
Improved Dynamic Planar Point Location
(Extended Abstract)

Lars Arge∗ Gerth Stølting Brodal Loukas Georgiadis∗

Department of Computer Science, University of Aarhus, Denmark
E-mail: {large,gerth,loukas}@daimi.au.dk

Abstract

We develop the first linear-space data structures
for dynamic planar point location in general subdivi-
sions that achieve logarithmic query time and poly-
logarithmic update time.

1 Introduction

Point location is a fundamental problem in com-
putational geometry, with a plethora of applications
in areas such as geographical systems, graphics, and
databases [10]. In the static case we are given a planar
subdivision Π with n segments, i.e., a decomposition of
the plane into polygonal regions induced by a straight-
line planar graph. The goal is to preprocess Π into a
data structure, so that we can efficiently answer queries
of the form: Given a query point q, find the face of Π
containing q. In the dynamic case, Π can be updated
by inserting or deleting segments.

Both static and dynamic planar point location has
been studied extensively. For the static case, sev-
eral linear-space and O(log n)-query structures have
been designed [16, 24]. However, for the dynamic
and insertion-only cases, no nontrivial O(log n)-query
structure is known, even using super-linear space. In
this paper we develop linear-space and O(log n)-query
structures.

Previous results. Two linear-space structures are
known for dynamic planar point location in general
subdivisions; one by Cheng and Janardan [6] that
supports queries in O(log2 n) time and updates in
O(log n) time, and one by Baumgarten, Jung and
Mehlhorn [1] that supports queries and insertions in
O(log n log log n) time and deletions in O(log2 n) time.
Both structures store the segments of Π in an interval

∗Supported in part by US Army Research Office grant

W911NF-04-1-0278 and an Ole Roemer Scholarship from the

Danish National Science Research Council.

tree [12] constructed on their projection on the x-axis,
and use this structure to answer vertical ray-shooting
queries : For a query point q, find the first segment of Π
hit by the ray emanating from q in the (+y)-direction.
After answering this query, the face containing q can be
found in O(log n) time [21]. A number of super-linear
space structures as well, as structures for restricted
subdivisions, have also been developed. Refer to Table
1 and the survey in [8]. Note that O(log n) query time
is achieved only in the case of monotone and connected
subdivisions; in both cases the developed structures use
O(n log n) space. For the insertion-only problem, the
structure of Baumgarten et al. [1] achieves the best
known bounds for general subdivisions; even for mono-
tone subdivisions, no linear-space and O(log n)-query
structure is known. Refer to Table 2.

Our results. We develop the first linear-space data
structures for dynamic planar point location in general
subdivisions (or more specifically, for dynamic verti-
cal ray-shooting), that achieve logarithmic query time
(and o(n) update time). Our results are summarized
in Table 3. In the fully-dynamic case, we improve the
best previous query bound of Baumgarten et al. [1]
by a log log n factor, while increasing the update time
by a factor of logε n. This structure is implementable
in the pointer-machine model of computation. In the
random-access machine (RAM) model, we improve the
deletion bound by a log log n factor, while only increas-
ing the insertion bound by a logε log n factor. In the
incremental case, we obtain both O(log n)-time queries
and insertions in the RAM model. On a pointer ma-
chine, we obtain a structure with O(log1+ε n) inser-
tions and O(log n) queries, as well as a structure with
O(log n) insertions and O(log n log∗ n) queries.

2 Achieving logarithmic query time

The point location structure of Baumgarten et al. [1]
resembles an interval tree [12]. It consists of a binary

1



Table 1. Known structures; n is the number of segments in the subdivision and n′ is the number of
possible y-coordinates for edge endpoints; † indicates an amortized bound. All data structures are
implementable on a pointer-machine.

Subdivision Space Query Insert Delete Reference
Horizontal n log n log n · log log n † log n · log log n † log n · log log n [18]
Convex n′ + n log m log n + log n′ log n · log n′ log n · log n′ [23]

Monotone n log n log n log2 n log2 n [9]

Monotone n log2 n log n log n [14]

Connected n log2 n log4 n log4 n [13]

Connected n log n log n log3 n log3 n [7]

General n log n log2 n log2 n log2 n [2]

General n log2 n log n log n [6]

General n log n · log log n † log n · log log n † log2 n [1]

Table 2. Known insertion-only structures; † indicates an amortized bound.
Subdivision Model Space Query Insert Reference
Horizontal Pointer Machine n log n log n · log∗ n † log n · log∗ n [15, 18]
Horizontal RAM n log n log n † log n [15, 18]
Monotone Pointer Machine n log n · log log n † 1 [14]

General Pointer Machine n log2 n † log2 n [3, 24]
General Pointer Machine n log n · log log n † log n · log log n [1]

Table 3. New structures; † and ‡ indicates amortized and randomized bounds, repectively.
Subdivision Model Space Query Insert Delete

General Pointer Machine n log n † log1+ε n † log2+ε n

General RAM n ‡ log n † ‡ log n · log1+ε log n † ‡ log2 n/ log log n

General Pointer Machine n log n † log1+ε n
General Pointer Machine n log n · log∗ n † logn
General RAM n log n † logn

base tree T over the x-coordinates of the segments in
the subdivision Π, with the actual segments stored in
secondary structures attached to each internal node.
To answer a query, the O(log n) secondary structures
on a root-leaf path in T are searched. Using fractional
cascading [5], Baumgarten et al. show how each sec-
ondary structure can be queried in O(log log n) time,
obtaining an O(log n · log log n) total query bound.

