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—— Abstract

A priority queue stores a set of items with associated keys and supports the insertion of a new item

and extraction of an item with minimum key. In applications like Dijkstra’s single source shortest
path algorithm and Prim-Jarnik’s minimum spanning tree algorithm, the key of an item can decrease
over time. Usually this is handled by either using a priority queue supporting the deletion of an
arbitrary item or a dedicated DecreaseKey operation, or by inserting the same item multiple times
but with decreasing keys.

In this paper we study what happens if the keys associated with items in a priority queue can
decrease over time without informing the priority queue, and how such a priority queue can be used
in Dijkstra’s algorithm. We show that binary heaps with bottom-up insertions fail to report items
with unchanged keys in correct order, while binary heaps with top-down insertions report items
with unchanged keys in correct order. Furthermore, we show that skew heaps, leftist heaps, and
priority queues based on linking roots of heap-ordered trees, like pairing heaps, binomial queues
and Fibonacci heaps, work correctly with decreasing keys without any modifications. Finally, we
show that the post-order heap by Harvey and Zatloukal, a variant of a binary heap with amortized
constant time insertions and amortized logarithmic time deletions, works correctly with decreasing
keys and is a strong contender for an implicit priority queue supporting decreasing keys in practice.
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1 Introduction

A priority queue is a data structure storing a set of items, where each item has an associated
key. A basic priority queue supports the two operations Insert and ExtractMin, which
insert a new item into the priority queue and extract an item with minimum key from the
priority queue. A classic example of a data structure supporting these operations is the
binary heap by Williams from 1964 [20]. Although many priority queues exist supporting a
more comprehensive list of operations or having better asymptotic bounds, the binary heap
is the standard priority queue implementation in many languages, like in Python (module
heapq) and Java (class java.util.PriorityQueue). The popularity of binary heaps is due
to its simplicity, it can be stored implicitly in an (extendable) array only storing the n items
currently in the heap, and the number of comparisons is relatively low. Insertions require at
most log, n comparisons, and minimum extractions at most 2logy n comparisons, but the
number of comparisons performed are often lower in practice.

Two graph algorithms fundamentally relying on efficient priority queue implementations
are Dijkstra’s algorithm [5] for finding shortest paths from a source node in directed graphs
with non-negative edge weights, and Prim-Jarnik’s algorithm [11, 16] for finding the minimum
spanning tree in a graph. Both maintain a priority queue over the nodes not included yet in
the shortest path tree and minimum tree, respectively. A node in the priority queue has an
associated key equal to the shortest distance to the node discovered so far and the lightest
edge connecting the node to the minimum spanning tree constructed so far, respectively.
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For both algorithms the key of a node in the priority queue can decrease over time, which
challenges the interface of the basic priority queue. One solution is to apply a more specialized
priority queue, like Fibonacci heaps [9], which support a dedicated DecreaseKey operation —
but this structure is more complicated, pointer based, and often not part of a standard library.
Although theoretically worst-case superior, the overhead of supporting DecreaseKey only
pays off when a large fraction of the edges cause a DecreaseKey operation to be performed.
A simpler solution is to stay with a basic priority queue and just insert a node multiple
times, once whenever the key decreases. This leaves outdated copies of nodes in the priority
queue, but these can be skipped whenever they are extracted from the priority, since only
the first extraction of a node is not outdated. Two possible implementations of this idea for
Dijkstra’s algorithm are shown as algorithms Dijkstra; and Dijkstra, in Figure 1. In the
following we do not discuss Prim-Jarnik’s algorithm any further.

In a typical implementation of Dijkstra’s algorithm one maintains an array dist, where
dist[v] is the currently shortest known distance from the source node to node v, and the
items inserted into the priority queue are pairs (dist[v],v), where dist[v] is the key of the
item. In this paper we consider adopting the idea of only storing v as an item in the
priority queue without an explicitly associated key. The comparison between two items in
the priority instead compares the current distances dist[v]. This will reduce the space usage
for the priority queue, e.g., a binary heap only needs to store an array of node ids. The
challenge is now that keys of inserted items can decrease over time, i.e., the ordering of
the items in the priority queue changes over time and potentially invalidates the internal
invariants maintained by a priority queue. In this paper we identify comparison based priority
queues working correctly with decreasing keys. In particular we show that skew heaps [18],
leftist heaps [4], binomial queues [19], pairing heaps [8], Fibonacci heaps [9], and post-order
heaps [10] work correctly even with decreasing keys. For binary heaps [20] we show that the
standard implementation with bottom-up insertions fails to support decreasing keys, whereas
binary heaps work correctly if operations are performed top-down.

Model

We define a priority queue with decreasing keys as follows. It stores a set of items where each
item has an associated key from some totally ordered universe. Over time the key of an item
can decrease an arbitrary number of times. We let the original key of an item refer to the key
when the item was inserted, whereas the current key refers to the key at the current time.
If the current key equals the original key we say that the item has an unchanged key. The
priority queue is not informed when keys decrease, and whenever two items are compared
by the priority queue the comparison is performed with respect to their current keys. The
priority queue has no access to the original keys of the items; it can only compare two items
and get the relative order of their current keys. Note that the answer to the comparison
between two items can vary over time depending on how keys decrease.

A priority queue with decreasing keys should support the following two operations:

Insert(x) inserts an item into the priority queue.

ExtractMin() returns an item from the priority queue with current key less than or equal

to the original keys of all items in the priority queue.

