
Cache Oblivious Algorithms for Computing the
Triplet Distance Between Trees∗†

Gerth Stølting Brodal1 and Konstantinos Mampentzidis2

1 Department of Computer Science, Aarhus University, Aarhus, Denmark
gerth@cs.au.dk

2 Department of Computer Science, Aarhus University, Aarhus, Denmark
kmampent@cs.au.dk

Abstract
We study the problem of computing the triplet distance between two rooted unordered trees
with n labeled leafs. Introduced by Dobson 1975, the triplet distance is the number of leaf triples
that induce different topologies in the two trees. The current theoretically best algorithm is
an O(n logn) time algorithm by Brodal et al. (SODA 2013). Recently Jansson et al. proposed a
new algorithm that, while slower in theory, requiring O(n log3 n) time, in practice it outperforms
the theoretically faster O(n logn) algorithm. Both algorithms do not scale to external memory.

We present two cache oblivious algorithms that combine the best of both worlds. The first
algorithm is for the case when the two input trees are binary trees and the second a generalized
algorithm for two input trees of arbitrary degree. Analyzed in the RAM model, both algorithms
require O(n logn) time, and in the cache oblivious model O(n

B log2
n
M) I/Os. Their relative

simplicity and the fact that they scale to external memory makes them achieve the best practical
performance. We note that these are the first algorithms that scale to external memory, both in
theory and practice, for this problem.

1998 ACM Subject Classification G.2.2 Trees, G.2.1 Combinatorial Algorithms

Keywords and phrases Phylogenetic tree, tree comparison, triplet distance, cache oblivious al-
gorithm

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.1

1 Introduction

Background. Trees are data structures that are often used to represent relationships. For
example in the field of Biology, a tree can be used to represent evolutionary relationships, with
the leafs corresponding to species that exist today, and internal nodes to ancestor species that
existed in the past. For a fixed set of n species, different data or construction methods (e.g.
Q* [2], neighbor joining [13]) can lead to trees that look structurally different. An interesting
question that arises then is, given two trees T1 and T2 over n species, how different are they?
An answer to this question could potentially be used to determine whether the difference is
statistically significant or not, which in turn could help with evolutionary inferences. Several
ways of comparing two trees have been proposed in the past, with different types of trees (e.g.
rooted versus unrooted, binary versus arbitrary degree) having different distance measures
(e.g. Robinson-Foulds distance [12], triplet distance [6], quartet distance [7]). In this paper
we focus on the triplet distance computation, which is defined for rooted trees.

∗ Research supported by the Danish National Research Foundation, grant DNRF84, Center for Massive
Data Algorithmics (MADALGO).

† An extended version of the paper is available on arXiv [4].

© Gerth Stølting Brodal and Konstantinos Mampentzidis;
licensed under Creative Commons License CC-BY

25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 1; pp. 1:1–1:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

1:2 Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees

x y z

(a) xy|z

x z y

(b) xz|y

y z x

(c) yz|x

x y z

(d) xyz

Figure 1 Triplet topologies.

Problem Definition. For a given rooted unordered tree T where each leaf has a unique
label, a triplet is defined by a set of three leaf labels x, y and z and their induced topology
in T . The four possible topologies are illustrated in Figure 1. For two such trees T1 and T2
that are built on n identical leaf labels, the triplet distance D(T1, T2) is the number of triplets
that are different in T1 and T2. Let S(T1, T2) be the number of shared triplets in the two
trees, i.e. leaf triples with identical topologies in the two trees. We have the relationship
that D(T1, T2) + S(T1, T2) =

(
n
3
)
.

Results. All related work can be found in [5, 1, 14, 3, 15, 9, 10, 11]. Previous and new results
are shown in the table below. For the cache oblivious model [8], the papers [5, 1, 14, 3, 10, 11]
do not provide an analysis, so here we provide an upper bound.

Year Reference Time IOs Space Non-Binary Trees

1996 Critchlow et al. [5] O(n2) O(n2) O(n2) no
2011 Bansal et al. [1] O(n2) O(n2) O(n2) yes
2013 Brodal et al. [14] O(n log2 n) O(n log2 n) O(n) no
2013 Brodal et al. [3] O(n logn) O(n logn) O(n logn) yes
2015 Jansson et al. [10, 11] O(n log3 n) O(n log3 n) O(n logn) yes
2017 new O(n logn) O(n

B
log2

n
M

) O(n) yes

The common main bottleneck with all previous approaches is that the data structures
used rely intensively on Ω(n logn) random memory accesses. This means that all algorithms
are penalized by cache performance and thus do not scale to external memory. We address
this limitation by proposing new algorithms for computing the triplet distance on binary
and non-binary trees, that match the previous best O(n logn) time and O(n) space bounds
in the RAM model, but for the first time also scale to external memory. More specifically,
in the cache oblivious model, the total number of I/Os required is O(n

B log2
n
M). The basic

idea is to essentially replace the dependency of random access to data structures by scanning
contracted versions of the input trees. A careful implementation of the algorithms is shown
to achieve the best practical performance, thus essentially documenting that the theoretical
results carry over to practice.