Intuitively, the main idea in our structure is to in-
crease the fan-out of the base tree to logε n such that
its height is reduced to O(log n/ log log n). This way we
obtain an overall O(log n) query bound, provided that
we can maintain the O(log log n) secondary structure
query bound. More precisely, our structure consists of
a fan-out Θ(logε n) base search tree structure T on the
x-coordinates of the segments in Π; each leaf of T stores
Θ(logε n) x-coordinates. Here, 0 < ε < 1/2 is some ar-
bitrary fixed constant. For simplicity, we assume that
all O(n) possible endpoints are known in advance, so
that we can keep the base tree fixed (i.e., we do not
have to update it during insertions and deletions of

segments). Also, to simplify our notation, we assume
that each internal node has exactly f = logε n chil-
dren and each leaf stores f endpoints. We can remove
these assumptions using standard techniques; details
will appear in the full paper.

With each node v in T we associate a range
range(v) = [left(v), right(v)] consisting of the range of
x-coordinates stored in the subtree rooted in v. Fur-
thermore, with each internal node v we associate f + 1
vertical lines ℓj(v), 0 ≤ j ≤ f , corresponding to the
range boundaries of its children: ℓ0(v) = left(v) and,
for 1 ≤ j ≤ f , ℓj(v) = right(vj). We refer to the f
ranges of the children of v as slabs of v and to the ver-
tical lines ℓj(v) as slab boundaries of v. The f slabs of
v define Θ(f2) slab intervals I(v, i, j), 1 ≤ i ≤ j ≤ f ,
where I(v, i, j) denotes the range between ℓi−1(v) and
ℓj(v).

Three secondary structures are associated with each
internal node v in T : A left structure L(v), a right
structure R(v), and a middle structure M(v). Each
segment s in Π is stored in a left structure, a right

2



structure, and possibly a middle structure. Consider
the highest node v such that the projection proj(s) of s
on the x-axis intersects one of the vertical lines ℓk(v).
Suppose the left endpoint of s is in range(vi) and the
right endpoint of s is in range(vj), of children vi and
vj of v. Then s is broken at ℓi(v) = right(vi) and at
ℓj−1(v) = left(vj) into (at most) three pieces: a left
piece s− stored in L(vi), a middle piece s0 stored in
M(v), and a right piece s+ stored in R(vi). Refer to
Figure 1. Note that all segments in L(v) have their
right endpoint on ℓf(v), and that all segments in R(v)
have their left endpoint on ℓ0(v); all segments stored
in M(v) have both endpoints on vertical lines ℓj(v),
0 ≤ j ≤ f .

ℓ2(v)ℓ1(v)ℓ0(v) ℓ3(v) ℓ4(v)

v1 v2 v3 v4

v

ζ s
ξ

Figure 1. Segment s is broken into three
pieces: The left piece s−, from ζ to ℓ1(v), is
stored in L(v1); the middle piece s0, from ℓ1(v)
to ℓ3(v), is stored in M(v); the right piece s+,
from ℓ3(v) to ξ, is stored in R(v4).

Now let Π−, Π0 and Π+ denote the sets of left, mid-
dle and right segment pieces respectively, formed at all
nodes of T . To answer a query we answer it on each of
the three sets individually and return the closest of the
three segments we found. Intuitively, we answer the
query on each of the sets as in the Baumgarten et al.
structure [1] by querying secondary structures on one
root-leaf path. In §4 and §5 we describe the structures
for Π0 and Π+, respectively; the structure for Π− is
symmetric to the structure for Π+. However, before
doing so, we discuss fractional cascading on a segment
tree in §3.

3 Segment Tree Fractional Cascading

In the structures for Π0 and Π+ described in §4 and
§5 we will utilize fractional cascading, and especially
fractional cascading used on various (high fan-out) seg-
ment tree structures, a number of times. Below we re-
view fractional cascading and segment trees, and out-
line how we do fractional cascading on high fan-out
segment trees.

3.1 Fractional cascading

Fractional cascading [5] (FC) is a technique for per-
forming efficient iterative search. In the static case,
iterative search takes place on a graph G = (V, E),
where each vertex has an associated catalog C(v) with
elements from a totally ordered universe. A query con-
sists of an element e and a subgraph G′ = (V ′, E′)
of G, and the goal is to report the predecessor of e
in C(v), for each v ∈ V ′. Using FC, query efficiency
is accomplished by maintaining an augmented catalog
AC(v) ⊇ C(v) at each node v ∈ V ; each augmented
catalog AC(v) contains proper elements e ∈ C(v) and
non-proper elements e ∈ AC(v)\C(v). The augmented
catalogs of neighboring vertices in G have elements in
common. These elements are linked together to form
“bridges”, which are used to alleviate the need for a
full search in each C(v).

In the dynamic case where elements can be inserted
into or deleted from a catalog, Mehlhorn and Näher [18]
showed how an FC technique can also be used to in-
crease query efficiency. Their dynamic FC technique
is based on a data structure for the dynamic version
of the interval union-split-find (USF) problem: Main-
tain an ordered list of elements under the operations
of inserting or deleting an element at a given location,
and marking or un-marking a given element, such that
the marked element closest to a given element can be
found efficiently. All these operations can be performed
in O(log log n) time and O(n) space on a pointer ma-
chine [17], which is optimal [19]. Imai and Asano [15]
considered the case where only insertions and mark-
ing of elements is allowed. They achieved O(1) time
(amortized for markings and insertions) on a RAM and
O(log∗ n) time (amortized for markings and insertions)
on a pointer machine.

