
Purely Functional Worst Case Constant Time

Catenable Sorted Lists

Gerth Stølting Brodal1, Christos Makris2, Kostas Tsichlas2

1 Department of Computer Science, University of Aarhus,
BRICS, Basic Research in Computer Science, www.brics.dk,

funded by the Danish National Research Foundation.
e-mail address: gerth@brics.dk

2 Department of Computer Engineering and Informatics, University of Patras,
26500 Patras, Greece.

e-mail address:{makri, tsihlas}@ceid.upatras.gr

Abstract. We present a purely functional implementation of search
trees that requires O(log n) time for search and update operations and
supports the join of two trees in worst case constant time. Hence, we
solve an open problem posed by Kaplan and Tarjan as to whether it is
possible to envisage a data structure supporting simultaneously the join
operation in O(1) time and the search and update operations in O(log n)
time.

Keywords: data structures, sorted lists, purely functional programming

1 Introduction

The balanced search tree is one of the most common data structures used in
algorithms and constitutes an elegant solution to the dictionary problem. In
this problem, one needs to maintain a set of elements in order to support the
operations of insertion, deletion and searching for the predecessor of a query
element. In a series of applications [9, 10, 13, 16] search trees are also equipped
with the operations of join and split. The most efficient search trees use linear
space and support insertion, deletion, search, join and split operations in loga-
rithmic time; the most prominent examples of them are: AVL-trees, red-black
trees, (a, b)-trees, BB[α]-trees and Weight Balanced B-trees.

In commonly used data structures, update operations such as insertions and
deletions change the data structure in such a way, that the old version (the ver-
sion before the update) is destroyed. These data structures are called ephemeral.
A data structure that does not destroy its previous versions after updates, is
called a persistent data structure. Depending on the operations allowed by a
persistent structure, the following types of persistence can be distinguished:

– Partial persistence: only the latest version of the structure can be updated
and all the versions can be queried.

– Full persistence: all the versions can be updated and queried.



– Confluent persistence: all the versions can be updated and queried and addi-
tionally, two versions can be combined to produce a new version. Note that
in this case it is possible to create in polynomial time an exponentially sized
structure by repeatedly joining it with itself.

The history of a persistent data structure is represented by a version graph
G = (V,E); a node v ∈ V corresponds to a version of the data structure while an
edge e ∈ E between nodes v and v′ denotes that one of the structures involved
in the operation creating v′ was v. For the partial persistence case the version
graph is a linear list, while for the full persistence case it is a tree. In the case
of confluently persistent data structures the version graph is a directed acyclic
graph.

Notably, persistent data structures are also met under the name purely func-
tional data structures. This term indicates data structures built using operations
that correspond to the LISP commands car, cdr, cons. These commands create
nodes which are immutable and hence fully persistent. However, a full persistent
data structure is not necessarily purely functional.

The problem of devising a general framework for turning ephemeral pointer-
based data structures into their partial and full persistent counterparts was
successfully handled in [7]. The proposed construction works for linked data
structures of bounded in-degree and allows the transformation of an ephemeral
structure into a partial or full persistent one with only a constant amortized
time and space cost. The amortized bounds for the partial persistent construc-
tion were turned into worst case in [2]. Additionally, in [16] Okasaki presented
simpler constructions by applying the lazy evaluation technique met in functional
languages.

The aforementioned general techniques fail to apply in the confluent per-
sistence setting; in this setting the version graph becomes a DAG making the
navigation method of [7] to fail. Fiat and Kaplan presented efficient methods
to transform general linked data structures to confluently persistent and have
showed that if the total number of assignments is U then the update creating ver-
sion v will cost O(d(v) + logU) and the space requirement will be O(d(v) logU)
bits, where d(v) is the depth of v in the version graph.

