Solving the String Statistics Problem
in Time O(nlogn)

Gerth Stolting Brodal'»***, Rune B. Lyngso®,
Anna Ostlin'**, and Christian N. S. Pedersen!:?:**

L BRICS** *, Department of Computer Science, University of Aarhus, Ny
Munkegade, DK-8000 Arhus C, Denmark. E-mail: {gerth,annao,cstorm}@brics.dk
2 BiRC', University of Aarhus, Ny Munkegade, DK-8000 Arhus C, Denmark.

3 Department of Statistics, Oxford University, Oxford OX1 3TG, UK.
E-mail: 1lyngsoe@stats.ox.ac.uk

Abstract The string statistics problem consists of preprocessing a string
of length n such that given a query pattern of length m, the maxi-
mum number of non-overlapping occurrences of the query pattern in the
string can be reported efficiently. Apostolico and Preparata introduced
the minimal augmented suffix tree (MAST) as a data structure for the
string statistics problem, and showed how to construct the MAST in
time O(nlog?n) and how it supports queries in time O(m) for constant
sized alphabets. A subsequent theorem by Fraenkel and Simpson stating
that a string has at most a linear number of distinct squares implies
that the MAST requires space O(n). In this paper we improve the con-
struction time for the MAST to O(nlogn) by extending the algorithm
of Apostolico and Preparata to exploit properties of efficient joining and
splitting of search trees together with a refined analysis.

1 Introduction

The string statistics problem consists of preprocessing a string S of length n
such that given a query pattern « of length m, the maximum number of non-
overlapping occurrences of « in .S can be reported efficiently. Without prepro-
cessing the maximum number of non-overlapping occurrences of o in S can be
found in time O(n), by using a linear time string matching algorithm to find
all occurrences of « in S, e.g. the algorithm by Knuth, Morris, and Pratt [14],
and then in a greedy fashion from left-to-right compute the maximal number of
non-overlapping occurrences.

* Partially supported by the Future and Emerging Technologies programme of the EU
under contract number IST-1999-14186 (ALCOM-FT).
** Supported by the Carlsberg Foundation (contract number ANS-0257/20).
*** Basic Research in Computer Science (BRICS), www.brics.dk, funded by the Danish
National Research Foundation.
T Bioinformatics Research Center (BiRC), www.birc.dk, funded by Aarhus University
Research Fundation.

Apostolico and Preparata in [3] described a data structure for the string
statistics problem, the minimal augmented suffiz tree MAST(S), with prepro-
cessing time O(n log2 n) and with query time O(m) for constant sized alphabets.
In this paper we present an improved algorithm for constructing MAST(S) with
preprocessing time O(nlogn), and prove that MAST(S) requires space O(n),
which follows from a recent theorem of Fraenkel and Simpson [9].

The basic idea of the algorithm of Apostolico and Preparata and our algo-
rithm for constructing MAST(.S), is to perform a traversal of the suffix tree of S
while maintaining the leaf-lists of the nodes visited in appropriate data struc-
tures (see Section 1.1 for definition details). Traversing the suffix tree of a string
to construct and examine the leaf-lists at each node is a general technique for
finding regularities in a string, e.g. for finding squares in a string (or tandem re-
peats) [2,17], for finding maximal quasi-periodic substrings, i.e. substrings that
can be covered by a shorter substring, [1,6], and for finding maximal pairs with
bounded gap [4]. All these problems can be solved using this technique in time
O(nlogn). Other applications are listed by Gusfield in [10, Chapter 7].

A crucial component of our algorithm is the representation of a leaf list by
a collection of search trees, such that the leaf-list of a node in the suffix tree
of S can be constructed from the leaf-lists of the children by efficient merg-
ing. Hwang and Lin [13] described how to optimally merge two sorted lists of
length n; and ng, where n; < ng, with O(n; log %1"2) comparisons. Brown and
Tarjan [7] described how to achieve the same number of comparisons for merg-
ing two AVL-trees in time O(ny log 2£22) and Huddleston and Mehlhorn [12]
showed a similar result for level-linked (2,4)-trees. In our algorithm we will use
a slightly extended version of level-linked (2,4)-trees where each element has an
associated weight. Due to lack of space proofs have been omitted. The omitted
details can be found in [5].