3.2 Segment trees

Segment trees are O(n log n) space structures that
can be used to solve the planar point location problem.
A segment tree for the segments in the subdivision Π
consists of a balanced binary search tree T on the x-
coordinates of the segments, with the actual segments
stored in lists S(v) associated with each node v in T .
As previously, we associate a range range(v) with v
in a natural way. A segment s is stored in S(v) iff
proj(s) ⊇ range(v) and proj(s) 6⊇ range(parent(v)). It
follows that each segment is stored at O(log n) nodes.

A point location query q can be answered by query-
ing the O(log n) lists S(v) on a root-leaf path of T .
Since the segments in a S(v) can be totally ordered
by their intersections with one of the boundaries of

3



range(v), a query on S(v) can be answered in O(log n)
time, resulting in O(log2 n) total query time.

Although standard dynamic FC cannot be applied
to the segment tree structure (since segments in differ-
ent S(v) lists are not totally ordered), Baumgarten et
al. [1] showed how a modified version of dynamic FC
can be used to improve the query bound. The main
idea is to store an augmented segment list AS(v) at
each node v in T , consisting of S(v) augmented with
segments (”bridges”) sampled from ancestors of v. The
AS(v) lists of all nodes of T are constructed top-down:
At the root r, AS(r) = S(r); then at node v (start-
ing at v = r), AS(v) is partitioned into blocks of size
β = Θ(log2 n) and the median segment in each block
is chosen as a representative and copied to the AS-lists
of the children of v. Queries are then performed on the
AS-lists of a root-leaf path in T from the leaf towards
the root, while the augmented segments are used to al-
leviate the need for full search in each AS(v). Using the
USF results mentioned in §3.1, Baumgarten et al. [1]
showed how this leads to an O(log n · log log n) query
bound.

In the use of FC on a segment tree, a technical com-
plication arises from the fact that a single segment can
appear in Θ(n) AS-lists. This means that when per-
forming a deletion one cannot afford to remove a seg-
ment from all the lists it appears in. Baumgarten et
al. [1] used the idea of phantom segments to deal with
this problem: If a segment s is to be deleted, then it
is removed from AS(v) of the O(log n) nodes v where
s ∈ S(v). The remaining occurrences of s (bridges) are
left as phantom segments. This in turn leads to com-
plications since later inserted segments may intersect
phantom segments. However, using the fact that sam-
pled segments were medians of blocks, Baumgarten et
al. [1] showed how such intersections can be handled.

3.3 High fan-out trees: No phantoms

As mentioned, in later sections we will utilize various
implementations of high fan-out segment trees. Such
a tree for the segments of Π consists of a fan-out f =
Θ(logε n) balanced search tree T on the x-coordinates
of the segments, with the actual segments stored in a
structure S(v) associated with each node v in T . A
segment s is stored in S(v) iff proj(s) ⊇ range(vi) for
one of more children vi of v, and proj(s) 6⊇ range(v).
Each segment s in S(v) is shortened to the largest slab
interval I(v, i, j) it contains, that is, s is shortened such
that it has endpoints on the slab boundaries ℓi−1(v)
and ℓj(v). It follows that each segment is stored in at
most two nodes on each level of T . Note that intuitively
segments are assigned to nodes in the same way as in a

high fan-out interval tree, except that only the middle
segment pieces are stored in a node v; the rest of the
segment (stored in a left and right structure in the
interval tree case) is stored recursively in the subtrees
rooted at children vi−1 and vj+1 of v.

As in the binary segment tree case, a point loca-
tion query q on Π can be answered by answering q in
the S(v) structures on the O(log n/ log log n) nodes on
a root-leaf path of T . As Baumgarten et al. [1], we
speed up queries using a dynamic FC method. That
is, we sample segments from S(v) and store them in
augmented sets AS(u) of descendants u of v (so that a
segment s ∈ AS(u)\S(u) satisfies proj(s) ⊇ range(u)).
In later sections we will utilize several different imple-
mentations of AS(v). However, in each case we will
obtain a query bound of O(log log n) for AS(v), and
thus a total query bound of O(log n). For each imple-
mentation, a key property of the sampling is that there
is at most a poly-logarithmic number of segments in
AS(parent(v)) spanning range(v) between two succes-
sive segments (”bridges”) sampled from ancestors of v
and stored in AS(v) and AS(parent(v)). (Recall that all
samples stored at v are totally ordered in range(v) so
this property is well-defined.) Furthermore, we design
our sampling so that we can avoid phantom segments,
that is, so that the number of occurrences of a segment
as a sample (a non-proper segment) is proportional to
the number of real occurrences of the segment; this al-
lows us to remove all occurrences of a segment when
it is deleted. In summary, our segment tree sampling
scheme fulfills the following key properties:

Property 3.1

(a) The number of segments in AS(parent(v)) span-
ning range(v) between two successive sample seg-
ments connecting AS(v) and AS(parent(v)) is
O(polylog(n)).

(b) For any segment s, the number of occurrences of
s as a non-proper segment is proportional to the
number of occurrences of s as a proper segment.

Below we sketch how we perform the sampling such
that Property 3.1 is fulfilled. For simplicity, we first as-
sume that S(v) is simply implemented as a sorted list
L(vi) for each child vi of v, containing all segments in
S(v) that span range(vi); note that such an implemen-
tation would use an excessive amount of space. Assume
furthermore that for each node v we have constructed
a list ∆(v) of sample segments from L(v) such that the
following are satisfied:

(i) For any two children vi and vj of v, for i 6= j,
∆(vi) ∩ ∆(vj) = ∅.

(ii) The distance in L(v) of any two successive samples
from ∆(v) is O(polylog(n)).