2 Previous Approaches

A naive algorithm would enumerate over all
(

n
3
)
sets of 3 labels and find for each set whether

the induced topologies in T1 and T2 differ or not, giving an O(n3) algorithm. This naive
approach does not exploit the fact that the triplets are not completely independent. For
example the triplets xy|z and yx|u share the leafs x and y and the fact that the lowest
common ancestor of x and y is at a lower depth than the lowest common ancestor of z with
either x or y and the lowest common ancestor of u with either x or y. Dependencies like this
can be exploited to count the number of shared triplets faster.

G. S. Brodal and K. Mampentzidis 1:3

Critchlow et al. [5] exploit the depth of the leafs’ ancestors to achieve the first improvement
over the naive approach. Bansal et al. [1] exploit the shared leafs between subtrees and
reduce the problem to computing the intersection size (number of shared leafs) of all pairs of
subtrees, one from T1 and one from T2, which can be solved with dynamic programming.

The O(n2) Algorithm for Binary Trees in [14]. The algorithm for binary trees in [14]
is the basis for all subsequent improvements [14, 3, 10], including ours as well, so we will
describe it in more detail here. The dependency that was exploited is the same as in [1],
but the procedure for counting the shared triplets is completely different. More specifically,
each triplet in T1 and T2, defined by the leafs i, j and k, is implicitly anchored in the lowest
common ancestor of i, j and k. For a node u in T1 and v in T2, let s(u) and s(v) be the set of
triplets that are anchored in u and v respectively. For the number of shared triplets S(T1, T2)
we then have that

S(T1, T2) =
∑

u∈T1

∑
v∈T2

|s(u) ∩ s(v)| .

For the algorithm to be O(n2) the value |s(u) ∩ s(v)| must be computed in O(1) time.
This is achieved by a leaf colouring procedure as follows: Fix a node u in T1 and color the
leafs in the left subtree of u red, the leafs in the right subtree of u blue, let every other leaf
have no color and then transfer this coloring to the leafs in T2, i.e. identically labelled leafs
get the same color. To compute |s(u) ∩ s(v)| we do as follows: let l and r be the left and
right children of v, and let wred and wblue be the number of red and blue leafs in a subtree
rooted at a node w in T2. We then have that

|s(u) ∩ s(v)| =
(
lred

2

)
rblue +

(
lblue

2

)
rred +

(
rred

2

)
lblue +

(
rblue

2

)
lred . (1)

Subquadratic Algorithms. To reduce the time, Brodal et al. [14] applied the smaller half
trick, which specifies a depth first order to visit the nodes u of T1, so that each leaf in T1
changes color at most O(logn) times. To count shared triplets efficiently without scanning T2
completely for each node u in T1, the tree T2 is stored in a data structure denoted a
hierarchical decomposition tree (HDT). This HDT maintains for the current visited node u
in T1, according to (1) the sum

∑
v∈T2
|s(u) ∩ s(v)|, so that each color change in T1 can be

updated efficiently in T2. In [14] the HDT is a binary tree of height O(logn) and every update
can be done in a leaf to root path traversal in the HDT, which in total gives O(n log2 n) time.
In [3] the HDT is generalized to also handle non-binary trees, each query operates the same,
and now due to a contraction scheme of the HDT the total time is reduced to O(n logn).
Finally, in [10] as an HDT the so called heavy-light tree decomposition is used. Note that the
only difference in all O(n polylogn) results that are available until now is the type of HDT
used.

In terms of external memory efficiency, every O(n polylogn) algorithm performs Θ(n logn)
updates to an HDT data structure, which means that for sufficiently large input trees every
algorithm requires Ω(n logn) I/Os.

3 The New Algorithm for Binary Trees

Overview. We will use the O(n2) algorithm described in Section 2 as a basis. The main
difference lies in the order that we visit the nodes of T1 and how we process T2 when we
count. We propose a new order of visiting the nodes of T1, which we find by applying a
hierarchical decomposition on T1. Every component in this decomposition corresponds to a

ESA 2017

1:4 Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees

connected part of T1 and a contracted version of T2. In simple terms, if Λ is the set of leafs
in a component of T1, the contracted version of T2 is a binary tree on Λ that preserves the
topologies induced by Λ in T2 and has size O(|Λ|). To count shared triplets, every component
of T1 has a representative node u that we use to scan the corresponding contracted version
of T2 in order to find

∑
v∈T2
|s(u) ∩ s(v)|. Unlike previous algorithms, we do not store T2 in

a data structure. We process T2 by contracting and counting, both of which can be done
by scanning. At the same time, even though we apply a hierarchical decomposition on T1,
the only reason why we do so, is so we can find the order in which to visit the nodes of T1.
This means that we do not need to store T1 in a data structure either. Thus, we completely
remove the need of data structures (and thereby random memory accesses) and scanning
becomes the basic primitive in the algorithm. To make our algorithm I/O efficient, all that
remains to be done is to use a proper layout to store the trees in memory, so that every time
we scan a tree of size s we spend O(s/B) I/Os.