1.1 Preliminaries

Some of the terminology and notation used in the following originates from [3],
but with minor modifications. We let X' denote a finite alphabet, and for a
string S € X* we let |S| denote the length of S, S[i] the ith character in S, for
1 << |S|, and S[i..j5] = S[i]S[i + 1] - - - S[j] the substring of S from the ith
to the jth character, for 1 < ¢ < j < |S|. The suffix S[i..|S|] of S starting at
position ¢ will be denoted STi..].

An integer p, for 1 < p < |S|, is denoted a period of S if and only if the
suffix S[p + 1..] of S is also a prefix of S, i.e. S[p+1..] = S[1..|S]| — p|. The
shortest period p of S is denoted the period of S, and the string S is said to be
periodic if and only if p < |S|/2. A nonempty string S is a square, if S = a« for
some string a.

In the rest of this paper S denotes the input string with length n and «
a substring of S. A non-empty string « is said to occur in S at position i if
a=S[i..i+]laj—1]and 1 <i <n—|a|+1. E.g. in the string babaaaababaab
the substring bab occurs at positions 1 and 8. The maximum number of non-
overlapping occurrences of a string « in a string S, is the maximum number of

occurrences of a where no two occurrences overlap. E.g. the maximum number
of non-overlapping occurrences of bab in bababababab is three, since the
occurrences at positions 1, 5 and 9 do not overlap.

The suffixz tree ST(.S) of the string S is the compressed trie storing all suffixes
of the string S§ where § ¢ Y. Each leaf in ST(S) represents a suffix S[i ..]$ of S$
and is annotated with the index i. Each edge in ST(S) is labeled with a nonempty
substring of S$, represented by the start and end positions in S, such that the
path from the root to the leaf annotated with index 4 spells the suffix S[i..]S$.
We refer to the substring of S spelled by the path from the root to a node v as
the path-label of v and denote it L(v). We refer to the set of indices stored at the
leaves of the subtree rooted at v as the leaf-list of v and denote it LL(v). Since
LL(v) is exactly the set of start positions i where L(v) is a prefix of the suffix
S[i..]$, we have Fact 1 below.

Fact 1 If v is an internal node of ST(S), then LL(v) = U, wid of » LL(C), and
i € LL(v) if and only if L(v) occurs at position i in S.

The problem of constructing ST(.S) has been studied intensively and several
algorithms have been developed which for constant sized alphabets can construct
ST(S) in time and space O(|S|) [8,15,18,19]. For non-constant alphabet sizes the
running time of the algorithms become O(|S|log|X).

In the following we let the height of a tree T be denoted h(T) and be defined
as the maximum number of edges in a root-to-leaf path in T', and let the size
of T be denoted |T'| and be defined as the number of leaves of T'. For a node v
in T we let T, denote the subtree of T rooted at node v, and let |v| = |T,| and
h(v) = h(T,). Finally, for a node v in a binary tree we let small(v) denote the
child of v with smaller size (ties are broken arbitrarily).

The basic idea of our algorithm in Section 5 is to process the suffix tree
of the input string bottom-up, such that we at each node v spend amortized
time O(|small(v)| - log(|v|/|small(v)])). Lemma 1 then states that the total time
becomes O(nlogn) [16, Exercise 35].

Lemma 1. Let T be a binary tree with n leaves. If for every internal node v,
¢y = [small(v)|-log(|v|/|small(v)]), and for every leaf v, c, = 0, then Y pcy <
nlogn.

2 The String Statistics Problem

Given a string S of length n and a pattern a of length m the following greedy
algorithm will compute the maximum number of non-overlapping occurrences
of a in S. Find all occurrences of a in S by using an exact string matching
algorithm. Choose the leftmost occurrence. Continue to choose greedily the left-
most occurrence not overlapping with any so far chosen occurrence. This greedy
algorithm will compute the maximum number of occurrences of a in S in time
O(n), since all matchings can be found in time O(n), e.g. by the algorithm by
Knuth, Morris, and Pratt [14].