It follows that if ExtractMin returns an item with unchanged key, the item has smallest
key among all items with unchanged key. Furthermore, if several items in the priority queue
have current key less than or equal to the smallest original key in the priority queue, then the
priority queue is allowed to return any of these items, i.e. its behavior is non-deterministic.
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As an example, consider a priority queue with four inserted items A, B, C' and D with
original keys 5, 2, 6 and 4, respectively. Assume C' and D have had their keys decreased to
have current keys 3 and 1, respectively. Then ExtractMin should return either B or D, with
current keys 2 and 1, respectively, since B has smallest original key equal to 2, and A and C
have current keys 5 and 3, respectively. In Section 2 we discuss how an implementation of
Dijkstra’s algorithm can benefit from priority queues with decreasing keys.

Contributions

This paper introduces no new data structure. Only existing data structures are analyzed in
the context of decreasing keys. Our contributions are:

Section 2: We show that Dijktra’s algorithm [5] (Dijkstra, in Figure 1) works correctly
when using a priority queue with decreasing keys, i.e., items in the priority queue only
store a node v instead of the pair {dist[v],v).

Section 3: Binary heaps [20] with bottom-up insertions do not support decreasing keys, in
particular we show that sorting (with interleaved key decreases) and Dijkstra’s algorithm
fail on small examples.

Section 4: Binary heaps with top-down insertions support decreasing keys, i.e., inserting
a new item considers the ancestors of the new leaf top-down until the first ancestor is
found with key greater than or equal to the new key. The central invariant used in the
analysis, and also used in Sections 5 and 6, is decreased heap order requiring that that
any ancestor of a node v in a tree must store an item with current key less than or equal
to the original key of v.

Without decreasing keys, bottom-up and top-down insertions cause the nodes of the
resulting heaps to store identical keys, but for random insertions the number of compar-
isons increases from average O(1) [15] to ©(logn). In Section 7 we do an experimental
comparison of the two variants of a binary heap, and in particular the overhead introduced
by performing insertions top-down.

Section 5: Skew heaps [18], leftist heaps [4], pairing heaps [8], binomial queues [19], and
Fibonacci heaps [9] work correctly with decreasing keys.

Section 6: The post-order heap by Harvey and Zatloukal [10] supports decreasing keys.
The post-order heap is a simple implicit heap based on binary heaps that supports
insertions in amortized constant time and extractions in amortized logarithmic time (like,
e.g., binomial queues). In Section 7 our experimental evaluation shows that the post-order
heap is a strong contender for an efficient implicit priority queue supporting decreasing
keys.

Section 7: We supplement our theoretical results with an experimental evaluation of
priority queues supporting decreasing keys and compare the number of key comparisons
performed to sort and for running Dijkstra’s algorithm on cliques.

Related work

The literature on priority queues is comprehensive, see, e.g., the survey by Brodal [1].
Fibonacci heaps [9] support DecreaseKey in amortized constant time and their discovery
initiated the study of data structures supporting efficient DecreaseKey operations. Subse-
quently, e.g., relaxed heaps [6] were introduced, which support DecreaseKey in worst-case
constant time. In this paper we focus on simpler data structures, not supporting DecreaseKey
operations. Many priority queues can be extended to support an arbitrary Remove operation,
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by having a separate index keeping track of where each item is stored in the data structure.
This introduces a space overhead for the index and a time overhead to keep the index updated,
e.g., swapping two items in a binary heap requires two entries in the index to be updated. If
only Insert and ExtractMin need to be supported, many simple constructions exist—a few
commonly used are mentioned and evaluated in this paper. A special interesting class of
priority queues are those that can be stored in a single array containing the items, known as
implicit priority queues. The classic example is the binary heap [20], but other examples are,
e.g., the implicit binomial trees by Carlsson, Munro and Poblette [2], and the post-order heap
by Harvey and Zatloukal [10] that is our focus in Section 6. Many priority queues maintain
a forest of trees of sizes corresponding to digits in the binary or skew binary representation
of the total number of items stored. Elmasry, Jensen and Katajainen [7] give an overview of
this relationship for various constructions.

Background

The motivation for studying priority queues with decreasing keys arose from experience with
undergraduate students having problems translating Dijkstra’s shortest path algorithm into
correct Java programs based on the description in the standard text book by Cormen et al. [3,
Section 24.3]. Students are challenged by the fact that the priority queue implementation
supported by the Java standard library! does not support DecreaseKey, the Remove operation
requires linear time, and the ordering of values is provided using a comparator (or the natural
ordering of the values). A priority queue with decreasing keys allows Dijkstra’s algorithm to
store node identifiers only in the priority and using a comparator to compare two nodes by
comparing their currently best known distances—the Java solution many students implement,
but fails since their priority queue does not support decreasing keys.

2 Dijkstra’s algorithm with decreasing keys

Assume we are given a directed graph G = (V, F) with non-negative edge weights J and a
source node s € V, and we want to compute the shortest distance from s to all nodes in
the graph. This problem can be solved using Dijkstra’s algorithm [5]. The basic idea of
Dijkstra’s algorithm is to visit nodes in increasing distance from s. For each node v not
visited yet its currently known distance dist[v] is stored in an array dist, i.e., the distance to
v along paths only containing v and already visited nodes. The next node to visit is a node u
not visited so far and with smallest dist[u] value. When visiting a node u we relaz along its
outgoing edges (u, v) by performing the update dist[v] := min(dist[v], dist[u] + d(u,v)). To
obtain an efficient solution, the set of nodes not visited yet are stored in a priority queue,
with dist[v] as the key of v. Fibonacci heaps [9] provide a dedicated DecreaseKey operation
to update (decrease) the key of a node whenever the known distance to a node decreases.
Using a Fibonacci heap Dijkstra’s algorithm can be implemented as shown in Dijkstra, in
Figure 1 obtaining running time O(|E| + |V|log|V|). If no DecreaseKey is available, but
an arbitrary item can be removed by a Remove operation, we can simulate DecreaseKey by
first removing the node using Remove and then reinserting the node with its smaller distance
as key using Insert as shown in Dijkstra, in Figure 1. If Remove takes logarithmic time,
the resulting running time is O(|E|log |V]). For sparse graphs, i.e., |E| = O(|V]), the two

