B log M

B

N
B ) I/Os [1].

The I/O model assumes that the size M of the fast memory and the block
size B are known, which does not always hold in practice. Moreover, as the
modern computers have multiple memory levels with different sizes and block
sizes, different parameters are required at the different memory levels. Frigo et
al. [14] proposed the cache-oblivious model, which is similar to the I/O model,
but assumes no knowledge about M and B. In short, a cache-oblivious algorithm
is an algorithm described in the RAM model, but analyzed in the I/O model with
an analysis valid for any values of M and B. The power of this model is that
if a cache-oblivious algorithm performs well on a two-level memory hierarchy
with arbitrary parameters, it performs well between all the consecutive levels of
a multi-level memory hierarchy.



Many problems have been addressed in the cache-oblivious model (see the
surveys by Arge et al. [3], Brodal [6], and Demaine [10]). Among these there
are several optimal cache-oblivious sorting algorithms. Frigo et al. [14] gave
two optimal cache-oblivious algorithms for sorting: Funnelsort and a variant
of Distributionsort. Brodal and Fagerberg [7] introduced a simplified version
of Funnelsort, Lazy Funnelsort. The I/O complexity of all these sorting algo-
rithms is O(N

B log M

B

N
B ). All these algorithms require a tall cache assumption,

i.e. M = Ω(B1+ε) for a constant ε > 0. In [8] it is shown that a tall cache-
assumption is required for all optimal cache-oblivious sorting algorithms.

1.3 Results and outline of paper

In Section 2 we apply the lower bound technique from [4] to obtain lower bounds
on the number of I/Os for comparison based sorting algorithms that are adaptive
with respect to different measures of presortedness.

In Section 3 we present a linear time reduction from adaptive sorting to
general (non-adaptive) sorting, directly implying comparison optimal and I/O-
optimal cache-aware and cache-oblivious algorithms with respect to measure Inv .

In Section 4 we describe a cache-aware generic sorting algorithm, cache-aware
GenericSort based on GenericSort, introduced in [12], and characterize its I/O
adaptiveness. Section 5 introduces a cache-oblivious version of GenericSort.

In Section 6 we introduce a new greedy division protocol for GenericSort,
interesting in its own right due to its simplicity. We prove that the resulting
algorithm, GreedySort, is comparison optimal with respect to measure Inv . We
show that using our division protocol we obtain both cache-aware and cache-
oblivious algorithms that are optimal with respect to Inv .

In the remainder of this paper, sorted means sorted in increasing order.

2 I/O lower bounds

In this section we show lower bounds on the number of I/Os performed by
comparison based sorting algorithms that are adaptive with respect to several
measures of presortedness.

Theorem 1. A comparison based sorting algorithm performs Ω(N
B (1+log M

B

(1+
Inv

N ))) I/Os for sorting input sequences of size N and Inv inversions, assuming
M = Ω(B2).

Proof. Consider an adaptive sorting algorithm A and some input sequence X
of size N . Let TA(X) and I/OA(X) denote the number of comparisons and the
number of I/Os performed by a comparison based sorting algorithm A for sorting
an input sequence X respectively.

Recall that below(X, Inv) denotes the set of all permutations Y for the in-
put sequence with Inv(Y ) ≤ Inv(X). Consider the decision tree of A (see e.g. [9,
Section 9.1]) restricted to the inputs in below(X, Inv). The tree has at least



Measure of I/Os Comparisons [13]
presortedness
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Fig. 1. Lower bounds on the number of I/Os and the number of comparisons.

|below(X, Inv)| leaves and therefore A performs at least log |below(X,D)| com-
parisons in the worst case. Therefore, for any sequence X , there is a sequence
Y ∈ below(X, Inv), such that log |below(X, Inv)| ≤ TA(Y ).

Using the decision tree translation by Arge et al. [4, Theorem 1] we get:

log(|below(X, Inv)|) ≤ N log B + max
Y ∈below(X,Inv)

I/OA(Y )

(

B log

(

M

B

)

+ 3B

)

.

Since log(|below(X, Inv)|) = Ω(N(1 + log(1 + Inv

N ))) [15], we obtain that

maxY ∈below(X,Inv) I/OA(Y ) = Ω(N
B (1+ logM

B

(1+ Inv

N ))), given M = Ω(B2). ⊓⊔

Using a similar technique we obtain lower bounds on the number of I/Os for
other measures of presortedness, assuming that M = Ω(B2). Figure 1 lists these
lower bounds. For definitions of the different measures, refer to [13].