Figure 1. To the left is the suffix tree ST(S) of the string S = ababbabbaba. The
node v has path-label L(v) = ab and leaf-list LL(v) = {1, 3,6,9}. To the right is the
minimal augmented suffix tree MAST(SS) for the string S = ababbabbaba. Numbers
in the internal nodes are the c-values.

In the string statistics problem we want to preprocess a string S such that
queries of the following form are supported efficiently: Given a query string «,
what is the maximum number of non-overlapping occurrences of o in S?7 The
maximum number of non-overlapping occurrences of « is called the c-value of «,
denoted c¢(«). The preprocessing will be to compute the minimal augmented
suffix tree described below. Given the minimal augmented suffix tree, string
statistics queries can be answered in time O(m).

For any substring, «, of S there is exactly one path from the root of ST(.S)
ending in a node or on an edge of ST(S) spelling out the string .. This node or
edge is called the locus of «. In a suffix tree ST(S) the number of leaves in the
subtree below the locus of a in ST(S) tells us the number of occurrences of «
in S. These occurrences may overlap, hence the suffix tree is not immediately
suitable for the string statistics problem. The minimal augmented suffix tree
for S, denoted MAST(.S) can be constructed from the suffix tree ST(.S) as follows.
A minimum number of new auxiliary nodes are inserted into ST(S) in such a
way that the c-value for all substrings with locus on an edge (u,v), where w is
the parent of v, have c-value equal to ¢(L(v)), i.e. the c-value only changes at
internal nodes along a path from a leaf to the root. Each internal node v in the
augmented tree is then labeled by ¢(L(v)) to get the minimal augmented suffix
tree. Figure 1 shows the suffix tree and the minimal augmented suffix tree for
the string ababbabbaba.

Fraenkel and Simpson in [9] prove that a string S contains less than 2|S|
distinct squares, which implies the following lemma.

Lemma 2. The minimal augmented suffix tree for a string S has at most 3|S|
internal nodes.

,,,,,,, M 1 . __
r 1 M 7
1 5 10 15 20 25 30 35 40 45 50 55
abaabaababaabaabaabaababaabaabaabaabaaabaabaababaabaaba

Figure 2. The grouping of occurrences in a string into chunks and necklaces. Occur-
rences are shown below the string. Thick lines are occurrences in chunks. The grouping
into chunks and necklaces is shown above the string. Necklaces are shown using dashed
lines. Note that a necklace can consist of a single occurrence.

It follows that the space needed to store MAST(S) is O(n).

3 String Properties

The lemma below gives a characterization of how the occurrences of a string «
can appear in S (proof omitted).

Lemma 3. Let S be a string and a a substring of S. If the occurrences of «
in S are at positions i1 < --- <y, then for all 1 < j < k either i;41 —i; =p or
ij+1 — 1; > max{|a| — p,p}, where p denotes the period of c.

A consequence of Lemma 3 is that if p > |a|/2, then an occurrence of « in S
at position ¢; can only overlap with the occurrences at positions ¢;_1 and ¢;;. If
p < |a|/2, then two consecutive occurrences i; and ;.1 either satisfy i;41 —4; =
por iy —i; > |al —p.

Corollary 1. Ifiji1 —i; < |a|/2, then ij41 —i; = p where p is the period of a.

Motivated by the above observations we group the occurrences of « in .S into
chunks and necklaces. Let p denote the period of a. Chunks can only appear if
p < |a|/2. A chunk is a maximal sequence of occurrences containing at least two
occurrences and where all consecutive occurrences have distance p. The remain-
ing occurrences are grouped into necklaces. A necklace is a maximal sequence
of overlapping occurrences, i.e. only two consecutive occurrences overlap at a
given position and the overlap of two occurrences is between one and p — 1 posi-
tions long. Figure 2 shows the occurrences of the string abaabaaba in a string of
length 55 grouped into chunks and necklaces. By definition two necklaces cannot
overlap, but a chunk can overlap with another chunk or a necklace at both ends.
By Lemma 3 the overlap is at most p — 1 positions.