! https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/PriorityQueue.
html
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proc Dijkstra,(V, E, 0, s)
dist[v] = +oo for all v € V'\ {s}
dist[s] =0
Insert(Q, (dist[s], s))
while Q # 0 do
(d,u) = ExtractMin(Q)
for (u,v) € EN({u} x V) do
if dist{u] + 0(u,v) < dist[v] then
dist[v] = dist[u] + §(u, v)
if v € @ then
DecreaseKey(Q, v, dist[v])
else
Insert(Q, (v, dist[v]))
return dist

proc Dijkstra,(V, E, 0, s)

dist[v] = +oo for all v € V' \ {s}
dist[s] =0
Insert(Q, (dist[s], s))
while Q # 0 do

(d,u) = ExtractMin(Q)

if d = dist[u] then

for (u,v) € EN({u} x V) do

if dist[u] + d(u,v) < dist[v] then

dist[v] = dist[u] + d(u,v)
Insert(Q, (dist[v],v))
return dist

proc Dijkstra,(V, E, 0, s)

dist[v] = +oo for all v € V' \ {s}
dist[s] =0
Insert(Q, (dist[s], s))
while @ # 0 do
(d,u) = ExtractMin(Q)
for (u,v) € EN({u} x V) do
if dist{u] + 0(u,v) < dist[v] then
dist[v] = dist[u] + §(u, v)
if v € Q then
Remove(Q, v)
Insert(Q, (dist[v], v))
return dist

proc Dijkstra,(V, E,d,s)

dist[v] = +oo for all v € V'\ {s}
dist[s] =0
visited = ()
Insert(Q, (dist[s], s))
while Q # () do
(d,u) = ExtractMin(Q)
if u ¢ visited then
visited = visited U {u}
for (u,v) € EN({u} x V) do
if dist[u] + 0(u,v) < dist[v] then
dist[v] = dist[u] + 6(u,v)
Insert(Q, (dist[v], v))
return dist

Figure 1 Four variations of Dijkstra’s algorithm for the single source shortest path problem on a
digraph with nodes V', edges E, edge weights §, and source node s. The main result of this paper is
that Dijkstra, still works correctly if we adopt a priority with decreasing keys.

running times are asymptotically identical.

Here we consider a simpler implementation using a binary heap only supporting Insert
and ExtractMin, but also achieving running time O(| E|log |V'|). Whenever a shorter distance
is found to a node v, we insert the item (dist[v], v) into the heap, i.e., the same node v can
be inserted multiple times, but with decreasing keys. All instances of v in the heap, except
for the one with key equal to the current dist[v], are outdated and should be ignored/skipped
when extracted from the heap. We can identify nodes to be skipped by either comparing
the extracted distance with the currently best known distance or by keeping a set of all
visited nodes, e.g., a bit-vector. Algorithms Dijkstra; and Dijkstra, in Figure 1 contain
the pseudo code for these implementations of Dijkstra’s algorithm. We will not argue further
about the correctness of these variations of Dijkstra’s algorithm (leaving outdated items in
the priority queue is also a common approach to external memory algorithms for the single
source shortest path problem, see, e.g., [12, Section 4.2]).2

2 In the worst-case the priority queue stores O(|E|) items, but this can be reduced to O(|V]) items by
rebuilding the heap whenever it contains > (1+¢)|V/| items, for some constant € > 0, where all outdated
items are removed. The time for rebuilding the heap can be charged to the removed items, i.e., the
asymptotic running time remains unchanged.
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Crucial to the above implementations of Dijkstra’s algorithm is that each item we insert
into the heap is a pair (dist[v],v), where the key dist[v] is fixed when inserted. These keys
require space in the heap, that could be tempting to save. The (potentially dangerous) idea
is now: Skip storing the keys explicitly in the items and instead use the current value dist[v]
as the current key for all items storing v in the heap.

In the following we argue that Dijkstra, still works correctly if we adopt a priority with
decreasing keys, e.g., those in Sections 4-6. The only changes to Dijkstra, is that Insert
should only take the node to insert (without the distance), and ExtractMin does not return
the key/distance d (that anyway was not used by Dijkstra, after the item was extracted),
and whenever the priority queue compares the keys of two nodes u and v it compares the
currently known distances dist[u] and dist[v].

The invariant maintained by the algorithm is that only nodes v with dist[v] < 400 are
stored in the priority queue, and for all nodes with dist[v] < 400 and v ¢ wvisited, the priority
queue contains an item containing v with unchanged key equal to the current dist[v]. This is
true since we insert an item containing v with original key dist[v] whenever dist[v] decreases.

Whenever an item with a node v is extracted from the priority queue, we have three
cases: 1) v € visited, 1) v ¢ visited and the current key of the item equals the original key,
and #i7) v & visited and current key of the item is less than the original key. In case i) we
extract a node that has already been visited, and therefore should be skipped. In case ii) we
extract an item with current key equal to its original key. Since the priority queue guarantees
that the current key of the extracted item is less than or equal to all original keys stored in
the priority queue, the item has minimum original key among all items in the priority queue.
From the invariant it follows that v has smallest dist[v] value among all nodes not visited
yet—as expected by Dijkstra’s algorithm. Finally, in case ) an item is extracted containing
a node v not visited yet and with current key less than its original key. By the priority queue
specification, its current key, i.e., dist[v], is less than all original keys in the priority queue,
in particular those stored with unchanged keys. Since v & visited the invariant implies there
must exist another item in the priority queue storing v with original and current key equal
to dist[v]—i.e., v is a node not visited yet with minimum dist value as expected by Dijkstra’s
algorithm. It follows that a priority queue supporting decreasing keys extracts unvisited
nodes in increasing order of distance as required by Dijkstra’s algorithm.