The aforementioned general framework was surpassed in practice by ad hoc
solutions for specific data structures. In particular in [8, 4, 11, 12] a set of so-
lutions for constructing confluent persistent deques was presented leading to
an optimal solution that could handle every operation in worst case constant
time and space cost. The supported set of operations included push, pop, inject,
eject and catenate. One of the most interesting examples of purely functional
data structure is sorted lists implemented as finger trees. Kaplan and Tarjan
described in [13] three implementations, the more efficient of which achieved
logarithmic access, insertion and deletion time, and double-logarithmic catena-
tion time. In fact, they supported the search and update operations in O(log d)
time, where d is the number of elements between the queried element and the
smallest or the largest element in the tree. They asked whether the join opera-
tion can be implemented in O(1) worst-case time even in an ephemeral setting,



while supporting searches and updates in logarithmic time. They sketched a data
structure supporting the join operation in O(1) time but the time complexity of
search and update operations was O(log n log log n).

In this paper we focus on the problem of efficiently implementing purely
functional sorted lists from the perspective of search trees and not finger trees
as in [13]. We present a purely functional implementation of search trees that
supports join operations in worst-case constant time, while simultaneously sup-
porting search and update operations in logarithmic time. In Figure 1 we provide
the complexities of our data structure and compare them with previous results.
In Section 2, we introduce the reader to the problem as well as to some basic
notions used throughout the paper. In Section 3, we present the main struc-
tural elements of the construction and depict how to make the structure purely
functional, and finally we conclude in Section 4 with some final remarks.

Traditional Kaplan & Tarjan This Paper
(e.g. AVL, (a, b)-trees) (STOC ’96 [13])

Search O(log n) O(log n) - O(log d) O(log n)

Join O(log n) O(log logn) O(1)

Insert/Delete O(log n) O(log n) - O(log d) O(log n)

Fig. 1. Comparison of the complexities of our data structure with previous results.
Here n denotes the number of stored elements, while d denotes the number of elements
between the queried element (defined by the insert, delete or search operations) and
the smallest or largest element.

2 Definitions

A biased tree T [15], [1] is a leaf-oriented search tree storing elements equipped
with weights. The weight w(v) of a node v in T is the sum of the weights of all
the leaves in its subtree. The weight w(T ) of the tree T is the weight of the root
of T . The left (right) spine of the tree T is the path from the root of T to the
smallest (largest) element of the tree.

In this paper, we consider the problem of maintaining a set of elements each of
weight 1, represented as a collection of trees, subject to the following operations:

1. Insert(Ti,x), inserts element x in the tree Ti.
2. Delete(Ti,x), deletes the element x, if it exists, from tree Ti.
3. Search(Ti,x), returns the position of x in the tree Ti. If x does not exist in

Ti, then it returns the position of its predecessor.
4. CreateTree(Ti,x), creates a new tree Ti with element x. A tree Ti ceases

to exist when it has no elements.
5. Join(Ti,Tj), joins the two trees in one tree. Trees Ti and Tj are ordered

in the sense that all elements of Tj are either smaller or larger than the
smallest or largest element of Ti. Assume without loss of generality that



w(Ti) ≥ w(Tj). In this case, tree Tj is attached to tree Ti, and the result of
this operation is the tree Ti. Tj is attached to a node on the spine of Ti.

There exist various implementations of biased trees differing in the used
balance criterion; our construction is based on the biased 2, b trees presented
in [1] which are analogous to 2,3 trees and B-trees. A 2, b tree is a search tree
with internal nodes having degree at least 2 and at most b; in a biased 2, b tree
the rank r(v) of a leaf v is equal to blogw(v)c, while the rank of an internal
node is one plus the maximum of the ranks of its children. The rank r(T ) of
the tree is the rank of the root. In [1] it is described how to maintain a 2, b
tree so that accessing a leaf v takes O(log(w(T )/w(v)) query time; inserting
an item i takes O(log(w(T )/(wi− + wi+)) + log(w′(T )/wi)) time and deleting
an item i takes O(log(w′(T )/(wi− + wi+)) + log(w(T )/wi)) time, where w(T ),
w′(T ), are the weights of the tree before and after the operation and i−, i+ are
the largest item smaller than i and the smallest item larger than i respectively.
These bounds are achieved by maintaining a balance criterion termed global bias.
A globaly biased 2, b tree is a 2, b tree with the property that any neighboring
leaf of a node v whose parent w has rank larger than r(v)+1, has rank r(w)−1.

We will employ in our construction biased 2, 4 trees, using the same defini-
tions of weights, ranks and balance (global bias) as in [1].