3 GroupSort

In this section we describe a reduction to derive Inv adaptive sorting algorithms
from non-adaptive sorting algorithms. The reduction is cache-oblivious and re-
quires O(N) comparisons and O(N/B) I/Os.

The basic idea is to distribute the input sequence into a sequence of buckets
S1, . . . , Sk each of size at most 32(Inv/N)2, where the elements in bucket Si

are all smaller than or equal to the elements in Si+1. Each Si is then sorted in-
dependently by a non-adaptive cache-oblivious sorting algorithm [7, 14]. During



procedure GroupSort(X)
Input: Sequence X = (x1, . . . , xN )
Output: Sequence X sorted
begin

S1 = (x1); F1 = (); β1 = 8; α1 = N/4; j = 1; k = 1;
for i = 2 to N

if k = 1 or xi ≥ min(Sk)
append(Sk, xi);
if |Sk| > βj

(Sk, Sk+1) = split(Sk); k = k + 1;
else

append(Fj , xi);
if |Fj | > αj

βj+1 = βj · 4; αj+1 = αj/2; j = j + 1;
while k > 1 and |Sk| < βj/2

Sk−1 = concat(Sk−1, Sk); k = k − 1;
S = concat(sort(S1), sort(S2), . . . , sort(Sk));
F = concat(F1, F2, . . . , Fj);
GroupSort(F );
X = merge(S, F );

end

Fig. 2. Linear time reduction to non-adaptive sorting.

the construction of the buckets S1, . . . , Sk some elements might fail to get in-
serted into an Si and are instead inserted into a fail set F . It will be guaranteed
that at most half of the elements are inserted into F . The fail set F is sorted
recursively and merged with the sequence of sorted buckets.

The Si buckets are constructed by scanning the input left-to-right by in-
serting an element x into the rightmost bucket Sk if k = 1 or x ≥ min(Sk)
and otherwise inserting x in F . During the construction we generate increasing
bucket capacities βj = 2 · 4j , which will be used for αj = N/(2 · 2j) insertions
into F . If during construction |Sk| > βj , the bucket Sk is split into two buck-
ets Sk and Sk+1 by computing its median using the cache-oblivious selection
algorithm from [5] and distributing its elements relatively to the median. This
ensures |Si| ≤ βj for 1 ≤ i ≤ k. We maintain the invariant |Sk| ≥ βj/2 if there
are at least two buckets by repeatedly concatenating the two last buckets after
an increment of i. Since βj−1 = βj/4, this ensures βj/2 ≤ |Sk| ≤

3
4βj after this

concatenation process. If only one bucket remains, then |Sk| ≤
3
4βj .

The pseudo-code of the reduction is given in Figure 2. We assume that
S1, . . . , Sk are stored consecutively in an array by storing the start index and the
minimum element from each bucket on a separate stack, i.e. the concatenation
of Sk−1 and Sk can be done implicitly in O(1) time. The fail set F is stored as
a list of subsets F1, . . . , Fj , where Fi stores the elements inserted into F while
the bucket size is βi. Similarly F1, . . . , Fj are stored consecutively in an array.



Theorem 2. GroupSort is cache-oblivious and is comparison optimal and I/O-
optimal with respect to Inv, assuming M = Ω(B2).

Proof. Consider the last bucket capacity βj and fail set size αj . Each element x
inserted into the fail set Fj induces in the input sequence at least βj/2 inversions,
since |Sk| ≥ βj/2 when x is inserted into Fj and all elements in Sk appeared
before x in the input and are larger than x.

For i = ⌈log Inv

N ⌉+1, we have αi ·
βi

2 = N
2·2i ·

2·4i

2 ≥ Inv , i.e. Fi is guaranteed to

be able to store all failed elements. This immediately leads to j ≤ ⌈log Inv

N ⌉+1,

and βj = 2·4j ≤ 32
(

Inv

N

)2
. The fail set F has size at most

∑j
i=1 αi =

∑j
i=1 N/(2·

2i) ≤ N/2.
Taking into account that the total size of the fail sets is at most N/2, the

number of comparisons performed by GroupSort is given by the following recur-
rence:

T (N) = T

(

N

2

)

+

k
∑

i=1

TSort(|Si|) + O(N) ,

where the O(N) term accounts for the bucket splittings and the final merge of S
and F . The O(N) term for splitting buckets follows from that when a bucket with
βj elements is split then at least βj/4 elements in a bucket have been inserted
since the most recent bucket splitting or increase in bucket capacity, and we can
charge the splitting of the bucket to these recent βj/4 elements.