3 Binary heaps fail with decreasing keys

In this section we show how binary heaps with bottom-up insertions [20] fail to support
decreasing keys on two simple examples: Sorting and Dijkstra’s single source shortest path
algorithm.

We first briefly recall the structure of a binary heap. A binary heap stores n items in an
array H[1..n], that can be viewed as a binary tree where node i has children 2i and 2i + 1.3
The items are stored such that heap order is satisfied, i.e., the key of item H][i] is greater
than or equal to the key of its parent H[|i/2]]. A bottom-up insertion places the new item
as the last item in H and repeatedly swaps it with its parent (sift-up) as long as its key is
less than the parent’s current key. A minimum extraction returns the item at the root H[1],
and moves the last item z from H[n] to H[1], and sifts-down z by repeatedly swapping x

3 In the paper we assume arrays start at index 1. In our implementation we adapt to Python lists, which
start at index 0.
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> - 2 > > > >
insert 2 2 decrease insert 1 extract 2 Q extract 0 extract 1 extract 4
insert 3 / \ 350 / \ / \ /\
insert 4 3 4 0 4 0 4 1 4 4
/

1

Figure 2 Binary heap failing to sort (2,3,4,1) if 3 is decreased to 0 before inserting 1.

S —_— a —_— b —_— —_—

0 extract sg 1 extract a; 2 extract bo d5 extract ds bg
insert a; / \ insert bg / \ insert c3 / \ / \
@sert bs ds ¢ 5 7 by 3 €3 €3
insert c7 -
insert ds / \ / \ /A /
insert eg bs €6 bg €6 eg C3 €g

> (3 — 3 —— d _ -
extract bo extract c3 extract cs3 extract dg extract eg
- / \ insert d4 /N N
€6 C3 €6 d4 €g

Figure 3 Execution of Dijkstra’s single source shortest path algorithm (Dijkstra,), using dist[v]

as keys and a binary heap with bottom-up insertions, incorrectly computing the distance to e as 6.

Top is input graph and below the content of the binary heap. Subscripts are keys, and underlined
keys are decreased keys.

with the item with smallest key among its children until no child stores an item with key
less than z.

Sorting

Consider sorting items by inserting them into a priority queue and then extracting them in
increasing key order. If an item gets its key decreased during the sequence of operations,
a priority queue with decreasing keys guarantees that the items with unchanged keys are
still reported in increasing key order. A binary heap with bottom-up insertions fails to do
so when inserting four items with keys 2, 3, 4 and 1, and where key 3 is decreased to 0
before inserting 1, as illustrated in Figure 2. Recall that the heap is not informed when
keys decrease, causing the current keys to violate heap order. Instead of reporting the items
with unchanged keys in order (1,2, 4) they are reported in order (2,1,4). Note that when
inserting 1 as the last leaf, it is compared to its parent with current key 0 (but original key 3),
where the sift-up terminates, and incorrectly leaves 1 in the subtree of 2, causing 2 to be the
first item extracted by ExtractMin.

Dijkstra’s algorithm

Figure 3 shows a graph with 6 nodes and 9 edges, where Dijkstra’s algorithm (Dijkstra,)
fails when using a binary heap with bottom-up insertions and using dist[v] as the current
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key for node v. Whenever a smaller distance to a node is discovered, the node is inserted
with the new distance as its original key. The previously inserted copies of the node (if any)
get their current keys decreased to the new smaller distance, like b where by is the copy of b
in the heap with original key 8 and current key 2. When extracting b, in the example, eg
is sifted down and leaving the leftmost path top-down with nodes ds, by and eg, causing
the inserted node c3 to stay at a leaf when compared with by. The algorithm incorrectly
visits node d before node ¢, causing the distance to node e to be computed incorrectly as 6.
Note that node d is extracted twice from the heap, both with original keys, but only the first
time we visit d and consider paths with d as the second to last node on the paths (the test
u & visited prevents us from visiting d a second time).

It should be noted that if we skipped the test u & visited, the algorithm would compute
the correct distances by revisiting nodes whenever a shorter distance to a node has been
discovered. This is against the principle idea of Dijkstra’s algorithm to only visit nodes once
in increasing order of distance from the source, so that each edge is considered at most once.
See the discussion in Section 7.3 on Figure 9 for further details.

4 Binary heaps with top-down insertions

In a binary heap with top-down insertions Insert(z) creates a new empty leaf at position n,
and items on the path from the root to the new leaf are compared with = top-down until the
first node u is found with current key greater than or equal to the new key. The items on
the path from u to the new leaf are sifted one level down and item x is inserted in node wu.
The ancestor at depth d = 0,. .., |log,n| is node [n/2!'°82"1=4| If keys are distinct and do
not decrease, then top-down insertions and bottom-up insertions yield identical structures.

In the following we let key,,, denote an original key and key,,, a current key. For a
tree structure, where each node stores an item, we say that the tree satisfies the decreased
heap order if and only if u.key,,, < v.key,,, for all ancestors u of a node v. Note that if
decreased heap order is satisfied, then the item at the root of a tree satisfies the conditions to
be returned by ExtractMin, and decreased heap order remains satisfied when current keys
decrease.

During Insert(z) a node v can only get one new ancestor, namely x. This happens when
x is compared with an ancestor u of v with the result x.key,,, < u.key,,,. Since before the
insertion decreased heap order ensures u.key,,, < v.key,.,, we have z.key,,, < v.key,,, and

the tree satisfies decreased heap order after the insertion.