3 The Fast Join-Tree

In this section we provide a description of our structure, called the Fast Join-
tree. Initially we present an overview, introducing the building components of
the structure and the way these various components are linked together. Then,
we discuss how these components are combined when joining trees in order
to produce a worst-case constant time implementation. Finally, we provide the
necessary machinery for the update operations as well as the necessary changes
that have to be performed in the structure in order to make it purely functional.

3.1 An Overview

The main goal of the proposed data structure is to support the join operation in
O(1) worst-case time. The main obstacle in achieving this complexity for the join
operation is the location of the appropriate position on the spine (see Section 2,
definition of Join operation). This problem can be overcome by performing joins
in a lazy manner. In particular, if two trees T and T ′ such that r(T ) ≥ r(T ′) are
joined, then T ′ is inserted in a temporary structure along with other trees that
have been joined with T . This temporary structure is called a tree-collection.
Thus, a tree-collection is a set of elements structured as a forest of trees. During
the insertion of trees in the tree-collection, the spine is traversed so that the
tree-collection is finally inserted in the appropriate position. The tree-collection
is implemented as a simple linked linear list of trees.

A tree-collection can be considered as a weighted element to be inserted in
a tree structure. The weight of a tree-collection x is the number of leaves of



the trees in x. A tree-collection can be inserted in a fast Join tree in worst-case
constant time by employing a preventive top-down rebalancing scheme on the
spines.

Fig. 2. The structure of the fast Join-tree at one recursive level.

The fast Join-tree is better understood as a recursive data structure. A biased
search tree constitutes a recursive level of the fast Join-tree, called henceforth a
J-tree. As a result, the fast Join-tree is a J-tree whose leaves are tree-collections.
A tree-collection, as implied earlier, is a linear list of J-trees. These J-trees con-
stitute the second recursion level. The recursion ends when the tree-collection is
a simple item. Figure 2 depicts an instance of our structure.

3.2 The Biased Tree and the Tree-Collections

The J-tree is a biased 2, 4-tree with top-down rebalancing at its spines. This tree
structure is subject to insertions of weighted elements at its spines as well as
decrements by one of the rank of one of its leaves. A weighted element can be
a simple item equipped with a weight or a tree-collection, which is a forest of
trees on weighted elements.

A tree-collection is structured as a simple linear linked list. The insertions of
new elements in the tree-collection take place always at the tail of the linked list.
The virtual rank vr(x) of a tree-collection x is the number of J-trees contained
in x. Its real rank r(x) is equal to the logarithm of the sum of the weights of the
participating trees. It will become clear below how these quantities are related to
each other. We describe the weighted insertion operation as a one step procedure,
but it will in fact be implemented incrementally.

Assume a weighted element xi with weight w(xi). This element must be
inserted as a weighted leaf of the last (from top to bottom) node on the spine of
the tree (either left or right) that has rank larger or equal to blogw(xi)c+ 1.

During the traversal of the spine all nodes with 4 children are split, so when
the weighted element is inserted there are no cascading splits on the path to the
root. It may be the case that the spine is too short, meaning that the weighted
element should be inserted at the spine deeper than the length of the spine.



In this case, unary nodes must be created in order to put the new element at
the appropriate level. However, these nodes can be introduced on demand by
attaching the leaf to the last node of the spine. If some other element is inserted
with small weight then we attach it as leaf to the last node or introduce new
nodes if the number of weighted elements attached to this node is 4.

Consider now an arbitrary leaf l. Our biased tree must support an operation
that decreases the rank of the leaf by one. We call this operation Demote(`,T ).
This decrement by one of the rank of the leaf (which in term of weights is
equivalent to reducing by half its weight) can be implemented by simply moving
from this leaf to the root of the tree, and using similar techniques as those
described in [1].

The following lemma summarizes the properties of the described biased tree.

Lemma 1. There exists an implementation of a biased tree T , such that the tree
has height O(logw(T )) and supports the operations of insertion of a weighted

element at its spines and demotion of a weighted element in O
(

log w(T )
w(xi)

)

time,

where xi is the element inserted or demoted.