Since TSort(N) = O(N log N) and each |Si| ≤ βj = O(( Inv

N )2) the number of
comparisons performed by GroupSort is:

T (N) = T

(

N

2

)

+ O

(

N

(

1 + log

(

1 +

(

Inv

N

)2
)))

.

Since F is a subsequence of the input, Inv for the recursive call is at most Inv
for the input. As

∑∞
i=0

N
2i log Inv

N/2i = N log Inv

N

∑∞
i=0

1
2i + N

∑∞
i=0

i
2i , it follows

that GroupSort performs T (N) = O
(

N
(

1 + log
(

1 + Inv

N

)))

comparisons, which
is optimal.

The cache-oblivious selection algorithm from [5] performs O(N/B) I/Os and
the cache-oblivious sorting algorithms [7, 14] perform O(N

B log M

B

N
B ) I/Os for

M = Ω(B2). Since GroupSort otherwise does sequential access to the input and
data structures, we get that GroupSort is cache-oblivious and the number of
I/Os performed is given by the recurrence:

I/O(N) = I/O

(

N

2

)

+ O

(

N

B

(

1 + log M

B

(

1 +

(

Inv

N

)2

·
1

B

)))

.

It follows that GroupSort performs O(N
B (1 + log M

B

(1 + Inv

N ))) I/Os provided

M = Ω(B2), which by Theorem 1 is I/O-optimal. ⊓⊔

Pagh et al. [20] gave a related reduction for adaptive sorting on the RAM
model. Their reduction assumes that a parameter q is provided such that the



number of inversions is at most qN . A valid q is found by selecting increasing
values for q such that the running time doubles for each iteration. In the cache
oblivious setting the doubling approach fails, since the first q value should depend
on the unknown parameter M . We circumvent this limitation of the doubling
technique by selecting the increasing βj values internally in the reduction.

4 Cache-aware GenericSort

Estivill-Castro and Wood [12] introduced a generic sorting algorithm, Generic-
Sort, as a framework for adaptive sorting algorithms. It is a generalization of
Mergesort, and is described using a generic division protocol, i.e. an algorithm
for splitting an input sequence into two or more subsequences. The algorithm
works as follows: consider an input sequence X ; if X is sorted then the algorithm
returns; if X is “small”, then X is sorted using some alternate non-adaptive sort-
ing algorithm; otherwise, X is divided according to the division protocol and the
resulting subsequences are recursively sorted and merged.

In this section we modify GenericSort to achieve a generic I/O-adaptive sort-
ing algorithm. Consider an input sequence X = (x1, . . . , xN ) and some division
protocol DP such that DP splits the input in s ≥ 2 subsequences of roughly
equal sizes in a single scan, visiting each element of the input exactly once. To
avoid testing whether X is sorted before applying the division protocol, we de-
rive a new division protocol DP ′ by modifying DP to identify the longest sorted
prefix of X : we scan the input sequence until we find some i such that xi < xi−1.
Denote S = (x1, . . . , xi−1) and X ′ = (xi, . . . , xN ). We apply DP to X ′, recur-
sively sort the resulting s subsequences, and finally merge them with S. The
adaptive bounds for GenericSort proved in [12, Theorem 3.1] are not affected by
these modifications, and we have the following theorem.

Theorem 3. Let D be a measure of presortedness, d and s constants, 0 < d < 2,
and DP a division protocol that splits some input sequence of size N into s
subsequences of size at most ⌈N

s ⌉ each using O(N) comparisons.

– the modified GenericSort performs O(N log N) comparisons in the worst
case;

– if for all sequences X, the division of a suffix of X into X1, . . . , Xs by DP
satisfies that

∑s
j=1 D(Xj) ≤ d⌊ s

2⌋ · D(X), then the modified GenericSort
performs O (N (1 + log(1 + D(X)))) comparisons.