An ExtractMin operation returns the root of the tree. By the decreased heap order the
item returned has current key less than or equal to all original keys in the tree. Before
returning the answer, the last item z is moved to the root and sifted down, where x is swapped
with the item at the child with smallest current key until the items of both children have
current key > x.key.,,,. Whenever two siblings v and w are compared, say v.key,,, < w.k€Yqyy,
we have two cases. If z becomes the parent of v and w, since z.key.,, < v.keYey, < W.k€Yoyr
then x.key.,, is less than or equal to the original keys in all nodes below z, since either
v.keyqy, or w.key.,, was so before the operation. Otherwise, v becomes the parent of w, and x
and all nodes in w’s subtree get v as a new ancestor. Since v.key.,, < w.key.,,, then v.key.,,
is less than or equal to all original keys in w’s subtree, and v.key.,, < z.key.,, < T.keyy,.
It follows that after ExtractMin the tree still satisfies decreased heap order.
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5 Existing heaps supporting decreasing keys

In the following we argue that the internal workings of several existing priority queues ensure
decreased heap order to be maintained in the presence of decreasing keys.

Skew heaps and Leftist heaps

Skew heaps [18] and leftist heaps [4] support Insert and ExtractMin on a heap storing n
items in time O(logn), where the time for skew heaps is amortized and for leftist heaps
worst-case. Both data structures represent a priority queue by a (decreased) heap ordered
binary tree, and support ExtractMin by removing the root and returning its item. All other
structural changes consist of merging two root-to-leaf paths in two (decreased) heap ordered
binary trees, and potentially swapping the left and right subtrees at nodes of the resulting
tree. Swapping the left and right subtrees of a node does not change ancestor relationships,
i.e., does not affect decreased heap order. To argue that the two data structures maintain
decreased heap order, we only need to argue that merging two paths ensures that the resulting
tree satisfies decreased heap order.

Normally the keys along the two paths would appear in increasing key order, but this is
not necessarily the case when keys can decrease (in fact the current keys can appear in any
order). Assume the nodes along the two root-to-leaf paths to be merged are (ug, u1,us,...)
and (vp,v1,ve,...), and the merging is performed top-down recursively as in Figure 4. If u;
ends up before vj, i.e., u; is a new ancestor of vj;, then there exists j* < j where u; and vj/
have been compared and u;.key.,, < vj.key.,,. Since by assumption vjr.keyq,, < vj.key,,
it follows that u; satisfies decreased heap order with v; and all its descendants. It follows
that the resulting tree after merging two root-to-leaf paths in two decreased heap ordered
trees also satisfies decreased heap order.

T wuo 3 merge(71,72) wvo 2
/\ /N
proc merge(u = (uo, u1,...)),v = (Vo, v1,...)) w 1g 4 u 3 15
if u =0 then AR / N\
return v Uz 8 T 214 ur g 4
if v =0 then / \ \
return u v1 5 7 214
if uo.key.,, < vo.key.,, then Ty vy 2 /\
return (uo) + merge((u1,...),v) / \ v2 29 4i3
else v1 5 15 /
return (vo) + merge(u, (v1,...)) /\ uz 8
v2 29 413

Figure 4 Top-down merging two paths v and v. In the example values are current keys and
subscripts original keys (subscripts are omitted if current and original keys are equal).

Pairing heaps, Binomial queues, and Fibonacci heaps

Many priority queues represent a priority queue by one or more heap ordered trees of arbitrary
degree. Pairing heaps [8], binomial queues [19], and Fibonacci heaps [9] are examples of such
priority queues supporting Insert in amortized time O(1) and ExtractMin in amortized
time O(logn). Here we prove that these data structures maintain decreased heap order
when used with decreasing keys. Pairing heaps only represent a priority queue by a single
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tree, whereas binomial queues and Fibonacci heaps maintain a forest, and the item removed
by ExtractMin is the root with minimum current key, i.e., the returned item has current
key less than or equal to all original keys in all trees. Nodes only get new ancestors when
two roots are linked, that makes the root v with greatest current key a child of the root u
with smallest current key. Since u.key,.,, < v.key,,, and any node w in the tree rooted at
v has v.key.,, < w.key,,,, it follows that u.key.,, < w.key,,,, i.e., the linked tree satisfies
decreased heap order. It follows that the resulting heaps satisfy decreased heap order.

For Fibonacci heaps, the operations DecreaseKey replaces the key of an item by a smaller
key. In our context this corresponds to lowering the original key. In the context of decreasing
keys, it is important that DecreaseKey is implemented to always cut the edge from the node
to its parent (without comparing with the current key of the parent, since that could have
been decreased arbitrarily), and adds the node as a new root to the forest.

6 Post-order heap

Binary heaps with bottom-up insertions often benefit from the fact that insertions do not
sift-up items far in the tree in practice. With top-down insertions this property cannot be
exploited. In this section we consider the post-order heap by Harvey and Zatloukal [10]. In
our experiments it appears to be a strong contender for an efficient implicit priority queue
supporting decreasing keys, which is why we consider it in more detail in this section. Harvey
and Zatloukal [10] did an experimental comparison of C# implementations of post-order
heaps and binary-heaps with bottom-up insertions and found that post-order heaps had
faster insertions but slower deletions.

A post-order heap consists of a forest of complete heap ordered binary trees, where all
trees have distinct size, except for possibly the two trees of smallest size. Since a complete
binary tree has size 2! — 1, for some 4, the number of trees of each size corresponds to the
digits in the skew binary number representation of n. Myers [14] proved that the set of tree
sizes is unique for a given n. The trees are laid out consecutively in a single array H in
decreasing size order, and each tree in post-order. For a subtree of size s with root H[i], the
subtree is stored in H[i — s + 1,4|, the subtrees at the children have size |s/2], the right
child is H[i — 1], and the left child is H[i — 1 — [s/2]]. See Figure 5.