4



Using the L(v) and ∆(v) lists we can construct a
set of augmented lists AL(v) ⊇ L(v) fulfilling Prop-
erty 3.1: For each node v in T we independently dis-
tribute the samples from ∆(v) to the AL-lists of the
nodes in the subtree Tv rooted at v as follows. We par-
tition ∆(v) into blocks of size Θ(log n). For each block,
we select height(v) (the height of Tv) samples and send
each sample to a different level of Tv. Let ∆i(v) be
the list of samples sent to the level of depth i. Each
level receives roughly the same number of samples, i.e.,
Θ(|∆(v)|/ log n). We distribute these samples among
the f i nodes of level i as follows: First, we partition
∆i(v) into blocks of size Θ(f i). Then, each node at
level i receives one sample from each block of ∆i(v). A
sample s which was allocated to a node u is inserted
in AL(u) and AL(parent(u)) creating a bridge between
the two lists. It is relatively easy to see that this dis-
tribution scheme satisfies Property 3.1. Details will
appear in the full paper.

What remains is to show how to perform the sam-
pling without assuming that S(v) is implemented with
L(vi) lists, that is, to produce the ∆(v) samples such
that assumptions (i) and (ii) are fulfilled. To do so, we
assume that for each node v we maintain a list of the
segments in each of the O(f2) slab intervals I(v, i, j).
A segment belongs to only one slab interval, so the
total space required for these lists is linear and they
can easily be maintained. We sample each I(v, i, j) in-
dependently, by forming blocks of size Θ(f) and from
each block we send a different sample to each ∆(vk),
i ≤ k ≤ j. This satisfies (i). It is easy to verify that
(ii) also holds, since the range of vk is crossed by O(f2)
slab intervals of v. Thus, between any two consecutive
samples in ∆(vk), there are at most O(f2 log n) seg-
ments in L(vk).

Finally, rather than augmenting L(v) lists (which
are too large to actually materialize) to obtain AL(v)
lists, in our application of the above sampling technique
in §4 and §5 we augment the S(v) structures directly to
obtain augmented AS(v) structures. In §4 the (main)
S(v) structure will be implemented using a persistent
tree and in §5 using a segment tree; in both cases it is
easy to insert the sampled segments to obtain AS(v).

4 Middle segments

In this section we describe the structures M(v) as-
sociated with each node v in the base tree T of our
point location structure, and how they can be used to
efficiently answer queries on the segments Π0.

4.1 Simple O(n logε n)-space structure

Recall that M(v) stores a set of nonintersecting
“middle” segments with endpoints located on the f +1
slab boundaries of v. One simple way of implementing
M(v) is to maintain a sorted list (search tree) for each
of the f slabs in v; each segment is then broken into
at most f pieces corresponding to the slabs it spans,
and stored in the relevant of these lists. This way a
M(v) storing n segments uses O(nf) space. However,
queries on a M(v) structure can now easily be per-
formed in O(log f +log n) = O(log n) time and updates
in O(f log n) time.

We can speed up insertions using an approach sim-
ilar to an approach used in [1]: Suppose we have al-
ready inserted s in slab i and now want to insert it
in slab i + 1. First we locate the two closest slab i
segments, s1 above s and s2 below s, that also occur
in slab i + 1. By maintaining a pointer between the
same occurrence of a segment in different slab lists, we
then find s1 and s2 in the list for slab i + 1; s must be
inserted between these two segments, and we find the
correct position by simultaneous searching downwards
from s1 and upwards from s2. This can be done effi-
ciently if the list is implemented using a finger search
tree [4]. To actually find s1 and s2 in slab i we utilize a
USF structure with query bound O(log log n) [17]. De-
tails will appear in the full paper. In the end we obtain
an O(f log log n+logn) amortized insertion bound and
O(f log n) amortized deletion bound. In the incremen-
tal case, we can use a simpler and faster method based
on finger search trees for locating s1 and s2, resulting
in an O(f + log n) amortized insertion time.

4.2 Linear-space structure

To obtain a linear space structure we will implement
M(v) using two structures such that each of the mid-
dle segments in v is stored in one of the two structures:
A new segment structure storing the O(n/f) most re-
cently inserted segments and an old segment structure
storing the rest. The old segment structure will only
support deletions, while the new segment structure
supports both insertions and deletions. Queries are
performed by simply querying the two structures sep-
arately; similarly, deletions are just performed on the
relevant of the two structures. Insertions are performed
on the new segment structure and after every Θ(n/f)
updates the whole structure is rebuild such that all
segments are stored in the old segment structure.

New segment structure. The new segment struc-
ture is simply the structure described in §4.1. Thus

5



it achieves O(log n) query bound and, since it stores
O(n/f) segments, uses O(n) space. It can be updated
in the time bounds stated at the end of §4.1.

Old segment structure. The old segment struc-
ture is basically the static point location data struc-
ture of Sarnak and Tarjan [24], which achieves O(log n)
query time, using O(n) space and O(n log n) prepro-
cessing. Their structure is constructed by visiting the
endpoints of the segments in increasing x-coordinate,
inserting a segment s in a partially-persistent search
tree when its left endpoint is visited and deleting it
when its right endpoint is visited. To support deletions
in the old segment structure we utilize a fully-persistent
search tree [11] and modify the Sarnak-Tarjan method
slightly so that if the current endpoint has a differ-
ent x-coordinate from the last visited endpoint, then
a new persistent version of the search tree is created;
otherwise the update modifies the current version of
the tree. Since we have f + 1 possible x-coordinates,
the persistent tree only has f + 1 versions.

To delete a segment s from the old segment struc-
ture, we have to remove s from all versions of the per-
sistent tree. To do so efficiently we utilize that the
persistent structure has only f + 1 versions and that
any version of a fully-persistent search tree can be up-
dated efficiently. This way we can remove the at most
f copies of a segment in O(f) time amortized. Since
this deletion increases the space by O(f), we can afford
to delete O(n/f) segments. After O(n/f) operations,
we rebuild the structure. Details will appear in the full
paper.