We now describe a cache-aware version of the modified GenericSort provided
that the division protocol DP works in a single scan of the input. Let T be the
recursion tree of GenericSort using the new division protocol DP ′. We obtain a
new tree T ′ by contracting T top-down such that every node in T ′ corresponds
to a subtree of height O(logs(M/B)) in T and each node in T ′ has a fanout of
at most m, where m = Θ(M/B). There are O(m) sorted prefixes for every node
in T ′. In cache-aware GenericSort, for each node of T ′ we scan its input sequence
and distribute the elements accordingly to one of the O(m) output sequences.



Each output sequence is a linked list of blocks of size Θ(B). If the size of the input
sequence is at most M , then we sort it in internal memory, hence performing
O(N/B) I/Os. Theorem 4 gives a characterization of the adaptiveness of cache-
aware GenericSort in the I/O model. It is an I/O version of Theorem 3.

Theorem 4. Let D be a measure of presortedness, d and s constants, 0 < d < 2
and s ≤ M

2B , and DP a division protocol that splits some input sequence of size N

into s subsequences of size at most ⌈N
s ⌉ each using O(N

B ) I/Os. If DP performs
the splitting in one scan visiting each element of the input exactly once, then:

– cache-aware GenericSort performs O(N
B log M

B

N
B ) I/Os in the worst case;

– if for all sequences X, the division of a suffix of X into X1, . . . , Xs by DP
satisfies that

∑s
j=1 D(Xj) ≤ d⌊ s

2⌋ · D(X), then cache-aware GenericSort

performs O
(

N
B

(

1 + log M

B

(1 + D(X))
))

I/Os.

Proof. We analyze the I/Os performed at the nodes of T ′ separately for the
nodes having input sizes less than or equal to M and greater than M .

At a node with input X and |X | > M , O(m + |X |/B) = O(|X |/B) I/Os are
performed to read the input and to write to the at most m − 1 sorted output
prefixes and m sequences to be recursively sorted. If we charge O(1/B) I/Os per
element in the input this will pay for the I/Os required at the node.

At a node with input X and |X | ≤ M , O(1 + |X |/B) I/Os are performed.
These I/Os can be charged to the parent node, since at the parent we will already
charge O(1 + |X |/B) I/Os to write the output X .

By Theorem 3 we have that the sum of the depths in T reached by the
elements in the input X is bounded by O(N(1 + log(1 + D(X)))). Since each
node in T ′ spans Θ(log M

B ) levels from T , we get that cache-aware GenericSort

performs O(N
B +N(1+log(1+D(X)))/(B log M

B )) = O(N
B (1+log M

B

(1+D(X))))

I/Os, where the N/B term counts for the I/Os at the root of T ′. ⊓⊔

The power of cache-aware GenericSort lies in its generality, meaning that us-
ing different division protocols we obtain sorting algorithms that are I/O adap-
tive with respect to different measures of presortedness. For example, using the
straight division protocol, we achieve I/O optimality with respect to Runs. Us-
ing the odd-even division protocol, we obtain an algorithm that is I/O optimal
with respect to Dis and Max . Furthermore, the different division protocols can
be combined as shown in [13] in order to achieve I/O optimality with respect to
more measures of presortedness.

5 Cache-oblivious GenericSort

We give a cache-oblivious algorithm that achieves the same adaptive bounds as
the cache-aware GenericSort introduced in Section 4. It works only for division
protocols that split the input into two unsorted subsequences. It is based on a
modification of the k-merger used in FunnelSort [7, 14].



A k-merger is a binary tree stored using the recursive van Emde Boas layout.
The edges contain buffers of variable sizes and the nodes are binary mergers. The
tree and the buffer sizes are recursively defined: consider an output sequence of
size k3 and h the height of the tree. We split the tree at level h

2 yielding k
1

2 + 1

subtrees, each of size O(k
1

2 ). The buffers at this level have sizes k
3

2 . See [7] for
further details.

Consider DP division protocol that scans the input a single time and DP ′ the
modified DP as introduced in Section 4. Each node of the k-merger corresponds
to a node in the recursion tree of GenericSort using DP ′ as the division protocol.
Therefore, each node has a fanout of three and becomes a ternary merger. The
resulting unsorted sequences are pushed in the buffers to the children, while the
sorted prefix is stored as a list of memory chunks of size O(N

2

3 ) for an input
buffer of size N .