1
10/ \3 2
RN RN /N
13 20 14 19 6 4 7 5
/\ /\ /\ /\ /\ /\ /\ /\
16 21 23 25 24 18 28 26 27 8 17 12 11 15 9 22

16]21[13]23]25]20[10]24[18[14]28]26]19] 3| 1 [27] 8 [ 6 [17[12] 4 [ 2 [11[15] 7 [ 9 [22] 5]
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Figure 5 Top: A post-order heap storing 28 items in four trees of size 15, 7, 3 and 3. Bottom:
The implicit post-order layout in a single array.

Insert(x) inserts the item z as the last item of H. If the last two trees had different
size, © becomes a tree of size one. Otherwise, the last two trees of size s together with x
are combined to a new tree of size 2s + 1 with = as the root, and we apply the sift-down
operation Heapify(|H|,2s+ 1) (where the first argument is the node position, and the second
argument is the size of the subtree). Except for node indexing, Heapify is implemented as
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proc Insert(z)
push(H, z)
if |S| > 2 and S[|S|] = S[|S| — 1] then
size = pop(S) + pop(S) + 1
push(S, size)
Heapify(|H|, size)
else

proc ExtractMin()
min = +00
i=|H|
for j =1 to |S| do
size = S[|S| — 7 + 1]
if H[i] < min then

min = H|[i]

push(S, 1)

S12€min = Size
proc Heapify(i, size)

if size > 1 then

1 =1 — Size

! » size = |pop(S5)/2]
size = | size/2] if size > 0 then
right =i — 1 push(S, size)
left = right — size

push(S, size)
smallest = H|left] < Hlright] 7 left : right

. , @ = pop(H)
if H[smallest] < H[i] then f i < |H| then
swap H[i] and H[smallest] Hlimin] = &

Heapify(smallest, size) Heapify(imim, $i2€mm)

return min

Figure 6 Post-order heap operations, where H stores the items and S is a list of tree sizes.

for binary heaps. To support decreasing keys, it is important that Heapify is performed
top-down. ExtractMin() identifies the root min with minimum (current) key to return, and
removes the root x from the rightmost tree (causing the two subtrees to become new trees).
If & # min, x replaces the root min, and z is sifted down using Heapify. Pseudo-code for
the operations is given in Figure 6 (in [10] it is discussed how the list of tree sizes S of length
O(logn) can be stored using only O(logn) bits). Since a post-order heap structurally is
just a collection of binary heaps updated only using top-down Heapify, the discussion from
Section 4 carries over to prove that post-order heaps support decreasing keys.

Harvey and Zatloukal [10] proved that post-order heaps support Insert in amortized
time O(1) and ExtractMin in amortized time O(logn). If we consider the worst-case
number of comparisons for binary heaps with top-insertions, then Insert uses at most
[logy n| whereas ExtractMin at most 2|log, n|, i.e., sorting using a binary heap requires
at most 3|log, n] comparisons. The worst-case number of comparisons for operations on
post-order heaps is not competitive, since in the worst-case Insert performs Heapify on a
tree containing all items, i.e., requiring at most 2|log, n| comparisons, and ExtractMin first
must find the root with minimum value, and then perform Heapify on this tree, requiring
at most 3|log, n| comparisons. Using these bounds for deriving a bound on sorting using a
post-order heap gives us an upper bound of 5nlog, n comparisons. But for sorting we can
derive a better bound. During the n insertions at most n/2" roots are created at height h each
requiring 2h comparisons for a sift-down, causing a total of at most >, 2h - n/2" = O(n)
comparisons for insertions. Furthermore, during the sequence of minimum extractions the
average number of trees is %logg n + O(1), causing the total number of comparisons for
finding the minimum roots to be at most %nlogg n + O(n). Together with the upper bound
of 2log, n comparisons for each Heapify caused by an ExtractMin gives a total bound
of 2.5nlog, n + O(n) comparisons for sorting using a post-order heap. The advantage of
post-order heaps over binary heaps with top-down insertions is studied in Section 7 (Figure 7).
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7 Experimental evaluation

The previous sections state that many priority queue data structures work in the setting with
decreasing keys. Any implementation of these data structures will also work if explicit keys
can be removed and handled by implicit decreasing keys, e.g., implemented by a comparator
accessing the array dist in Dijkstra’s algorithm. The worst-case analysis of these data
structures carries over to the setting with decreasing keys and the worst-case running time
analysis of Dijkstra’s algorithm remains unchanged, though in practice the picture could be
different. In particular items to be skipped (i.e., with decreased keys) in Dijkstra’s algorithm
can be extracted earlier when allowing decreasing keys.

We implemented various priority queues and Dijkstra’s algorithm in Python 3.9 to have
code as close as possible to pseudo code, and to focus on measuring counts that were hardware,
language, and compiler independent.* A priority queue was implemented as a class with
extract_min and insert methods to update the priority queue, and a method empty to
test for emptiness. Items are compared using the < operator, i.e., using the __1t__ method
of the items. Finally, each priority queue has a method validate to check the structural
integrity of its current content, e.g., a recursive traversal checking heap order, number of
children, and balance conditions. The experimental evaluation was done on a Lenovo T460s
laptop (Intel i7-6600U CPU, 12 GB RAM) running Python 3.9.4 under Windows 10.

The following priority queues were implemented: Skew heaps [18], leftist heaps [4],
binomial queues [19], pairing heaps [8], post-order heaps [10], and binary heaps [20] with
bottom-up and top-down insertions. Finally, we made a wrapper class around Python’s
builtin module heapq that is a C implementation® of binary heaps with bottom-up insertions.
We did not implement Fibonacci heaps [9], since we do not consider dedicated DecreaseKey
operations, and without DecreaseKey Fibonacci heaps are identical to binomial queues.