Preprocessing. As a preprocessing step, first we make T1 left heavy, by swapping children
so that for every node u in T1 the left subtree is larger than the right subtree, by a depth first
traversal. Second, we change the leaf labels of T1, which can also be done by a depth first
traversal of T1, so that the leafs are numbered 1 to n from left to right. This step takes O(n)
time in the RAM model. The second step is done to simplify the process of transferring the
leaf colors between T1 and T2. The coloring of a subtree in T1 will correspond to assigning
the same color to a contiguous range of leaf labels. Determining the color of a leaf in T2 will
then require one if-statement to find in what range (red or blue) its label belongs to.

Centroid Decomposition. For a given rooted binary tree T we let |T | denote the number
of nodes in T (internal nodes and leafs). For a node u in T we let l and r be the left and
right children of u, and p the parent. Removing u from T partitions T into three (possibly
empty) connected components Tl, Tr and Tp containing l, r and p, respectively. A centroid is
a node u in T such that max{|Tl|, |Tr|, |Tp|} ≤ |T |/2. A centroid always exists and can be
found by starting from the root of T and iteratively visiting the child with a largest subtree,
eventually we will reach a centroid. Finding the size of every subtree and identifying u
takes O(|T |) time in the RAM model. By recursively finding centroids in each of the three
components, we will in the end get a ternary tree of centroids, which is called the centroid
decomposition of T , denoted CD(T). We can generate a level of CD(T) in O(|T |) time, given
the decomposition of T into components by the previous level. Since we have to generate at
most 1 + log2(|T |) levels, the total time required to build CD(T) is O(|T | log |T |), hence we
get Lemma 1.

I Lemma 1. For any rooted binary tree T with n leafs, building CD(T) takes O(n logn)
time in the RAM model.

A component in a centroid decomposition CD(T), might have many edges crossing its
boundaries (connecting nodes inside and outside the component). The below modified centroid
decomposition, denoted MCD(T), generates components with at most two edges crossing the
boundary, one going towards the root and one down to exactly one subtree.

Modified Centroid Decomposition. An MCD(T) is built recursively as follows: If a com-
ponent C has no edge from below, we select the centroid c of C as a splitting node as
described above. Otherwise, let (x, y) be the edge that crosses the boundary from below,
where x is in C and let c be centroid of C. As a splitting node choose the lowest common

G. S. Brodal and K. Mampentzidis 1:5

ancestor of x and c. By induction every component has at most one edge from below and
one edge from above. A useful property of MCD(T) is captured by the following lemma:

I Lemma 2. For any rooted binary tree T with n leafs, we have that h(MCD(T)) ≤ 2+2 log2 n,
where h(MCD(T)) denotes the height of MCD(T).

Since each level of MCD(T) can be constructed in O(n) time, we have

I Theorem 3. For any rooted binary tree T with n leafs, building MCD(T) takes O(n logn)
time in the RAM model.

To return to our original problem, we visit the nodes of T1, given by the depth first
traversal of the ternary tree MCD(T1), where the children of every node u in MCD(T1) are
visited from left to right. For every such node u we process T2 in two phases, the contraction
phase and the counting phase.

Contraction. Let L(T2) denote the set of leafs in T2 and Λ ⊆ L(T2). In the contraction
phase, T2 is compressed into a binary tree of size O(|Λ|) whose leaf set is Λ. The contraction
is done in a way so that all the topologies induced by Λ in T2 are preserved in the compressed
binary tree. This is achieved by the following three sequential steps: prune all leafs of T2
that are not in Λ, repeatedly prune all internal nodes of T2 with no children and repeatedly
contract unary internal nodes, i.e. nodes having exactly one child.

Let u be a node of MCD(T1) and Cu the corresponding component of T1. For every
such node u we have a contracted version of T2, from now on referred to as T2(u), where
L(T2(u)) = L(Cu). The goal is to augment T2(u) with counters (see counting phase below),
so that we can find

∑
v∈T2
|s(u) ∩ s(v)| by scanning T2(u). One can imagine MCD(T1) as

being a tree where each node u is augmented with T2(u). To generate all contractions of T2
for level i of MCD(T1), which correspond to a set of disjoint connected components in T1,
we can reuse the contractions of T2 at level i− 1 in MCD(T1). This means that we have to
spend O(n) time to generate the contractions of level i, so to generate all contractions of T2
we need O(n logn) time. Note that by explicitly storing all contractions, we will also need to
use O(n logn) space. For our problem, we traverse MCD(T1) in a depth first manner, so we
only have to store a stack of contractions corresponding to the stack of nodes of MCD(T1)
that we have to remember during our traversal. Since the components at every second level
of MCD(T1) have at most half the size of the components two levels above, Lemma 4 states
that the size of this stack is always O(n).