In summary, the old segment structure uses O(n)
space, supports queries in O(log n) time and deletions
in O(f) time amortized.

Rebuilding. We rebuild M(v) after Θ(n/f) updates
so that all segments are stored in the old structure. We
can do so in O(n log n) time, basically by running the
Sarnak-Tarjan algorithm, which spends O(log n) time
on each of the O(n) segment endpoints. This leads to
an additional O(f log n) amortized term in the update
bound.

If we knew for each segment s the segment imme-
diately above its left endpoint, the construction time
could be reduced to O(n) since we would then know
the position in the persistent tree to insert s when we
visit its left endpoint, in which case the actual inser-
tion can be done in O(1) time amortized. This would
in turn reduce the additional update term to O(f).

The segments above each left endpoint can in fact
be found in O(f + log n) amortized time. To describe
how, we let P ′(v) denote the current set of segments

in M(v) and P(v) the set of segments stored at M(v)
the last time it was rebuild. Thus, P ′(v) \ P(v) is the
set of segments added since the last rebuild (stored in
the new structure). For each of the O(n/f) segments
in P ′(v) \ P(v), we simply perform a point location
query for its left endpoint on both the new and the
old segment structures to find the segment above the
endpoint. Since each query takes O(log n) time, this is
done in O(n log n/f) time in total, or O(log n) amor-
tized per update. For each of the segments in P(v),
the segment in P(v) above its left endpoint is already
available in the persistent tree, so we only need to find
the segment in P ′(v) \ P(v) above its left endpoint.
We cannot afford to perform a point location query for
each left endpoint, since that will take O(n log n) time.
Instead we simply maintain a sorted list Li(v) for each
slab boundary ℓi(v), 0 ≤ i < f , containing segments
from P(v) with left endpoint on ℓi(v). To construct
the new list for P ′(v), while at the same time find-
ing the segment in P ′(v) \ P(v) above each segment
in P(v), we simply visit each slab boundary one at a
time and merge Li(v) with the sorted list of segments
in P ′(v) \ P(v) that span slab i + 1 (obtained from
the new segment structure). Since the total size of all
the Li(v) lists is n, and since each of the segments in
P ′(v) \ P(v) is processed at most f times, the merges
take O(n + f · n/f) time in total, or O(f) amortized
per update.

Lemma 4.1 The middle structure storing n segments
can be implemented on a pointer machine such that is
uses O(n) space and answers queries in O(log n) worst-
case time. It supports insertions in O(f log log n +
log n) and deletions in O(f log n) amortized time. In
the insertion-only case, insertions are supported in
O(log n) amortized time.

4.3 Fractional cascading

To answer a point location query on Π0 we traverse
a root-leaf path in the base tree T and query M(v) in
each visited node v. Thus, a direct use of the structure
of §4.2 would result in an overall O(log2 n/ log log n)
query bound.

Since the middle segments have a segment-tree-like
allocation (the endpoints lie on an slab boundary of
the nodes that stores the segment), we can reduce the
search time of each M(v) to O(log log n) using the
FC method of §3.3; the amortized update bounds are
not affected in this case. To make this method work
we need to use fully-persistent finger search trees [11]
in the old segment structure to facilitate fast local
search; we also need to distinguish between two types
of bridges to take care of the different representations

6



for P(v) and P ′(v) \ P(v). Details will appear in the
full paper.

Lemma 4.2 The set Π0 of middle segments can be
maintained in the middle structures such that point
location queries can be performed in O(log n) worst-
case time. Insertions can be performed in O(logε n ·
log log n + log n) amortized time and deletions in
O(log1+ε n) amortized time. In the insertion-only case,
insertions can be performed in O(log n) amortized time.
All bounds are valid on a pointer machine.

5 Right segments

In this section we describe the right segment struc-
tures R(v) associated with each node v in the base tree
T of our point location structure, and how they can be
used to efficiently answer queries on the segments Π+.

Recall that R(v) stores a set of nonintersecting
“left” segments that all have left endpoint on the left
boundary left(v) of the range associated with v; we
let N(v) denote this set of segments sorted by y-
coordinate of their left endpoint. A point location
query on Π+ can be answered by traversing a root-leaf
path in T while querying R(v) in each encountered
node v. Cheng and Janardan [6] showed how R(v) can
be implemented in the pointer machine model using
a priority search tree such that a query can be an-
swered in O(log n) time; using this structure directly
would then result in a O(log2 n/ log log n) total query
bound. Baumgarten et al. [1] used a FC method to re-
duce the R(v) search cost to O(log log n), obtaining an
O(log n · log log n) overall query bound. We will use a
similar method, modified to deal with the fact that our
base tree has large fan-out; due to space constraint, we
will skip many details in the description of the method.

5.1 R(v) structure

We implement the R(v) structure of node v by parti-
tioning N(v) into blocks of size β = O(log2 n) and con-
structing a Cheng-Janardan priority search tree struc-
ture on each block. We also maintain two other sorted
lists AN (v) and S(v) of segments defined as follows:
In each block we identify the segment with the right-
most endpoint; we call this the winner of the block.
Let W (v) be the set of winners from N(v). We store
a copy of each segment s ∈ W (v) in the list AN (u) of
each descendant u of v on the search path for the right
endpoint of s. For each segment s ∈ W (v) ∪ AN (v)
we then store the longest subsegment of s with right
endpoint on a slab boundary of v in S(v), that is, if
the right endpoint of s is in the jth slab of v then the

part of s spanning the first j−1 slabs is stored in S(v).
Refer to Figure 2. Note that the total size of all AN (v)
and S(v) lists is O(n

β

log n

log log n
) = O(n/(log n log log n)).