Our algorithm uses a single N
1

3 -merger. It fills the buffers in a top-down
fashion and then merges the resulted sorted subsequences in a bottom-up man-
ner. The N

1

3 output buffers at the leaves of the k-merger are sorted using a
non-adaptive I/O-optimal cache oblivious sorting algorithm [7, 14].

Lemma 1. The N
1

3 -merger and the sorted subsequences use O(N) space.

Proof. Consider the N
1

3 -merger and an input sequence of size N . The total
size of the inner buffers is O(N

2

3 ) [14]. The memory chunks storing the sorted

subsequences use O(N) space because there are N
1

3 nodes in the merger and the

size of a single memory chunk is O(N
2

3 ). Adding the input sequence, we conclude

that the N
1

3 -merger and the sorted subsequences take O(N) space together. ⊓⊔

Lemma 2. Cache-oblivious GenericSort and cache-aware GenericSort have the
same comparison and I/O complexity, for division protocols that split the input
into two subsequences.

Proof. Consider ℓ = 1
3 log N the height of the N

1

3 -merger of the cache-oblivious
GenericSort.

We first prove that cache-aware and cache-oblivious GenericSort have the
same comparison complexity. For some element xi let di be its depth in the
recursion tree of the GenericSort using DP ′ as a division protocol. If di ≤ ℓ then
xi reaches the same level in the recursion tree of cache-oblivious GenericSort,
because the two algorithms have the same recursion trees at the top ℓ levels. If
di > ℓ then the number of comparisons performed by cache-oblivious GenericSort
for xi is O(log N) = O(di) because di > l = Ω(log N).

We analyze the number of I/Os used by cache-aware and cache-oblivious
GenericSort. Consider an element xi that reaches level di in the recursion tree
of cache-aware GenericSort.

If di < ℓ then xi is placed in a sorted prefix at a node in the N
1

3 -merger.
In this case, cache-oblivious GenericSort spends linear I/Os when the size of

the input reaches O(M) because the N
1

3 -merger together with the sorted sub-
sequences take linear space by Lemma 1. Taking into account that the height



of the N
1

3 -merger is O(log(M/B)) due to the tall cache assumption, it follows
that O(1 + di/(log(M/B))) I/Os are performed by cache-oblivious GenericSort
for getting xi to its sorted subsequence.

If di > ℓ then xi reaches an output buffer of the N
1

3 -merger, where it is sorted
using an optimal cache-oblivious sorting algorithm. In this case the number of
I/Os performed for the sorting involving xi is still O(1/B + di/(B log(M/B))),

because both the N
1

3 -merger and the optimal sorting algorithms require O(1/B+
di/(B log(M/B))) I/Os for the sorting involving xi, since di = Θ(log N).

We obtain that the number of I/Os performed by cache-oblivious GenericSort

is O

(

N
B +

∑

n

i=1
di

B log(M/B)

)

. Cache-aware GenericSort performs O

(

N
B +

∑

n

i=1
di

B log M

B

)

I/Os too because the fanout of the nodes in the recursion tree is O(log M
B ). We

conclude that cache-aware GenericSort and cache-oblivious GenericSort have the
same I/O complexity. ⊓⊔

6 GreedySort

We introduce GreedySort, a sorting algorithm based on GenericSort using a new
division protocol, GreedySplit. The protocol is inspired by a variant of the Kim-
Cook division protocol, which was introduced and analyzed in [17]. Our division
protocol achieves the same adaptive performance with respect to Inv , but is sim-
pler and moreover facilitates cache-aware and cache-oblivious versions. It may be
viewed as being of a greedy type, hence the name. We first describe GreedySort
and its division protocol and then prove that it is optimal with respect to Inv .
GreedySplit partitions the input sequence X into three subsequences S, Y , and
Z, where S is sorted and Y and Z have balanced sizes, i.e. |Z| ≤ |Y | ≤ |Z| + 1.
In one scan it builds an ascending subsequence S of the input in a greedy fashion
and at the same time distributes the remaining elements in two subsequences,
Y and Z, using an odd-even approach.

Lemma 3. GreedySplit splits an input sequence X in the three subsequences S,
Y and Z, where S is sorted and Inv(X) ≥ 5

4 · (Inv(Y ) + Inv(Z)).

Proof. Let X = (x1, . . . xN ). By construction S is sorted. Consider an inversion
in Y , yi > yj , i < j and i1 and j1 the indices in X of yi and yj respectively.
Due to the odd-even construction of Y and Z, there exists an xk ∈ Z such that
in the original sequence X we have i1 < k < j1.