Proof. The insert operation places the elements always at the correct level which
is never changed by the insertion operation. Hence by a similar line of arguments
as that in [1] we can conclude that T has height O(logw(T )). From the inser-
tion algorithm an element xi is inserted at a level such that the path from the
root to this level has length at most O(logw(T ) − logw(xi)) which is equal to

O
(

log w(T )
w(xi)

)

. Finally by using the analysis in [1] it is proved that the demote

operation takes the same time complexity. 2

3.3 The Join Operation

The fast Join-tree is a biased tree with one tree-collection attached to each of its
spines and tree-collections at its leaves. The tree-collection is a weighted element
that must be inserted at the appropriate position on the spine of the biased tree.
This insertion is incrementally implemented during the future join operations.
When the appropriate node for the tree-collection has been found, it is attached
to this node as a weighted leaf and the process starts again from the root with
a new and possibly empty tree-collection.

The tree-collection xL (for the left spine) maintains a pointer pL that tra-
verses the spine of the biased tree T starting from its root v. Assume that T is
involved in a join operation with some other tree T ′, such that R = r(T ) ≥ r(T ′).
Then, tree T ′ is inserted in the tree-collection xL and pL is moved one node down
the spine. The choice of moving one node down the spine is arbitrary and any
constant number would do. During the traversal of the spine a simple counter is
maintained, which denotes the ideal rank of each node on the spine. This counter
is initialized to R, and each time we traverse a node on the spine it is reduced
by one. When a node is located such that the counter is equal to r(xL) + 1 the
tree-collection is inserted and the process starts again from the root with a new



tree-collection. The inserted tree-collection is inserted as a weighted leaf of this
node.

Assume that T ′ and T are joined, where r(T ) ≥ r(T ′), and that the tree-
collection xL points to a node u on the spine with rank r(u). There are two cases
as to the relation of r(T ′) and r(u):

1. blog(w(xL)+w(T ′))c+1 < r(u): in this case the tree-collection xL after the
insertion of T ′ in it must be inserted somewhere down the spine hence the
traversal must be continued.

2. blog(w(xL) +w(T ′))c+1 ≥ r(u): in this case the weight of T ′ introduced in
xL is too much and xL should be inserted higher up the spine. If blog(w(xL)+
w(T ′))c+1 < r(u) + 1 then xL canbe safely inserted as a child of the father
of node u. Otherwise, the tree-collection xL without T ′ is made a child of u
and a new tree-collection is created and initialized to tree T ′ that starts the
traversal of the spine from the root. We call xL the stepchild of node u.

For the second case the following lemma holds:

Lemma 2. r(T ′) > r(xL).

Proof. (by contradiction) Assume that r(T ′) ≤ r(xL). Then, by the addition
of T ′ the tree-collection will have rank at most r(xL) + 1. However, this is not
possible since xL could have been attached without taken T ′ into account. 2

A stepchild is a weighted element that was not inserted in its correct position
but higher on the spine. We assume that the stepchild does not contribute to
the out-degree of its father. The following property is essential:

Property 1. Each internal node of the fast Join-tree has at most one stepchild.

This property is a direct consequence of Lemma 2. Thus, node u is not
anymore part of the spine and the property follows. A similar issue arises in the
case when tree T ′ is merged with the larger tree T . As before, the two non-empty
tree-collections of T ′ are made stepchildren of the nodes they currently point to.
Tree T ′ is not part of the spine of T , thus Property 1 is maintained.

One problem that arises from the use of stepchildren is that Lemma 1 may
not hold anymore. Fortunately, this is not the case because of Property 1 and
the fact that the stepchildren cannot cause any splits on the spine.

The result of this discussion is that the tree-collections move only once the
spine from root to leaf. The following property exploits this fact and relates the
virtual rank vr(x) of a tree-collection x with the corresponding pointer p with
its rank r(x) and the rank R of T :

Property 2. R− r(x) > vr(x)

Proof. We prove that R − vr(x) > r(x). R − vr(x) is the maximum rank of
the node pointed by the pointer p of the tree-collection x. This is because, after
vr(x) insertions of trees in the tree-collection x, the pointer p has traversed vr(x)
nodes down the spine. Since, the tree-collection x has not been attached to any
node yet, its rank must be less than the rank of the node pointed by p. The
inequality follows and the property is proved. 2



The join operation is performed in O(1) worst-case number of steps since a
constant number of nodes are traversed on the spine and a single insertion is
performed in one tree-collection. We now move to the discussion of the search
operation. The search starts from the root of the fast Join-tree T and traverses
a path until a weighted leaf ` is reached. The search continues in the forest of
J-trees in tree-collection `. The search in a forest of J-trees is implemented as a
simple scan of a linear linked list from head to tail. Note that the head of the
list is the first element ever inserted in the tree-collection.