Finally, apart from the list itself, we also store the seg-
ments in S(v) in a data structure S(v) described in §5.2
below.

To answer a point location query q, we use the S(v)
structures to find, for each node u on the search path
in T for q, the two segments in S(u) immediately above
and below q. In §5.2 we will sketch how the propagation
of segments through the AN (v) lists allows us to use
FC to do so in O(log n) time. In the full version of
this paper we show how we can then in O(log n) time
identify a constant number of blocks of N(u) to search,
in each of the O(log n/ log log n) nodes on the search
path, in order to answer the query in T . Since each
such search requires only O(log β) = O(log log n) time,
we answer the query in O(log n) time in total.

When updating Π+ (inserting or deleting a seg-
ment), it is easy to find the relevant node v and up-
date the Cheng-Janardan priority search tree structure
in O(log n) time. In the full version of this paper, we
show how such an update can at most result in the
need for a constant number of updates on the AN (u)
and S(u) lists in each of the O(log n/ log log n) nodes
u on a path from v to a leaf of T . Using a number
of ideas similar to the ones used in [1], we also show
how all of these updates can be performed in O(log n)
and O(log2 n/ log log n) amortized time for insertion
and deletion, respectively. Finally, the S(u) structures
for the nodes u on the path from v to a leaf also need
to be updated; we describe how to do so in §5.2 below.
We note that the update bounds of the S(u) structures
determine the update bounds of our overall structure.

5.2 S(v) structure

What remains is to show how to implement the S(v)
structures in each node v of T such that 1) the seg-
ments in S(u) immediately above and below a query
point q can be found in each node u on a root-leaf path
in O(log n) time, and 2) a segment can be inserted in
or deleted from the S(u) structure of each node u on a
root-leaf path efficiently.

Since the segments in S(v) have both endpoints on
slab boundaries it is natural to use the middle segment
structure M(v) described in §4 to implement S(v) (the
structure can easily be modified to find both the seg-
ment above and below a query point); in fact, the sim-
ple O(n logε n) space structure of §4.1 suffices since the
total size of all S(v) lists is o(n/ logn).

7



ℓ3(v)

ξ

v4

v

v3v2v1

s

ℓ0(v) ℓ1(v) ℓ2(v)

u3

ℓ4(v)ℓ2(v3)

Figure 2. Segment s is a winner in N(v). The part of s from ℓ0(v) to ℓ2(v) is stored in S(v). The
remaining part is copied to AN (v3). We continue this process for all nodes on the search path for ξ;
at v3, we store the part of s from ℓ0(v3) to ℓ2(v3) in S(v3), and send the piece after ℓ2(v3) to AN (u3).

Lemma 5.1 A S(v) structure storing m segments can
be implemented on a pointer machine such that it uses
O(m logε m) space and answers queries in O(log f +
log m) worst-case time. Insertions can be performed in
O(f log log m + log n) amortized time and deletions in
O(f log m) amortized time. In the insertion-only case,
insertions can be performed in O(f + log n) amortized
time.

In §5.2.3 we sketch how by using FC on this imple-
mentation of S(v) we can fulfill both 1) and 2) above.
This leads to our best fully-dynamic pointer machine
model point location structure. (The rest of the R(v)
structure is also implementable on a pointer machine.)
On the RAM however, we can utilize a segment tree
idea, along with the fact that the left endpoints of all
segments in S(v) lie on the same vertical line, to obtain
a better structure. We describe this implementation of
S(v) in §5.2.2. Furthermore, in the insertion-only case
we can develop simpler and more efficient structures
both in the RAM and pointer machine models. We
describe this structure in §5.2.1.

5.2.1 Improved insertion-only structure

To obtain the improved insertion-only structure we
simply implement S(v) as a (binary) segment tree
T . Since the segments in S(v) only have f + 1 dis-
tinct endpoint x-coordinates, the segment tree has
height O(log f) = O(log log n) and uses O(m log f) =
O(m log log n) space to store m segments.

To answer a query we search the segment lists of the
O(log f) nodes on a root-leaf path in T . A straightfor-
ward implementation leads to an O(log f log m) query
bound; using FC and an efficient solution to the split-
find with insertions problem [15], this can be im-
proved to O(log m + log f) in the RAM model and
O(log m + log f log∗ m) in the pointer machine model.
Details will appear in the full paper.

To insert a segment s we need to insert s in the seg-
ment list of O(log f) nodes in T . A straightforward im-

plementation leads to an O(log f log m) bound; use of
FC, as in [1], improves this to O(log m+log f log log f).
The reason the use of FC does not lead to an O(log m+
log f) insertion bound is that the segment tree gives rise
to a FC instance on a directed graph with vertices of
constant out-degree but in-degree O(log f): In a stan-
dard segment tree T the sequence of nodes where a
given segment is stored consists of two subsequences;
in one the heights are monotonically increasing and in
the other they are monotonically decreasing. (In the
structure for Π+ we only have the second subsequence.)
An insertion of a segment using FC takes place in two
stages, one for each subsequence; in both stages we
proceed bottom-up and move from the current node to
the next node of the subsequence by locating appro-
priate bridges. In terms of FC, the problem is that
while each node has a unique successor, it has O(log f)
predecessors in all possible subsequences. To improve
the insertion bound we obtain using FC, we change the
way segments are assigned to nodes of T so that each
node only has a constant number of possible prede-
cessors and successors, that is, we obtain a FC graph
with both constant out- and in-degree: Consider the
decreasing subsequence. We start the insertion of a
segment s at the appropriate leaf and move upwards.
Let v be the current node, and let w be the node to
the left of v on the same level as v. (These two nodes
share a slab boundary.) The subsequence continues iff
proj(s) ⊇ range(w). In this case, if parent(w) is not
the parent of v and s spans range(parent(w)), we store
s in parent(w). Otherwise we store it in w. This way
a segment is stored in at most two nodes of the same
level, so the space use of the segment tree at most dou-
bles; it is also easy to see that the query algorithm
remains correct. But now the possible successors of v
are w and parent(w); conversely, the possible predeces-
sors of w are v and the left child of v. This way the
use of FC on the modified segment tree results in an
O(log m + log f) insertion bound. Details will appear
in the full paper.