I Lemma 4. Let T1 and T2 be two rooted binary trees with n leafs and u1, u2, ..., uk a root
to leaf path of MCD(T1). For the corresponding contracted versions T2(u1), T2(u2), ..., T2(uk)
we have that

∑k
i=1|T2(ui)| = O(n).

Counting. In the counting phase, we find
∑

v∈T2
|s(u) ∩ s(v)| by scanning T2(u) instead

of T2. This makes the total time of the algorithm in the RAM model O(n logn). We consider
the following two cases:

Cu has no edges from below.
In this case Cu corresponds to a complete subtree of T1. We act exactly like in

the O(n2) algorithm (Section 2) but now instead of scanning T2 we scan T2(u).
Cu has one edge from below.

In this case Cu does not correspond to a complete subtree of T1, since the edge from
below Cu, will point to a subtree Xu, that is located outside of Cu (for an illustration of

ESA 2017

1:6 Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees

u
T1 Cu

Xu

u
T1 Cu

Xu

u
T1 Cu

Xu

Figure 2 MCD(T1): Triplets that can be anchored in u with the leafs not being in the compon-
ent Cu.

this case see Figure 2). Note that because T1 is left heavy, Xu is always rooted in a node
on the left most path from u. The leafs in Xu are important because they can be used to
form triplets that are anchored in u. Acting in the same manner as in the previous case
is not sufficient because we need to count the triplets involving Xu as well.

To address this problem, every edge (pv, v) in T2(u) between a node v and its parent pv,
is augmented with some counters about the leafs from Xu that were contracted away
in T2. For every such edge (pv, v), let s1, s2, ..., sk be the contracted subtrees rooted on
the edge. Every such subtree contains either leafs with no color or leafs from Xu that
have the color red (the color can not be blue because T1 is left heavy). For every node v
in T2(u) the counters that we have are the following:

vred: total number of red leafs in the subtree of v (including those coming from Xu).
vblue: total number of blue leafs in the subtree of v.
vts: total number of red leafs in s1, s2, ..., sk.
vps: total number of pairs of red leafs in s1, s2, ..., sk such that each pair comes from
the same contracted subtree, i.e.

∑k
i=1
(

ri

2
)
where ri is the number of red leafs in si.

The number of shared triplets that are anchored in a non-contracted node v of T2(v)
can be found like in the O(n2) algorithm using the counters vred and vblue in (1). As for
the number of shared triplets that are anchored in a contracted node on edge (pv, v), this
value is exactly

(
v.blue

2
)
· vts + vblue · vps.

Scaling to External Memory. If we store T1 in an array of size 2n− 1 by using a preorder
layout, i.e. if a node v is stored in position p, the left child of v is stored in position p+ 1 and
if x is the size of the left subtree of v the right child of v is stored in position p+ x+ 1, we
can make T1 left heavy in two depth first traversals using O(n/B) I/Os. The preprocessing
step that changes the labels of the leafs in T1 and T2 can be done in O(n

B log2
n
M) I/Os with

a cache oblivious sorting routine, e.g. using merge sort. By scanning the left most path that
starts from the root of a component Cu, we can find the splitting node of Cu in O(|Cu|/B)
I/Os, so in total the number of I/Os spent processing T1 becomes O(n

B log2
n
M).

We use the proof of Lemma 4 (see [4]) to initialize an array that can fit the contractions
that we need to remember while traversing MCD(T1). This array is used as a stack that
we use to push and pop the contractions of T2. Each contraction of T2 is stored in memory
using a post order layout, i.e. if a node v is stored in position p and y is the size of the right
subtree of v, the left child of v is stored in position v− y− 1 and the right child of v is stored
in position v − 1. By using a stack, counting and contracting T2(u) requires O(|T2(u)|/B)
I/Os, so the total number of I/Os spent processing T2 becomes O(n

B log2
n
M) as well.

Overall, our algorithm requires O(n
B log2

n
M) I/Os in the cache oblivious model.

G. S. Brodal and K. Mampentzidis 1:7

4 The New Algorithm for General Trees

In this algorithm we anchor the triplets of T1 and T2 in edges. Let t be a triplet with leafs i, j
and k that is either a resolved triplet ij|k or an unresolved triplet ijk, where i is to the left
of j and for the triplet ijk, k is also to the right of j. Let w be the lowest common ancestor
of i and j and (w, c) the edge from w to the child c whose subtree contains j. We anchor t
in edge (w, c). Define s′(w, c) to be the number of triplets anchored in edge (w, c).