We now turn to the contribution of chunks and necklaces to the c-values. We
first consider the case where chunks and necklaces do not overlap. An isolated
necklace or chunk is a necklace or chunk that does not overlap with other neck-
laces and chunks. Figure 3 gives an example of the contribution to the c-values
by an isolated necklace and chunk. More formally, we have the following lemma,
which we state without proof.

Lemma 4. An isolated necklace of k occurrences of o contributes to the c-value
of a with [k/2]. An isolated chunk of k occurrences of « contributes to the
c-value of o with [k/[|a|/p]], where p is the period of a.

abababababababababa abababababababababa

Figure 3. Examples of the contribution to the c-values by an isolated necklace (left;
a = aba and the contribution is 5 = [9/2]) and an isolated chunk (right; o = ababa,
p = 2, and the contribution is 3 = [8/[5/2]])

Motivated by Lemma 4, we define the mominal contribution of a necklace
of k occurrences of « to be [k/2] and the nominal contribution of a chunk of
k occurrences of « to be [k/[|a|/p]]. The nominal contribution of a necklace or
chunk of a’s is the contribution to the c-value of « if the necklace or chunk ap-
peares isolated. If the necklace of chunk does not appear isolated, i.e. it overlaps
with a neighboring necklace or chunk, then its actual contribution to the c-value
of a is at most be one less than its nominal contribution to the c-value of a.

We define the excess of a necklace of k occurrences to be (k —1) mod 2, and
the excess of a chunk of k occurrences to be (k—1) mod [|a|/p]. The excess de-
scribes the number of occurrences of o[1 .. p] which are covered by the necklace or
chunk, but not covered by the maximal sequence of non-overlapping occurences.

We group the chunks and necklaces into a collection of chains C by the
following two rules:

1. A chunk with excess at least two is a chain by itself.
2. A maximal sequence of overlapping necklaces and chunks with excess zero
or one is a chain.

For a chain ¢ € C we define #¢(c) to be the number of chunks and necklaces
with excess zero in the chain.

We are now ready to state our main lemma enabling the efficient computation
of the c-values. The lemma gives an alternative to the characterization in [3,
Proposition 2] (proof omitted).

Lemma 5. The mazimum number of non-overlapping occurrences of o in S
equals the sum of the nominal contributions of all necklaces and chunks minus

2cec [#ole)/2].

4 Level-Linked (2,4)-Trees

In this section we consider how to maintain a set of sorted lists of elements as a
collection of level-linked (2,4)-trees where the elements are stored at the leaves
in sorted order from left-to-right, and each element can have an associated real
valued weight. For a detailed treatment of level-linked (2,4)-trees see [12] and [16,
Section IT1.5]. The operations we consider supported are:

NewTree(e, w): Creates a new tree T' containing the element e with associated
weight w.

Search(p, e): Search for the element e starting the search at the leaf of a tree T
that p points to. Returns a reference to the leaf in T containing e or the
immediate predecessor or successor of e.

Insert(p, e,w): Creates a new leaf containing the element e with associated
weight w and inserts the new leaf immediate next to the leaf pointed to
by p in a tree T, provided that the sorted order is maintained.

Delete(p): Deletes the leaf and element that p is a pointer to in a tree T.

Join(Ty,T»): Concatenates two trees T7 and Ty and returns a reference to the
resulting tree. It is required that all elements in 7} are smaller than the
elements in 75 w.r.t. the total order.

Split(T, e): Splits the tree T into two trees T} and T5, such that e is larger than
all elements in 77 and smaller than or equal to all elements in T5. Returns
references to the two trees 77 and T5.

Weight(T): Returns the sum of the weights of the elements in the tree T.

Theorem 1 (Hoffmann et al. [11, Section 3]). Level-linked (2,4)-trees sup-
port NewTree, Insert and Delete in amortized constant time, Search in time
O(logd) where d is the number of elements in T between e and p, and Join
and Split in amortized time O(log min{|T1|, |T2|}).