8



Lemma 5.2 A S(v) structure storing m segments can
be implemented such that it uses O(m log f) space
and answers queries in O(log m + log f) worst-case
on a RAM and O(log m + log f log∗ m) worst-case on
a pointer machine. Insertions can be performed in
O(log m+ log f) amortized time on a pointer machine.

5.2.2 Improved RAM structure

As in the insertion-only structure, our improved RAM
model S(v) structure is also based on a segment tree
T . However, rather than a binary segment tree we use
a high fan-out segment tree T . We also utilize two
other main results, namely a range reporting and a list
labeling result, which we describe below.

Dynamic 1d range reporting. In dynamic one-
dimensional range reporting (RR) we maintain a set
of integers Σ from a universe of size 2w, under inser-
tions and deletions, and support queries of the form
findany(a, b). This query returns any element x ∈ Σ
such that a ≤ x ≤ b, or reports that Σ ∩ [a, b] is
empty. Recently, Mortensen, Pagh and Pătraşcu [20]
developed a linear-space data structure that achieves
O(log log w) time for findany and O(log w) for updates.

Segment labeling. We use a list labeling data struc-
ture to assign integer labels to segments in S(v); using
the linear-space structure of Willard [25] each of these
labels has O(n) size (O(log n) bits). Then we can use
an array of size O(n) for the reverse mapping of labels
to segments; given a label we can find the correspond-
ing segment, if it exists, in O(1) time.

Each update in Willard’s structure takes O(log2 n)
worst-case time and changes O(log2 n) labels. This
bound is not good enough for our purpose, so we do not
label each segment individually. Instead, we amortize
the cost of labeling by partitioning S(v) into blocks of
size γ = Θ(log3 n), and label the blocks. To facilitate
search, we represent each block by its winner (defined
as in §5.1). As we insert and delete segments in S(v),
a block representative may change with each update.
The block labeling, however, remains the same for ev-
ery interval of Θ(log3 n) operations. After that many
updates, O(log2 n) representatives receive a new label.

Structure. We use a segment tree T with fan-out
f ′ = logε log n to store the representatives for each
block of S(v). The height of T is O(log f/ log log f)
so we can spend O(log log f) = O(log log log n) time
per level for a query. This bound matches the query
time of the RR structure, since w = O(log n). Each
node u of T stores segments that span at most f ′ slabs

of v. We maintain the segments allocated to u us-
ing the simple structure of §4.1. Hence, for each slab
[ℓi−1(u), ℓi(u)] of u, 1 ≤ i ≤ f ′, we maintain a fin-
ger search tree which stores the representatives allo-
cated to u that span [ℓi−1(u), ℓi(u)]; we also keep the
labels of these representatives in an RR structure for
[ℓi−1(u), ℓi(u)]. Finally, we apply the FC scheme of
§3.3 on T , but using block size β′ = Θ(log2 log n).

To perform a query on S(v), we start at the appro-
priate leaf of T and move towards the root. At each
step we maintain the two best block representatives
found so far, one immediately above and the other im-
mediately below the query point q. Let a and b be
the integers corresponding to those segments. In order
to search the appropriate slab list of the parent node,
we perform a findany(a, b) query on that list. Con-
sider the two possible outcomes. First suppose findany
returns a segment c of the parent list. Without loss
of generality assume c is below q. Then the two new
best representatives are in the interval [a, c], which con-
tains a number of representatives polynomial in β′.
Hence the new best representatives can be found in
O(log log log n) time, as desired, using the finger search
tree. Next suppose that findany returns null. Clearly,
in this case a and b remain the best representatives
encountered so far. At the end of this search we are
left with two block representatives a and b. To find
the segments in S(v) immediately above and below q
it suffices to search the blocks of a and b; this search
takes O(log γ) = O(log log n) time. Hence, excluding
the time spend on the leaf of T , a query is answered
in O(log log n + log log log n log f

log log f
) = O(log log n +

log f) = O(log f) time.
Now we consider updates in S(v). When the repre-

sentative of a block changes, the new representative is
inserted into the segment tree and the old is deleted.
An insertion or deletion of a representative in S(v) may
modify O(log1+ε f) segment lists of nodes in T . Given
the location of a representative in S(v) and its label,
we can update T in O(log2+ε f) amortized and ran-
domized time. Details will appear in the full paper.

Lemma 5.3 A S(v) structure storing m segments
can be implemented on a RAM such that it uses
O(m log1+ε f) space and answers queries in O(log m+
log f) randomized time. Insertions can be performed
in O(log m + log2+ε f) amortized and randomized time
and deletions in O(log2+ε f) amortized and randomized
time.