Preprocessing. In the preprocessing step of the algorithm, we start by transforming T1 into
a binary tree, denoted b(T1). Let w be a node of T1 that has exactly k children, where k > 2.
The k edges that connect w to its children in T1 are replaced in b(T1) by a so called orange
binary tree. The root of this binary tree is w and the leafs are the k children of w in T1.
Every internal node (except the root) and edge is colored orange, hence the given name. We
assume that node w and its k children in T1, in b(T1) have the color black. This binary tree is
built in a way so that every orange node is on the left most path that starts from w, and its
left most leaf stores the heaviest child of w in T1, thus making b(T1) left heavy. The order in
which the other children of w in T1 are stored in the remaining leafs does not matter, however
for the notation below to be mathematically correct, we assume that after constructing b(T1),
the left to right order of the children of w in T1 is implicitly updated, so that it matches
the left to right order in which they appear in the leafs of the orange binary tree below w

in b(T1).
Let u be a node in b(T1) and c its right child. By construction, c must be a black node.

If u is orange, then let uroot be the root of the orange binary tree that u is part of. If u
is black, then let uroot = u. Again by construction, uroot must be the parent of c in T1.
For the edge (u, c) in b(T1), we define s′′(u, c) to be the set of triplets that are anchored in
edge (uroot, c) of T1. Note that for an edge (u′, c′) in b(T1) connecting u′ with its left child c′

we have s′′(u′, c′) = 0.
For the number of shared triplets we then have:

S(T1, T2) =
∑

(u,c)∈b(T1)

∑
(v,c′)∈T2

|s′′(u, c) ∩ s′(v, c′)| .

We can capture all triplets in T1 by coloring b(T1) instead of T1. For the nodes u and c
where c is the right child of u, the leafs of b(T1) are colored according to edge (u, c) as follows:
the leafs in the left subtree of u are colored red, the leafs in the right right subtree of u are
colored blue. If u is an orange node, then the black leafs in the remaining subtrees of the
orange binary tree that u is part of are colored green. All other leafs of b(T1) maintain their
color black.

The reason behind transforming T1 into the binary tree b(T1), is because now we can
use exactly the same core ideas described in Section 3. The tree b(T1) is a binary tree,
so we apply the same preprocessing step, except we do not make it left heavy because by
construction it already is. However, we change the labels of the leafs in b(T1) and T2, so that
the leafs in b(T1) are numbered 1 to n from left to right.

Modified Centroid Decomposition. After the preprocessing step, we build MCD(b(T1)) as
described in Section 3. Then we traverse the nodes of b(T1), given by a depth first traversal
of MCD(b(T1)), where we visit the children of every node u in MCD(b(T1)) from left to right.

Like in the binary algorithm, while traversing MCD(b(T1)) we process T2 in two phases,
the contraction phase and the counting phase. The only difference after this point in the

ESA 2017

1:8 Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees

u

b(T1)
up

ul

Cu

XuYu Yu

up

ul

T1

Xu

Cu

YuYu

u

Figure 3 How a component in b(T1) translates to a component in T1.

v

pv

T2(u)
v

pv

1 2 k

Figure 4 T2(u): Contracted children subtrees rooted on node v and contracted subtrees rooted
on contracted nodes (gray color) in edge (pv, v).

algorithm for general trees, is the counters that we have to maintain in the contracted versions
of T2, but otherwise, the same analysis from Section 3 holds.

Contraction. The contraction of T2 with respect to a set of leafs Λ ⊆ L(T2), happens in
the exact same way as described in Section 3, i.e. we start by pruning all leafs of T2 that are
not in Λ, then we prune all internal nodes of T2 with no children, and finally, we contract
the nodes that have exactly one child.

Let u be a node of MCD(b(T1)) and Cu the corresponding component of b(T1). For every
such node u we have a contracted version of T2, denoted T2(u), where L(T2(u)) = L(Cu).
Like in the binary algorithm, the goal is to augment T2(u) with counters, so that we can
find

∑
(v,c′)∈T2

|s′′(u, c) ∩ s′(v, c′)| by scanning T2(u) instead of T2.
Because of the location where the triplets are anchored, in T2(u) every leaf that was

contracted away, must have a color and be stored in some way. The color of each leaf depends
on the type of the component that we have in b(T1) and the splitting node that is used for
that component. For example, in Figure 3 the contracted leafs from Xu will have the red
color because like in the binary algorithm b(T1) is left heavy. The contracted leafs from the
children subtrees of up in T1 can either have the color green or black. If u in b(T1) happens
to be orange and part of the orange binary tree that up is the root of, then the color must
be green, otherwise black. Finally, every leaf that is not in the subtree defined by up, and
thus is in Yu, must have the color black. The way we store this information is described in
the counting phase below.

Counting. In Figure 4 we illustrate how a node v in T2(u) can look like. The contracted
subtrees are illustrated with the dark gray color. Every such subtree contains some number
of red, green and black leafs. The counters that we need to maintain should be so that if v
has k children in T2(u), then we can count all shared triplets that are anchored in every child

G. S. Brodal and K. Mampentzidis 1:9

edge (including those of the contracted children subtrees) of v in O(k) time. At the same
time, in O(1) time we should be able to count all shared triplets that are anchored in every
child edge of every contracted node that lies on edge (pv, v). In this way, the counting phase
will require O(|T2(u)|) time, hence we will get the same bounds like in the binary algorithm.