The following lemma states that searching in a tree-collection is efficient.

Lemma 3. If the search procedure needs O(p) steps to locate the appropriate
J-tree T ′ in a tree collection in J-tree T , then the rank of T ′ is at most equal to
the rank of T reduced by p.

Proof. Assume that at some recursive level of detail the J-tree T has rank R =
r(T ). In addition, let T ′ be the p-th tree in the tree-collection. Since T ′ is the
p-th tree in the collection, its insertion must occured at the p-th step of the
spine’s traversal. Since when traversing the spine we visit nodes of reduced rank
we get as a result that T ′, being the J-tree in the p-th position has rank smaller
than T by at least p, and the lemma follows. 2

The following theorem states the logarithmic complexity of the search oper-
ation by using Lemma 3.

Theorem 1. The search operation in a fast Join-tree T is carried out in O(logw(T ))
steps.

Proof. Assume that the search procedure enters a weighted leaf which is a child
of a node u in the J-tree T . Additionally, assume that in the forest the search
procedure explores the p-th J-tree T ′.

We show that:

r(T ′) ≤ min{r(T )− p, r(u)} (1)

Since the search has reached node u we get that r(T ′) ≤ r(u). This observation
in conjunction with Lemma 3 proves Equation 1.

Equation 1 states that the rank of the search space is decreased by 1 af-
ter O(1) steps. As a result, to find a single element in the J-tree T we need
O(logw(T )) steps. 2

3.4 Supporting Update Operations

We now describe how the J-tree supports insertions and deletions of single el-
ements. The update operations may cause the fast Join-tree to become unbal-
anced; thus rebalancing strategies must be employed in order to ensure that this
is not the case. We first show how insertions are implemented and then we move
to the case of deletions.



Insertions We implement insertions by using a two level data structure. The
first level of the structure is the fast Join-tree while the second one is a tra-
ditional degree balanced (2, 4)-tree as described in [15]. Each leaf of the fast
Join-tree is a degree balanced (2, 4)-tree. Hence, the structure can be seen as a
forest of (2, 4)-trees over which a secondary structure is built to incorporate join
operations. Consequently, the first level of the structure implements efficiently
the join operation while the second level implements the insertion operation.
Figure 3 depicts the structure.

Forest of 
(2,4)-trees

fast Join-tree T

Leaf of fast 
Join-tree

O(logw(T))

O(logN)

Fig. 3. A high level view of the structure for insertions.

When inserting an element we first need to locate its position in the structure.
This is accomplished by searching the fast Join-tree for the appropriate leaf by
using Theorem 1. The leaf represents a (2, 4)-tree in the second level of the
structure, in which the element is inserted without affecting the fast Join-tree.
This means that insertions do not affect the weights of the internal nodes of the
fast Join-tree. The weight of the fast Join-tree is the number of leaves, that is
the number of (2, 4)-trees in the second level.

When the position of the insertion is located in a (2, 4)-tree in the second
level, the element is inserted. Finally, rebalancing operations are performed in
the (2, 4)-tree and the insertion procedure terminates. Thus, the fast Join-tree
is by no means affected by this insertion operation. As a result, there may be
the case that a very light fast Join-tree has very large number of stored elements
because of insertion operations, and we get the following property:

Property 3. The number of leaves of the fast Join-tree is a lower bound for the
number of elements stored in the forest of (2, 4)-trees in the second level of the
structure.