We prove that there is one inversion between xk and at least one of xi1 and
xj1 , for any i1 < k < j1. Indeed, if xi1 > xk, we get an inversion between xi1 and
xk. If xi1 ≤ xk, we get an inversion between xj1 and xk, because we assume that
yi > yj which yields xi1 > xj1 . Let zi, . . . , zj−1 be all the elements from Z which
appear between yi and yj in the original sequence. We know that there exists at
least an inversion between z⌊i+j⌋/2 and yi or yj. The inversion (yi, z⌊(i+j)/2⌋) can
be counted for two different pairs in Y , (yi, yi+2⌊(j−i)/2⌋) and (yi, yi+1+2⌊(j−i)/2⌋).
Similarly, the inversion (z⌊(i+j)/2⌋,j) can be counted for two different pairs in Y .
Taking into account that the inversions involving elements of Y and elements of



Z appear in X , but neither in Y nor Z, we have that Inv(X) ≥ Inv(Y )+Inv(Z)+
Inv(Y )/2. In a similar manner we obtain Inv(X) ≥ Inv(Y )+Inv (Z)+Inv(Z)/2.
Summing the two equations we obtain Inv(X) ≥ 5

4 (Inv (Y ) + Inv(Z)). ⊓⊔

Theorem 5. GreedySort performs O(N(1 + log(1 + Inv(X)/N))) comparisons
to sort a sequence X of size N , i.e. it is comparison optimal with respect to Inv.

Proof. Similar to [17], we first prove the claimed bound for the upper levels of
recursion where the total number of inversions is greater than N/4 and then
prove that the total number of comparisons for the remaining levels is linear.
Let Inv i(X) denote the total number of inversions in the subsequences at the

ith level of recursion. By Lemma 3, Inv i(X) ≤
(

4
5

)i
Inv(X).

We want to find the first level ℓ of the recursion for which
(

4
5

)ℓ
Inv(X) ≤ N

4 ,

which yields ℓ =
⌈

log(4Inv(X)/N)
log(5/4)

⌉

.

At each level of recursion GreedySort performs O(N) comparisons. Therefore
at the first ℓ levels of recursion the total number of comparisons performed is
O(ℓ · N) = O(N(1 + log(1 + Inv(X)/N)))). We now prove that the remaining
levels perform a linear number of comparisons.

Let |(X, i)| denote the total size of Y s and Zs at the ith level of recur-
sion. As each element in Y and Z is obtained as a result of an inversion in
the sequence X , we have |(X, i)| ≤ Inv i−1(X). Using Lemma 3 we obtain:

|(X, ℓ + i)| ≤ Inv ℓ+i−1(X) ≤
(

4
5

)i−1
·
(

4
5

)ℓ
· Inv(X) ≤

(

4
5

)i−1 N
4 . Taking into

account that the sum of the |(X, ℓ + i)|s is O(N) and that at each level ℓ + i we
perform a linear number of comparisons with respect to |(X, ℓ + i)|, it follows
that the total number of comparisons performed at the lower levels of the recur-
sion tree is O(N). We conclude that GreedySort performs O(N(1+log(1+ Inv

N )))
comparisons. ⊓⊔

We derive both cache-aware and cache-oblivious algorithms by using our
greedy division protocol in both the cache-aware and the cache-oblivious Gener-
icSort frameworks described in Sections 4 and 5. In both cases the division
protocol considered does not identify the longest prefix of the input, but simply
apply the greedy division protocol. We prove that these new algorithms, cache-
aware GreedySort and cache-oblivious GreedySort achieve the I/O-optimality
with respect to Inv under the tall cache assumption M = Ω(B2).

Theorem 6. Cache-aware GreedySort and cache-oblivious GreedySort are I/O-
optimal with respect to Inv, provided that M = Ω(B2).

Proof. From Theorem 5 the average number of levels of recursion for an element
is O(1 + log(1 + Inv/N)). In Theorem 4 each element is charged O( 1

B ) I/Os

for every Θ(log M
B ) levels. This implies that cache-aware GreedySort performs

Θ(N
B (1+log M

B

(1+ Inv

N ))) I/Os, which is optimal by Theorem 1. Similar observa-

tions apply to cache-oblivious GreedySort based on the proof of Lemma 2. ⊓⊔
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