In v we have the following counters:

vi: number of leafs with color i (including the contracted leafs) in the subtree of v,
where i ∈ {red, blue, green}.
vblack: number of black leafs (including the contracted leafs) not in the subtree of v.

We divide the rest of the counters into two categories. The first category corresponds to
the leafs in the contracted children subtrees of v and each counter will be stored in a variable
of the form vA.x. The second category corresponds to the leafs in the contracted subtrees in
edge (pv, v) and each counter will be stored in a variable of the form vB.x.

For the first category A we have the following counters:

vA.i: total number of leafs with color i in the contracted children subtrees of v, where
i ∈ {red, green, black}.
vA.red,green: total number of pairs of leafs where one is red, the other is green and one leaf
comes from one contracted child subtree of v and the other leaf comes from a different
contracted child subtree of v.

While scanning the k children edges of v from left to right, for the child c′ that is the mth

child of v, we also maintain the following:

ai: total number of leafs with color i from the first m− 1 children subtrees, including the
contracted children subtrees, where i ∈ {red, blue, green}.
pi,j: total number of pairs of leafs from the first m− 1 children subtrees, including the
contracted children subtrees, where one has color i, the other has color j and they both
come from different subtrees (one might be contracted and the other non-contracted).
We have that (i, j) ∈ {(red, green), (red, blue), (blue, green)}.
tred,blue,green: total number of leaf triples from the first m−1 children subtrees, including
the contracted children subtrees, where one is red, one is blue and one is green, and
all three leafs come from different subtrees (some might be contracted, some might be
non-contracted).

Every variable is initialized and updated in the following order:

(ared, ablue, agreen) = (vA.red, 0, vA.green)
pred,green = vA.red,green

pred,blue = pblue,green = tred,blue,green = 0
ai = ai + c′

i, where i ∈ {red, blue, green}.
pi,j = pi,j + ai · c′

j + aj · c′
i, where (i, j) ∈ {(red, green), (red, blue), (blue, green)}

tred,blue,green = tred,blue,green + pred,green · c′
blue + pred,blue · c′

green + pblue,green · c′
red

After finishing scanning the k children edges of v, we can compute the shared triplets that
are anchored in every child edge of v (including the children edges pointing to contracted
subtrees) as follows: for the total number of shared resolved triplets, denoted totA.res, we
have that totA.res = pred,blue · vblack and for the total number of shared unresolved triplets,
denoted totA.unres, we have that totunres = tred,blue,green.

The second category B of counters will help us count triplets involving leafs (contracted
and non-contracted) from the subtree of v and leafs from the contracted subtrees rooted on
edge (pv, v). We maintain the following:

ESA 2017

1:10 Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees

vB.i: total number of leafs with color i in all contracted subtrees rooted on edge (pv, v),
where i ∈ {red, green, black}.
vB.red,green: total number of pairs of leafs where one is red and the other is green such
that one leaf comes from a contracted child subtree of a contracted node v′ and the other
leaf comes from a different contracted child subtree of the same contracted node v′.
vB.red,black: total number of pairs of leafs where one is red and the other is black such
that the red leaf comes from a contracted child subtree of a contracted node v′ and the
black leaf comes from a contracted child subtree of a contracted node v′′. For v′ and v′′

we have that v′′ is closer to vp than v′.

For the total number of shared unresolved triplets, denoted totB.unres, that are anchored
in the children edges of every contracted node that exists in edge (vp, v), we have that
totB.unres = vblue · vB.red,green. For the total number of shared resolved triplets, de-
noted totB.res, that are anchored in the children edges of every contracted node that exists
in edge (vp, v), we have that totB.res = vblue · vB.red,black + vblue · vB.red · (vblack − vB.black).

5 Experiments

The implementation of both algorithms was made using the C++ programming language.
The source code can be found in https://github.com/kmampent/CacheTD.

The Setup The experiments were performed on a machine with 8GB RAM, Intel(R)
Core(TM) i5-3470 CPU @ 3.20GHz, 32K L1 cache, 256K L2 cache and 6144K L3 cache. The
operating system was Ubuntu 16.04.2 LTS. The compiler used was g++ 5.4 and cmake 3.5.1.

Generating Random Trees. We use two different models for generating input trees. The
first model is called the random model. A tree T with n leafs in this model is generated as
follows:

Create a binary tree T ′ with n leafs as follows: start with a binary tree T ′ with two leafs.
Iteratively pick a leaf l uniformly at random. Make l an internal node by appending a
left child node and a right child node to l, thus increasing the number of leafs in T ′ by
exactly 1.
With probability p contract every internal node u of T ′, i.e make the children of u be the
children of u’s parent and remove u.