5.2.3 Fractional cascading

Recall that to answer a point location query q on Π+

(the R(v) structures) efficiently, we need to query the

9



S(v) structures in the O(log n/ log log n) nodes on a
search path in T . Regardless of which of our three
implementations of S(v) we use, simply querying the
S(v) structures individually will not give us the desired
O(log n) bound. To obtain this bound we use FC on
the S(v) structures (that is, segment trees): To be able
to efficiently move from the root of the S(vi) structure
in vi to the appropriate leaf of the S(v) structure in the
parent v of vi, we adapt the method of §3.3. We also
speed up insertions using a FC method similar to the
one used in §4.1. Details will appear in the full paper.

Lemma 5.4 The insertion-only S(v) structures can be
implemented so that their total size in T is O(n). All
the S(v) structures on a search path in T can be queried
in tq worst-case time and insertions can be performed
in tins amortized time, where:

tq = O(log n) and tins = O(log1+ε n), or

tq = O(log n log∗ n) and tins = O(log n) on a pointer
machine;

tq = O(log n) and tins = O(log n) on a RAM.

Lemma 5.5 The S(v) structures can be implemented
so that their total size in T is O(n). All the S(v) struc-
tures on a search path in T can be queried in tq worst-
case time, and insertions and deletions are performed
in tins and tdel amortized time, respectively, where:

tq = O(log n), tins = O(log1+ε n) and tdel =
O(log2+ε n) on a pointer machine;

tq = O(log n), tins = O(log n log1+ε log n) and tdel =
O(log2 n/ log log n), all randomized, on a RAM.

Since the structure for Π+ is the bottleneck of our
overall point location structure, the above lemmas im-
ply the bounds shown in Table 3.

References

[1] H. Baumgarten, H. Jung, and K. Mehlhorn. Dynamic
point location in general subdivisions. Journal of Al-

gorithms, 17(3):342–380, 1994.
[2] J. Bentley. A solution to Klee’s rectangle problems.

unpublished report, 1977.
[3] J. L. Bentley and J. B. Saxe. Decomposable searching

problems I: Static-to-dynamic transformation. Journal

of Algorithms, 1(4):301–358, 1980.
[4] M. R. Brown and R. E. Tarjan. Design and analysis

of a data structure for representing sorted lists. SIAM

Journal on Computing, 9(3):594–614, 1980.
[5] B. Chazelle and L. J. Guibas. Fractional cascading: I.

A data structure technique. Algorithmica, 1(2):133–62,
1986.

[6] S. W. Cheng and R. Janardan. New results on dynamic
planar point location. SIAM Journal on Computing,
21(5), 1992.

[7] Y.-J. Chiang, F. P. Preparata, and R. Tamassia. A
unified approach to dynamic point location, ray shoot-
ing, and shortest paths in planar maps. SIAM Journal

on Computing, 25(1):207–233, 1996.
[8] Y.-J. Chiang and R. Tamassia. Dynamic algorithms in

computational geometry. Technical Report CS-91-24,
Brown University, March 1991.

[9] Y.-J. Chiang and R. Tamassia. Dynamization of the
trapezoid method for planar point location in mono-
tone subdivisions. International Journal of Computa-

tional Geometry and Applications, 2(3):311–333, 1992.
[10] M. de Berg, M. van Krevald, M. Overmars, and

O. Schwarzkopf. Computational Geometry: Algorithms

and Applications. Springer, Berlin, second edition,
2000.

[11] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E.
Tarjan. Making data structures persistent. Journal of

Computer and System Sciences, 38(1):86–124, 1989.
[12] H. Edelsbrunner. Dynamic data structure for orthog-

onal intersection queries. Technical Report Techni-
cal Report F59, Inst. Informationsverarb. Tech. Univ.
Graz, Graz, Austria, 1980.

[13] O. Fries. Suchen in dynamischen planaren Unterteilun-

gen. PhD thesis, Universität des Saarlandes, 1990.
[14] M. T. Goodrich and R. Tamassia. Dynamic trees and

dynamic point location. SIAM Journal on Computing,
28(2):612–36, 1998.

[15] H. Imai and T. Asano. Dynamic orthogonal segment
intersection search. Journal of Algorithms, 8(1):1–18,
1987.

[16] D. Kirkpatrick. Optimal search in planar subdivisions.
SIAM Journal on Computing, 12(1):28–35, 1983.

[17] K. Mehlhorn. Data structures and algorithms 1: sort-

ing and searching. Springer-Verlag New York, Inc.,
New York, NY, USA, 1984.

[18] K. Mehlhorn and S. Näher. Dynamic fractional cas-
cading. Algorithmica, 5(2):215–41, 1990.

[19] K. Mehlhorn, S. Näher, and H. Alt. A lower bound on
the complexity of the union-split-find problem. SIAM

Journal on Computing, 17(6):1093–1102, 1988.
[20] C. W. Mortensen, R. Pagh, and M. Pătraşcu. On dy-

namic range reporting in one dimension. In Proc. 37th

ACM Symp. on Theory of Computing, pages 104–111,
2005.

[21] M. H. Overmars. Range searching in a set of line seg-
ments. In Proc. 1st ACM Symp. on Computational

Geometry, pages 177–185, 1985.
[22] F. P. Preparata and R. Tamassia. Fully dynamic point

location in a monotone subdivision. SIAM Journal on

Computing, 18(4):811–830, 1989.
[23] F. P. Preparata and R. Tamassia. Dynamic planar

point location with optimal query time. Theoretical

Computer Science, 74(1):95–114, 1990.
[24] N. Sarnak and R. E. Tarjan. Planar point location

using persistent search trees. Communications of the

ACM, 29(7):669–679, 1986.
[25] D. E. Willard. A density control algorithm for doing

insertions and deletions in a sequentially ordered file in
a good worst-case time. Information and Computation,
97(2):150–204, 1992.

10