We considered four versions of binary heaps, where the first two do not support decreasing
keys: BinaryHeap is a standard binary heap with bottom-up insertions and top-down heapify
to sift-down the new root value during minimum extractions. BinaryHeapHeapifyBottomup
improves typical performance by letting heapify first recursively pull up the child with smallest
(current) key until an empty leaf is created, where the item from the last leaf is inserted
and sifted up (our experiments confirm that module heapq implements this idea). The last
two variants support decreasing keys. BinaryHeapTopdown supports insertions by performing
comparisons top-down along the root-to-new-leaf path, until the first node is reached with
greater or equal (current) key. The new item is inserted in this node, and all remaining
nodes on the path to the last leaf are sifted one level down. BinaryHeapTopdownHeapify has
a slightly naiver insertion implementation, where all items on the root-to-new-leaf path are
sifted one level down, and the new item is inserted at the root and sifted down by heapify.

Experiments were parameterized by the priority queue class to be tested, to ensure
identical testing overhead for the different classes. In our experiments we have measured
the number of comparisons performed, various counts and running time. All priority queues
were tested with exactly the same set of inputs. Data structures not supporting decreasing
keys (Heapq, BinaryHeap and BinaryHeapHeapifyBottomup) are shown with dashed lines. In
all plots Heapq and BinaryHeapHeapifyBottomup have identical curves, except for the time
for sorting in Figure 7(e).

4 Python source code used for experiments and data visualized in figures is available at
https://www.cs.au.dk/~gerth/papers/fun22code.zip
5 https://github.com/python/cpython/blob/master/Modules/_heapgmodule.c
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7.1 Correctness of implementation

To have some evidence for the correctness of our implementations, we performed two simple
sorting tests: The first checks if Insert and ExtractMin work correctly if no keys decrease,
and the second checks if decreasing keys are supported. The second stress test was in fact
used to identify which priority queues supported decreasing keys, before knowing if they did
so, directing the search for the arguments presented in Sections 3—6.

Sorting

Each priority queue implementation was used to sort various input sequences of n numbers,
1 < n <1000, with input being the increasing sequence 1,...,n, the decreasing sequence
n,...,1, a uniform random permutation of 1,...,n, and n uniformly selected random
integers from 1,...,n (with possible repetitions). Only the random integer inputs can
contain duplicates, where the expected number of distinct integers among n integers is
n(l—(1—-1/n)") = n(l —1/e) ~ 0.632n. Each input was first inserted using n calls to
insert followed by calls to extract_min until empty returned true. The output was checked
against Python’s built-in function sorted. After each update the priority queue’s validate
method was called to check for internal integrity.

Decrease key support

Each priority queue implementation was tested for the support of decreasing keys by per-
forming the following experiment 1000 times with n = 100: Insert a random permutation of
1,...,n using n calls to Insert, followed by n calls to ExtractMin. After each operation,
with probability 1/2 a random inserted item has its key decreased to zero. At the end it is
checked if all items with unchanged key were reported in sorted order. As expected by the
theory, all priority queues not supporting decreasing keys failed this test, whereas the others
succeeded on all inputs

7.2 Sorting performance

We evaluated the performance of the different priority queues by using them to sort n integers
for different n (powers of two, n < 22°) and different input distributions: increasing sequences,
decreasing sequences, uniformly permuted sequences, uniformly selected random integers from
1,...,n. Each input was run at least 3 times and until at least 0.2 seconds were passed. For
random inputs 10 different inputs were generated and the average computed. The measured
average number of comparisons for each input size and type is shown in Figure 7(a, b, ¢, d).
In the plots we on the y-axis have number of comparisons performed divided by nlog, n, i.e.,
the theoretical asymptotic worst-case bound of sorting.

That Heapq is equivalent to the Python implementation BinaryHeapHeapifyBottomup
follows from the plots, where the two priority queues achieve coinciding number of comparisons
(it was checked that the number of comparisons performed were identical). Among the
implicit constructions based on binary heaps we have a clear ordering (except for decreasing
sequences) where BinaryHeapHeapifyBottomup (and Heapq) performs the fewest comparisons,
followed by BinaryHeap, BinaryHeapTopdown and BinaryHeapTopdownHeapify, where only
the last two support decreasing keys. In all cases the implicit PostOrderHeap achieves a
better performance than the other implicit binary heaps supporting decreasing keys. In
particular we see that PostOrderHeap performs about %nlog2 n fewer comparisons as Binary-
HeapTopdown for random input, as expected by the discussion in Section 6. The only priority
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queues supporting decreasing keys that achieve significant better bounds on the number of
comparisons are all pointer based (SkewHeap, LeftistHeap, PairingHeap and BinomialQueue).
This leaves the post-order heap as a strong contender for an implicit priority queue supporting
decreasing keys—at least with respect to comparisons.

With respect to running times the built-in Heapq consistently achieved the best time-
wise performance, which is not surprising since it is implemented in C, whereas the other
implementations are clearly penalized by the overhead of Python being interpreted. Running
times for random input is shown in Figure 7(e). Interestingly, for large random inputs the
running time of post-order heaps is only outmatched by the builtin heapq, although the
overhead of using Python makes the results less conclusive. Since the motivation for studying
priority queues with decreasing keys is to achieve space efficiency by avoiding storing keys
with the items, the implicit post-order heap appears to be a good choice of data structure in
this context.

7.3 Dijkstra’s algorithm performance

We implemented a generic version of Dijkstra’s algorithm for the single-source shortest path
problem corresponding to Dijkstra, in Figure 1. This algorithm was selected since it allows
to be executed both with a priority queue supporting decreasing keys (and no explicit keys
in the items) and with a standard priority queue (with explicit keys in the items), and to
study if allowing decreasing keys caused the number of comparisons performed to increase or
decrease. We also tested what happens if we in addition to removing the explicit keys from
the items also removed the visited array from the algorithm. This further reduces the space
requirement for the algorithm, but breaks the O(|E|log|V|) running time guarantee.