The second model is called the skewed model. In this model, we can control more directly
the shape of the input trees. A tree T with n leafs in this model is generated as follows:

Create a binary tree T ′ with n leafs as follows: let 0 ≤ α ≤ 1 be a parameter, u some
internal node in T , l and r the left and right children of u, and T (u), T (l) and T (r) the
subtrees rooted on u, l and r respectively. Create T ′ so that for every internal node u
we have |T (l)|

|T (u)| ≈ α, i.e. |Tl| = max(1,min(ba · nc, n− 1)) and |Tr| = 1− |Tl|, where |Tl|
and |Tr| are the number of leafs in T (l) and T (r) respectively.
With probability p contract every internal node u of T ′ like in the random model.

In both models, after creating T , we shuffle the leaf labels by using std::shuffle1

together with std::default_random_engine2.

1 http://www.cplusplus.com/reference/algorithm/shuffle/
2 http://www.cplusplus.com/reference/random/default_random_engine/

https://github.com/kmampent/CacheTD
http://www.cplusplus.com/reference/algorithm/shuffle/
http://www.cplusplus.com/reference/random/default_random_engine/

G. S. Brodal and K. Mampentzidis 1:11

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●0e+00

2e−05

4e−05

6e−05

10 15 20

log2n

se
co

nd
s

/ n
● CacheTD CPDT tqDist

p1 = 0, p2 = 0

● ● ● ● ● ●
● ● ● ● ● ● ● ● ●

0e+00

1e−05

2e−05

3e−05

4e−05

5e−05

10 15 20

log2n

se
co

nd
s

/ n

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

Figure 5 Time performance in the random model.

Implementations Tested. Let p1 and p2 denote the contraction probability of T1 and T2
respectively. When p1 = p2 = 0, the trees T1 and T2 are binary trees, so in our experiments
we use the algorithm from Section 3. In all other cases, the algorithm from Section 4 is used.
Note that the algorithm from Section 4 can handle binary trees just fine, however there is an
extra overhead (factor 1.8 slower) compared to the algorithm from Section 3 that comes due
to the additional counters that we have to maintain for the contractions of T2.

We compared our implementation with previous implementations of [10] and [14, 3] avail-
able at http://sunflower.kuicr.kyoto-u.ac.jp/~jj/Software/ and http://users-cs.
au.dk/cstorm/software/tqdist/ respectively. The implementation of the O(n log3 n) al-
gorithm in [10] has two versions, one that uses unordered_map3, which we refer to as CPDT,
and another that uses sparsehash4, which we refer to as CPDTg. For binary input trees
the hash maps are not used, thus CPDT and CPDTg are the same. The tqdist library [15],
which we will refer to as tqDist, has an implementation of the binary O(n log2 n) algorithm
from [14] and the general O(n logn) algorithm from [3]. If the two input trees are binary
the O(n log2 n) algorithm is used. We will refer to our new algorithm as CacheTD.

Statistics. We measured the execution time of the algorithms with the clock_gettime
function in C++. Due to the different parser implementations, we do not consider the time
taken to parse the input trees. We used the PAPI library5 for statistics related to L1, L2 and
L3 cache accesses and misses. Finally, we count the space of the algorithms by considering
the Maximum resident set size returned by /usr/bin/time -v.

Results. The experiments are divided into two parts. In the first part, we look at how the
algorithms perform when the memory requirements do not exceed the available main memory
(8G RAM). In the second part, we look at how they perform when the memory requirements
exceed the available main memory (by limiting the available RAM to the operating system
to be 1GB), thus forcing the operating system to use the swap space, which in turn can for
large enough input trees yield the very expensive disk I/Os.

3 http://en.cppreference.com/w/cpp/container/unordered_map
4 https://github.com/sparsehash/sparsehash
5 http://icl.utk.edu/papi/

ESA 2017

http://sunflower.kuicr.kyoto-u.ac.jp/~jj/Software/
http://users-cs.au.dk/cstorm/software/tqdist/
http://users-cs.au.dk/cstorm/software/tqdist/
http://en.cppreference.com/w/cpp/container/unordered_map
https://github.com/sparsehash/sparsehash
http://icl.utk.edu/papi/

1:12 Cache Oblivious Algorithms for Computing the Triplet Distance Between Trees

● ● ● ● ● ● ● ● ●0

20

40

60

80

100

120

0.25 0.50 0.75
α

se
co

nd
s

● CacheTD CPDT tqDist

p1 = 0, p2 = 0

● ● ● ● ● ● ● ● ●

0

10

20

30

40

50

60

70

80

0.25 0.50 0.75
α

se
co

nd
s

● CacheTD CPDT CPDTg tqDist

p1 = 0.5, p2 = 0.5

Figure 6 How the alpha parameter affects running time (n = 221).