By Theorem 1, a leaf in a fast Join-tree T is located in O(logw(T )) steps.
When the leaf is located a second search operation is initiated in the (2, 4)-tree



attached to this leaf. If the number of elements stored in the forest of (2, 4)-
trees is N , then by Property 3 we get that w(T ) ≤ N . As a result, the total
time complexity for the search operation is bounded by O(logw(T ))+O(logN),
which is equal to O(logN). Consequently, insertion operations are supported
efficiently by applying this two level data structure.

Deletions The delete operation cannot be tackled in the same way as the
insertion operation. This is because when a leaf of the fast Join-tree becomes
empty, the weight of internal nodes is reduced by one. We devise a rebalancing
strategy for the fast Join-tree in the case of deletions. Additionally, we introduce
a fix operation, which incrementally joins leaves from the forest of (2, 4)-trees.

As in the case of insertions, first the element must be located. The search
procedure locates the appropriate leaf of the fast Join-tree and then locates the
element in the (2, 4)-tree attached to this leaf. This element is removed from the
(2, 4)-tree by applying standard rebalancing operations (fuse or share). If the
(2, 4)-tree is non-empty after the deletion, then the procedure terminates and
the fix operation is initiated. If it is empty, then rebalancing operations must be
forced on the fast Join-tree.

Since this leaf is empty it is removed from the fast Join-tree. If this leaf
belonged to a tree-collection x then the virtual rank has decreased by one and
potentially the rank of x has decreased by one. By employing a demote operation
on the biased tree whose leaf is this tree-collection the change of the rank is
remedied. This change may propagate up to the J-tree of the first recursive
level. During this traversal, the weight of all nodes on the path to the root is
updated accordingly. When the root of the fast Join-tree is reached, the deletion
operation terminates. Note that this operation does not violate Property 2. This
is because both the rank and the virtual rank of the tree-collection are reduced.

As shown above the deletion operation may reduce by one the virtual rank of
the tree-collection. Thus, a tree-collection may be completely empty after a dele-
tion operation. This means that the leaf is removed and rebalancing operations
(fuse or share) must be performed in the biased tree to maintain its structural
properties.

A final detail is how deletions interact with stepchildren. In this case, when
a tree-collection is demoted then if one of its adjacent brothers is a stepchild,
we also demote the stepchild. If the stepchild reached its correct level then it
ceases to be a stepchild and it is inserted as an ordinary tree-collection. This
procedure may be seen as an insertion of a weighted element in a J-tree, thus
inducing rebalancing operations which may propagate up to the root of the fast
Join-tree. The time complexity of the delete operation remains unaffected.

We now switch to the description of the fix operation. The fix operation
is used as a means of globally correcting the data structure, that is it is not
mandatory, however it is used to give a better shape to the structure. Each time
an update operation is performed, the fix operation picks 4 leaves of the fast
Join-tree and merges them together. Each one of these leaves represents a (2, 4)-
tree. The merge of these trees can be performed in O(log n) time, where n is the



number of elements stored in the forest of (2, 4)-trees. From this merge three
leaves of the fast Join-tree become empty. Thus, rebalancing operations must be
employed on the fast Join-tree for these leaves. All in all, the time complexity
for the delete operation is O(log n).

The problem posed by this delete operation is that Property 2 may be vio-
lated. As a result, the search bounds and consequently the update bounds will
not be logarithmic anymore. Assume that N is the number of leaves of the fast
Join-tree T before the fix operation is initiated, where n ≥ N . Thus, the rank of
T is R = logN . During the fix operation, until all the leaves are merged into a
single (2, 4)-tree and the fast Join-tree is a single node, the number of elements
in the forest of (2, 4)-trees will never decrease below n

2 . By Theorem 1, the time
complexity for the search will be O(R) + O(log n), and since R = O(log n) the
time complexity for the deletion follows.

By Theorem 1 and the previous discussion, we get the following theorem:

Theorem 2. There exists a search tree supporting search and update operations
in O(log n) worst case time and meld operations in worst case constant time.

3.5 Purely Functional Implementation

The nodes that compose our structure have all degrees that are bounded by
a constant. Hence, in order to make our structure work efficiently in a purely
functional setting we need the following ingredients:

– a purely functional implementation of the linear list with which we imple-
ment the tree collection. This structure is implemented purely functionally
in [3, 16].