To allow each element to have an associated weight we extend the construc-
tion from [11, Section 3] such that we for all nodes v in a tree store the sum of
the weights of the leaves in the subtree T}, except for the nodes on the paths to
the leftmost and rightmost leaves. These sums are straightforward to maintain
while rebalancing a (2,4)-tree under node splittings and fusions, since the sum
at a node is the sum of the weights at the children of the node. For each tree we
also store the total weight of the tree.

Theorem 2. Weighted level-linked (2,4)-trees support NewTree and Weight in
amortized constant time, Insert and Delete in amortized time O(log |T'|), Search
in time O(logd) where d is the number of elements in T between e and p, and
Join and Split in amortized time O(log min{|T1|, |T2|}).

5 The Algorithm

In this section we describe the algorithm for constructing the minimal augmented
suffix tree for a string S of length n.

Algorithm idea: The algorithm starts by constructing the suffix tree, ST(S),
for S. The suffix tree is then augmented with extra nodes and c-values for all
nodes to get the minimal augmented suffix tree, MAST(.S), for S. The augmen-
tation of ST(S) to MAST(S) starts at the leaves and the tree is processed in
a bottom-up fashion. At each node v encountered on the way up the tree the
c-value for the path-label L(v) is added to the tree, and at each edge new nodes
and their c-values are added if there is a change in the c-value along the edge.
To be able to efficiently compute the c-values and decide if new nodes should

be added along edges the indices in the leaf-list of v, LL(v), are stored in a
data structure that keeps track of necklaces, chunks, and chains, as defined in
Section 3.

Data structure: Let o be a substring of S. The data structure D(«) is a search
tree for the indices of the occurrences of a in S. The leaves in D(a) are the
leaves in LL(v), where v is the node in ST(S) such that the locus of « is the
edge directly above v or the node v. The search tree, D(«), will be organized
into three levels to keep track of chains, chunks, and necklaces. The top level
in the search tree stores chains, the middle level chunks and necklaces, and the
bottom level occurrences.

Top level: Unweighted (2,4)-tree (cf. Theorem 1) with the chains as leaves. The
leftmost indices in each chain are the keys.

Middle level: One weighted (2,4)-tree (cf. Theorem 2) for each chain, with
the chunks and necklaces as leaves. The leftmost indices in each chunk or
necklace are the keys. The weight of a leaf is 1 if the excess of the chunk or
necklace is zero, otherwise the weight is 0. The total weight of a tree on the
middle level is #q(c), where ¢ denotes the chain represented by the tree.

Bottom level: One weighted (2,4)-tree for each chunk and necklace, with the
occurrences in the chunk or necklace as the leaves. The weight of a leaf is
one. The total weight of a tree is the number of occurrences in the chunk or
the necklace.

Together with each of the 3-level search trees, D(«), some variables are stored.
NCS(«) stores the sum of the nominal contribution for all chunks and necklaces,
ZS(ax) stores the sum) . [#0(c)/2], where C is the set of chains. By Lemma 5
the maximum number of non-overlapping occurrences of a is NCS(«) — ZS(a).
We also store the total number of indices in D(«) and a list of all chunks denoted
CHUNKLIST(«). Finally we store, p(«), which is the smallest difference between
the indices of two consecutive occurrences in D(«). Note that, by Corollary 1,
p(a) is the period of « if there is at least one chunk. To make our presentation
more readable we will sometimes refer to the tree for a chain, chunk, or necklace
just as the chain, chunk, or necklace.

For the top level tree in D(a) we will use level-linked (2,4)-trees, according
to Theorem 1, and for the middle and bottom level trees in D(«) we will use
weighted level-linked (2,4)-trees, according to Theorem 2. In these trees prede-
cessor and successor queries are supported in constant time. We denote by £(e)
and r(e) the indices to the left and right of index e. To be able to check fast
if there are overlaps between two consecutive trees on the middle and bottom
levels we store the first and last index in each tree in the root of the tree. This
can easily be kept updated when the trees are joined and split.