As arguments the function takes the graph, the priority queue to be used, and two
flags use_visited and use_dist. If use_visited is false, the algorithm will not check if
extracted nodes from the priority queue have been visited before, i.e., we could save the
space for having a bit-vector for the visited nodes, the cost being that we might revisit nodes
(and relax their outgoing edges) multiple times (once for each shorter distance discovered to
the node). If use_dist is true, dist[v] is used as the key of v when comparing v, otherwise
an item in the priority queue consists of a pair (distance, node).

As input we tested directed cliques (including self loops) with n nodes and n? edges,
where 10 < n < 250, with random integer weights from 1,...,n, and weights forcing the
worst-case number of key decreases. In the latter case, the edge from node u to v has weight
max(0,2(v —u) — 1), where 0 < u,v < n — 1, and node 0 is the source node, i.e., the path
0515 ... 54 -12% 0is the shortest path to node v with distance v.

In the experiments we measured the number of comparisons performed by the priority
queues, the number of nodes inserted into the priority queue, the number of nodes visited,
and the number of edges relaxed. The results are summarized in Figures 8-10, where different
combinations of use_visited and use_dist were tested. E.g., “+visited —dist” is when
use_visited is true and use_dist is false, i.e., Dijkstra,. The y-axis in Figures 8 and 9 is
the measured cost divide by n, i.e., the average cost per node.

Since we only consider cliques, the number of edges relaxed is exactly n times the number
of nodes visited. Furthermore, when a visited bit-vector is used, each node is visited and
each edge relaxed exactly once, whereas if visited is not used, then each node inserted into
a priority queue is also visited. For cliques with worst-case edge weights each edge (u,v),
where u < v, will cause a new shorter distance of 2v —u — 1 to v to be discovered, causing
the number of insertions into the priority queue to be (%), and the priority queue to grow to
size ©(n?). When visited is not used, the total number of nodes visited is (;) ~ n?/2 and
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the number of edges relaxed is n(g) ~ n3/2. We therefore only show data for the number of
nodes inserted into the priority queues for cliques with random weights in Figure 9 and omit
data for the number of edges relaxed, nodes visited, and insertions for worst-case graphs.

For random edge weights, the probability is at most 1/k that the k’th edge considered
with node v as target decreases the distance to v (this follows by a simple backwards analysis
argument), i.e., the expected number of times node v is inserted into the priority queue is at
most 22;11 % ~ Inn. This explains the nature of the curves in Figure 9(a), where the priority
queue stores (distance, node) pairs. When using dist[v] as key, it follows from Section 2 that
the same applies to the priority queues supporting decreasing keys (non-dashed plots in
Figure 9(b)).

Priority queues not supporting decreasing keys (Heapq, BinaryHeap and BinaryHeap-
HeapifyBottomup) might return the wrong items when using the current dist as keys. In
combination with using a visited bit-vector, the algorithm might fail to compute the correct
shortest distances. This was the case for random weights. Surprisingly, the algorithm worked
correctly for worst-case weights. If the visited bit-vector is not used, then incorrect nodes
returned by the priority queue will just be revisited later with a shorter distance, so the
algorithm will still correctly find shortest paths—but there is no guarantee on the number
of edge relaxes performed (except for an exponential upper bound that holds for any relax
based approach). For our inputs the potential increase in number of revisits to nodes appears
neglectable though, cf. Figure 9(b).

Finally, the number of comparisons performed in the priority queues is depicted in Figure 8.
Interestingly, the number of comparisons performed appears to be a little bit lower if we use
dist as key, cf. (e) versus (g), and (f) versus (h). In Figure 10 we have plotted the number
of comparisons performed when using dist as the key relative to using (distance, node) pairs,
for priority queues supporting decreasing keys and when using visited. The gain is largest
for random cliques where the number of comparisons is reduced by typically at least 10 %.
Interestingly, it appears that using a priority queue supporting decreasing keys one can
both save the space for storing explicit keys in the priority queue and reduce the number of
comparisons performed.

8 Conclusion

We have considered using priority queues supporting decreasing keys in Dijkstra’s single
source shortest path algorithm, motivated by the idea of saving space by omitting explicit
keys for the items in the priority queue. Although standard binary heaps with bottom-up
insertion fail to support decreasing keys, many other priority queues have been identified to
do so, and in particular post-order heaps have been identified as a strong contender for a
good alternative implicit priority queue in this context.

An open problem is to do a detailed experimental evaluation of the priority queues
supporting decreasing keys in a low-level programming language like C. This is beyond the
scope of this paper. Optimizing the running time of such implementations would require to
carefully tune the code to take into account, e.g., caching, paging, branch mispredictions, and
exploiting SIMD instructions [17]. Since the cache performance of binary heaps is known to
be improvable by increasing the degree of the heap [13], one should also consider post-order
heaps of higher degree.
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Figure 8 Dijkstra, comparisons performed.
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Figure 9 Dijkstra, priority queue insertions.
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Figure 10 Dijkstra, number of comparisons performed when using dist as key divided by the
number of comparisons performed when storing explicit keys in the priority queues.

8:19

FUN 2022



	1 Introduction
	2 Dijkstra's algorithm with decreasing keys
	3 Binary heaps fail with decreasing keys
	4 Binary heaps with top-down insertions
	5 Existing heaps supporting decreasing keys
	6 Post-order heap
	7 Experimental evaluation
	7.1 Correctness of implementation
	7.2 Sorting performance
	7.3 Dijkstra's algorithm performance

	8 Conclusion
	A Plots