– a purely functional implementation of the left and right tree spines. The
presence of the pointer designating the movement of the tree-collection is
quite awkward, since in a functional setting explicitly assigning values is not
permitted. However, the pointer movement can be modeled by partitioning
each spine into two lists the border of which designates the pointer position.
These lists should be implemented purely functionally and should support
both catenation and split operations. Details of such an implementation can
be found in [14].

By Theorem 2 and the previous discussion, we get:

Theorem 3. There exists a purely functional implementation of search trees
supporting search and update operations in O(log n) worst case time and join
operations in worst case constant time.

4 Conclusion

We have presented a purely functional implementation of catenable sorted lists,
supporting the join operation in worst case constant time, the search operation
in O(log n) time and the insertion and deletion operations in O(log n) time. This



is the first purely functional implementation of search trees supporting the join
operation in worst case constant time.

It would be very interesting to implement efficiently the split operation. It
seems quite hard to do this in the proposed structure because of the dependence
of Property 2 on the rank of the tree. Splitting will invalidate this property for
every tree-collection and will lead to (log n log log n) search and update times.
It would also be interesting to come up with an efficient purely functional im-
plementation of sorted lists, implemented as finger trees (as in [13]) that could
support join in worst case constant time. In this structure, it is quite unlikely to
implement finger searching due to the relaxed structure of the fast Join-tree.

References

1. Bent, S., Sleator, D., Tarjan R. Biased Search Trees, SIAM Journal of Computing
14:545–568, 1985.

2. Brodal, G.S. Partially Persistent Data Structures of Bounded Degree with Con-
stant Update Time, Nordic Journal of Computing, 3(3):238-255, 1996.

3. Brodal, G.S., and Okasaki, C. Optimal Purely Functional Priority Queues. Journal
of Functional Programming, 6(6):839-857, 1996.

4. Buchsbaum, A. and R. E. Tarjan. Confluently persistent deques via data structural
bootstrapping. Journal of Algorithms, 18:513-547, 1995.

5. Dietz P.F. Fully Persistent Arrays. In Proc. of Workshop on Algorithms and Data
Structures (WADS), pp. 67-74, 1989.

6. Dietz, P. and Raman, R. Persistence. Amortization and Randomization. In Proc.
of the 2nd ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 78-88,
1991.

7. Driscoll, J.R., Sarnak, N., Sleator, D., and Tarjan, R.E. Making Data Structures
Persistent. Journal of Computer and System Sciences, 38(1):86-124, 1989.

8. Driscoll, J.R., Sleator, D., and Tarjan, R.E. Fully Persistent Lists with Catenation.
Journal of the ACM, 41(5):943-959, 1994.

9. Fiat, A., and Kaplan, H. Making Data Structures Confluently Persistent. Journal
of Algorithms, 48(1):16-58, 2003.

10. Kaplan, H. Persistent Data Structures. Handbook of Data Structures, CRC Press,
Mehta, D., and Sahni, S., (eds.), 2004.

11. Kaplan, H., Okasaki, C., and Tarjan, R. E. Simple Confluently Persistent Catenable
Lists. SIAM Journal of Computing, 30(3):965-977, 2000.

12. Kaplan, H., and Tarjan, R.E. Purely Functional, Real-Time Deques with Catena-
tion. Journal of the ACM, 46(5):577-603, 1999.

13. Kaplan H., and Tarjan, R.E. Purely Functional Representations of Catenable
Sorted Lists. In Proc. of the 28th Annual ACM Symposium on Theory of Comput-
ing (STOC), 202-211, 1996.

14. Kaplan, H., and Tarjan, R.E. Persistent Lists with Catenation via Recursive Slow-
down. In Proc. of the 27th Annual ACM Symposium on Theory of Computing, pp.
93-102, 1995.

15. Mehlhorn, K. Data Structures and Algorithms 1: Sorting and Searching. EATCS
Monographs on Theoretical Computer Science, Springer-Verlang, 1984.

16. Okasaki, C. Purely Functional Data Structures, Cambridge University Press, 1998.
17. Okasaki, C. Purely Functional Random-Access Lists. In Conf. on Functional Pro-

gramming Languages and Computer Architecture (FPCA), pp. 86-95, 1995.