We will now describe how the suffix tree is processed and how the data
structures are maintained during this process.

Processing events: We want to process edges in the tree bottom-up, i.e. for
decreasing length of a;, so that new nodes are inserted if the c-value changes along

the edge, the c-values for nodes are added to the tree, and the data structure
is kept updated. The following events can cause changes in the c-value and the
chain, chunk, and necklace structure.

1. Excess change: When |a| becomes i - p(a), for i = 2,3,4, ... the excess and
nominal contribution of chunks changes and we have to update the data
structure and possibly add a node to the suffix tree.

2. Chunks become necklaces: When || decreases and becomes 2p a chunk de-
generates into a necklace. At this point we join all overlapping chunks and
necklaces into one necklace and possibly add a node to the suffix tree.

3. Necklace and chain break-up: When |a| decreases two consecutive occur-
rences at some point no longer overlap. The result is that a necklace or a
chain may split, and we have to update the necklace and chain structure and
possibly add a node to the suffix tree.

4. Merging at internal nodes: At internal nodes in the tree the data structures
for the subtrees below the node are merged into one data structure and the
c-value for the node is added to the tree.

To keep track of the events we use an event queue, denoted EQ, that is a
common priority queue of events for the whole suffix tree. The priority of an
event in EQ is equal to the length of the string o when the event has to be
processed. Events of type 1 and 2 store a pointer to any leaf in D(«). Events of
type 3, i.e. that two consecutive overlapping occurrences with index e; and es,
e1 < ez, terminate to overlap, store a pointer to the leaf e; in the suffix tree.
For the leaf e; in the suffix tree also a pointer to the event in EQ is stored.
Events of type 4 stores a pointer to the internal node in the suffix tree involved
in the event. When the suffix tree is constructed all events of type 4 are inserted
into EQ. For a node v in ST(.S) the event has priority |L(v)| and stores a pointer
to v. The pointers are used to be able to decide which data structure to update.
The priority queue EQ is implemented as a table with entries EQ[1]...EQI|S]].
All events with priority z are stored in a linked list in entry EQ[z]. Since the
priorities of the events considered are monotonic decreasing, it is sufficient to
consider the entries of EQ in a single scan starting at EQJ|S]].

The events are processed in order of the priority and for events with the same
priority they are processed in the order as above. Events of the same type and
with the same priority are processed in arbitrary order. In the following we only
look at one edge at the time when events of type 1, 2, and 3 are taken care of.
Due to space limitations many algorithmic details are left out in the following.
See [5] for a detailed description of the algorithm.

1. Fxcess change. The excess changes for all chunks at the same time, namely
when |a] =i - p(a) for i = 2,3,4,.... For each chunk in CHUNKLIST () we will
remove the chunk from D(«a), recompute the excess and nominal contribution
based on the number of occurrences in the chunk, update NCS(«), reinsert the
chunk with the new excess and finally update ZS(«). This is done as follows:
First decide which chain each chunk belongs to by searching the tree. Remove
each chunk from its chain by splitting the tree for the chain. Recompute the

excess for each chunk and reconstruct the tree. In the new tree the chain structure
may have changed. Chunks for which the excess increases to two will be separate
chains, while chunks where the excess become less than two may join two or three
chains into one chain. NCS(«) and ZS(«a) are always kept updated during the
processing of the event.

If o] = 2p(«) then insert an event of type 2 with priority 2p(a) into EQ,
with a pointer to any leaf in D(a). If |o| = ip(a) > 2p(«x), then insert an event
of type 1 with priority (¢ — 1)p(a) into EQ, with a pointer to any leaf in D(«).

2. Chunks become necklaces. When |a| decreases to 2p all chunks become neck-
laces at the same time. At this point all chunks and necklaces that overlap shall
be joined into one necklace. Note that all chunks have excess 0 or 1 when |a| = 2p
and since we first recompute the excess all overlapping chunks and necklaces are
in the same chain. Hence, what we have to do is to join all chunks and necklaces
from left to right, in each chain.