Table 1 Time performance when limiting the available RAM to be 1GB. For both tables we have
α = 0.5. For the left table we have p1 = p2 = 0 and for the right table p1 = p2 = 0.5.

n CPDT/CPDTg tqDist CacheTD

217 0m:01s 0m:08s 0m:01s
218 0m:02s 3m:10s 0m:01s
219 0m:05s 2h:16m 0m:01s
220 0m:34s - 0m:01s
221 7h:09m - 0m:03s
222 - - 0m:35s
223 - - 10m:09s
224 - - 43m:52s

n CPDT CPDTg tqDist CacheTD

217 0m:01s 0m:01s 0m:03s 0m:01s
218 0m:03s 0m:03s 1m:18s 0m:01s
219 0m:10s 0m:07s 19m:02s 0m:01s
220 1h:58m 6h:32m >10h 0m:02s
221 - - - 0m:56s
222 - - - 4m:11s
223 - - - 24m:44s
224 - - - 2h:13m

RAM experiments. For the random model, in Figure 5 we illustrate a time comparison
of all implementations for trees of up to 221 leafs (∼ 2 million) with varying contraction
probabilities. Every data point is the average of 10 runs. In all cases CacheTD achieves the
best time performance. The space and L1/L2/L3 cache performance of CacheTD is the best
as well (see [4]). For the skewed model, in Figure 6 we plot the alpha parameter against
the execution time of the algorithms, when n = 221. The alpha parameter has the least
effect on CacheTD, with the maximum running time being only a factor of 1.1 larger than
the minimum. From Section 2, CPDT and CPDTg use the heavy light decomposition for T2.
When α approaches 0 or 1, the number of heavy paths that will be updated because of a leaf
color change decreases, thus the total number of operations of the algorithm decreases as
well (see [4]).

I/O experiments. The results are included in Table 1. Each cell contains the execution
time (including the waiting time due to disk I/Os). For this experiment we used the time
function of Ubuntu and thus also considered the time taken to parse the input trees. Each
cell contains the result of 1 run and for input trees with 223 and 224 leafs we used the 128 bit
implementation of the new algorithms to avoid numeric overflows. The exact running times
vary from run to run, but the general outcome is the same: unlike CacheTD, the performance
of CPDT, CPDTg and tqDist deteriorates significantly the moment they start performing disk
I/Os. More elaborate I/O experiments can be found in the arXiv version of the paper [4].

G. S. Brodal and K. Mampentzidis 1:13

References
1 M.S. Bansal, J. Dong, and D. Fernández-Baca. Comparing and aggregating partially re-

solved trees. Theoretical Computer Science, 412(48):6634 – 6652, 2011.
2 V. Berry and O. Gascuel. Inferring evolutionary trees with strong combinatorial evidence.

Theoretical Computer Science, 240(2):271–298, 2000.
3 G.S. Brodal, R. Fagerberg, C.N.S. Pedersen, T. Mailund, and A. Sand. Efficient algorithms

for computing the triplet and quartet distance between trees of arbitrary degree. 24th
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1814–1832, 2013.

4 G.S Brodal and K. Mampentzidis. Cache oblivious algorithms for computing the triplet
distance between trees. Computing Research Repository, abs/1706.10284, 2017.

5 D.E. Critchlow, D.K. Pearl, and C.L. Qian. The Triples Distance for Rooted Bifurcating
Phylogenetic Trees. Systematic Biology, 45(3):323, 1996.

6 A.J. Dobson. Comparing the shapes of trees. Combinatorial Mathematics III. Lecture
Notes in Mathematics, pages 95–100, 1975.

7 G.F. Estabrook, F.R. McMorris, and C.A. Meacham. Comparison of undirected phylogen-
etic trees based on subtrees of four evolutionary units. Systematic Zoology, 34(2):193–200,
1985.

8 M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. Cache-oblivious algorithms.
40th Annual IEEE Symposium on Foundations of Computer Science, pages 285–297, 1999.

9 M.K. Holt, J. Johansen, and G.S. Brodal. On the scalability of computing triplet and
quartet distances. 16th Workshop on Algorithm Engineering and Experiments, pages 9–19,
2014.

10 J. Jansson and R. Rajaby. A more practical algorithm for the rooted triplet distance.
International Conference on Algorithms for Computational Biology, pages 109–125, 2015.

11 J. Jansson and R. Rajaby. A More Practical Algorithm for the Rooted Triplet Distance.
Journal of Computational Biology, 24(2):106–126, 2017.

12 D.F. Robinson and L.R. Foulds. Comparison of phylogenetic trees. Mathematical Bios-
ciences, 53(1):131–147, 1981.

13 N. Saitou and M. Nei. The neighbor-joining method: a new method for reconstructing
phylogenetic trees. Molecular Biology and Evolution, 4(4):406, 1987.

14 A. Sand, G.S. Brodal, R. Fagerberg, C.N.S. Pedersen, and T. Mailund. A practical
O(n log2 n) time algorithm for computing the triplet distance on binary trees. BMC Bioin-
formatics, 14(2):S18, 2013.

15 A. Sand, M.K. Holt, J. Johansen, G.S. Brodal, T. Mailund, and C.N.S. Pedersen. tqdist:
A library for computing the quartet and triplet distances between binary or general trees.
Bioinformatics, 30(14):2079, 2014.

ESA 2017

	Introduction
	Previous Approaches
	The New Algorithm for Binary Trees
	The New Algorithm for General Trees
	Experiments