This is done by first deciding for each chunk which chain it belongs to. Next,
for each chain containing at least one chunk, join all chunks and necklaces from
left to right. Update NCS(a) and ZS(«).

8. Necklace and chain break-up. When two consecutive occurrences of a with
indices e; and ey terminate to overlap this may cause a necklace or a chain to
break up into two necklaces or chains.

If e; and e2 belong to the same chain then the chain breaks up in two chains.
If e; and es belongs to the same necklace then split both the necklace and the
chain between e; and es. If e; and ey belong to different necklaces or chunks
in the chain then split the chain between the two subtrees including e; and es
respectively. Update NCS(«) and ZS(«).

4. Merging at internal nodes. Let o be a substring such that the locus of « is
a node v in the suffix tree. Then the leaf-list, LL(v) for v is the union of the
leaf-lists for the subtrees below v, hence at the nodes in the suffix tree the data
structures for the subtrees should be merged into one. We assume that the edges
below v are processed for « as described above.

Let T1,...,T; be the subtrees below v in the suffix tree. We never merge
more than two data structures at the time. If there are more than two subtrees
the merging is done in the following order: T = Merge(T,T;), for i = 2,... ¢,
where T' = T4 to start with. This can also be viewed as if the suffix tree is made
binary by replacing all nodes of degree larger than 2 by a binary tree with edges
without labels. From now on we will describe how to merge the data structures
for two subtrees.

The merging will be done by inserting all indices from the smaller of the two
leaf-lists into the data structure for the larger one. Let T' denote the 3-level search
tree to insert new indices in and denote by eq, ..., e,, the indices to insert, where
e; < e;+1. The insertion is done by first splitting the tree T" at all positions e;
for ¢ = 1,...,m. The tree is then reconstructed from left to right at the same
time as the new indices are inserted in increasing order. Assume that the tree is

reconstructed for all indices, in both trees, smaller than e;. The next step is to
insert e; and all indices between e; and e;41. This is done as follows:

Check if the occurrence with index e; overlaps any occurrences to the left,
i.e. an occurrence in the tree reconstructed so far. Insert e; into the tree. If e;
overlaps with an occurrence already in the tree then check in what way this
affects the chain, chunk, and necklace structure and do the appropriate updates.
Do the corresponding check and updates when the tree to the right of e; (the
tree for indices between e; and e;11) is incorporated, i.e. check if e; will cause
any further changes in the chain, chunk, and necklace structure due to overlaps
to the right. Update NCS(a) and ZS(«).

Every time, during the above described procedure, when two overlapping oc-
currences with indices e; and e;, e; < e;, from different subtrees are encountered
the event (e;,e;) with priority e; — e; is inserted into the event queue EQ and
the previous event, if any, with a pointer to e; is removed from EQ. Update p(«)
to e; —e; if this is smaller than the current p(«) value. If |a| > 2p(«a) then insert
an event of type 1 with priority ||a|/p(a)]p() into EQ, with a pointer to any
leaf in D(a).

6 Analysis

Theorem 3. The minimal augmented suffiz tree, MAST(S), for a string S of
length n can be constructed in time O(nlogn) and space O(n).

In the full version of the paper [5] we show that the running time of the
algorithm in Section 5 is O(nlogn). Here we only state the main steps of the
proof. The proof uses an amortization argument, allowing each edge to be pro-
cessed in amortized constant time, and each binary merge at a node (in the
binary version) of ST(S) of two leaf-lists of sizes n; and ng, with n; > no, in
amortized time O(ng log %2"2) From Lemma 1 it then follows that the total
time for processing the internal nodes and edges of ST(S) is O(nlogn).

Using Theorem 1 and 2 we can prove that: Processing events of types 1 and 2
take time O(m log %), where m = |CHUNKLIST(«)|. Processing an event of
type 3 takes time O(log |c|), where ¢ is the chain being split. An event of type 4
has processing time O(n; log %1”2)

Let v be a node in the suffix tree and let a be a string with locus v or
locus on the edge immediately above v. For the data structure D(«) we define a
potential #(D(«a)). Let C be the set of chains stored in D(«), and for a chain ¢
let |¢| denote the number of occurrences of o in ¢. We define the potential of
D(a) by @(D()) = P1() + P2(a) + > e P3(c), where the role of &1, Py,
and &3 is to account for the potential required to be able to process events of
type 1, 2, and 3 respectively. For a chunk, with leftmost occurrence of a at
position ¢, consider the substring S[i..j] with maximal j and S[i..j] having
period p, where p = p(«a) is the period of a. We denote the chunk green if and
only if |a| mod p < j —i+ 1 mod p. Otherwise the chunk is red. Let k denote the
number of chunks in D(«) and let g denote the number of green chunks in D(«).

We define &1 (a) = 7glog %, Da(a) = klog ‘”,L'e, and @3(c) = 2|c| — log|c| — 2,
with the exceptions that @;(a) =0 if g = 0, and P2(a) =0 if k = 0.

We can prove that processing events of type 1, 2, and 3 release sufficient
potential to pay for the processing, while processing an event of type 4 increases
the potential by O(nq log %1"2) By Lemma 1 the total amortized time for

handling all events is O(nlogn).

References

1. A. Apostolico and A. Ehrenfeucht. Efficient detection of quasiperiodicities in
strings. Theoretical Computer Science, 119:247-265, 1993.

2. A. Apostolico and F. P. Preparata. Optimal off-line detection of repetitions in a
string. Theoretical Computer Science, 22:297-315, 1983.

3. A. Apostolico and F. P. Preparata. Data structures and algorithms for the string
statistics problem. Algorithmica, 15:481-494, 1996.

4. G. S. Brodal, R. Lyngsg, C. N. S. Pedersen, and J. Stoye. Finding maximal pairs
with bounded gap. Journal of Discrete Algorithms, Special Issue of Matching
Patterns, 1(1):77-104, 2000. -

5. G. S. Brodal, R. B. Lyngsg, A. Ostlin, and C. N. S. Pedersen. Solving the string
statistics problem in time O(nlogn). Technical Report RS-02-13, BRICS, Depart-
ment of Computer Science, University of Aarhus, 2002.

6. G.S. Brodal and C. N. S. Pedersen. Finding maximal quasiperiodicities in strings.
In Proc. 11th Combinatorial Pattern Matching, volume 1848 of Lecture Notes in
Computer Science, pages 397-411. Springer Verlag, Berlin, 2000.

7. M. R. Brown and R. E. Tarjan. A fast merging algorithm. Journal of the ACM,
26(2):211-226, 1979.

8. M. Farach. Optimal suffix tree construction with large alphabets. In Proc. 38th
Ann. Symp. on Foundations of Computer Science (FOCS), pages 137-143, 1997.

9. A. S. Fraenkel and J. Simpson. How many squares can a string contain? Journal
of Combinatorial Theory, Series A, 82(1):112-120, 1998.

10. D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997.

11. K. Hoffmann, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan. Sorting Jordan
sequences in linear time using level-linked search trees. Information and Control,
86(1-3):170-184, 1986.

12. S. Huddleston and K. Mehlhorn. A new data structure for representing sorted lists.
Acta Informatica, 17:157-184, 1982.

13. F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly
ordered sets. STAM Journal of Computing, 1(1):31-39, 1972.

14. D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.
SIAM Journal of Computing, 6:323-350, 1977.

15. E. M. McCreight. A space-economical suffix tree construction algorithm. Journal
of the ACM, 23(2):262-272, 1976.

16. K. Mehlhorn. Sorting and Searching, volume 1 of Data Structures and Algorithms.
Springer Verlag, Berlin, 1984.

17. J. Stoye and D. Gusfield. Simple and flexible detection of contiguous repeats using
a suffix tree. Theoretical Computer Science, 270:843-856, 2002.

18. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14:249-260, 1995.

19. P. Weiner. Linear pattern matching algorithms. In Proc. 14th Symposium on
Switching and Automata Theory, pages 1-11, 1973.

